1 REVIEW ARTICLE

2	The multifaceted role of neurofilament light chain protein
3	in non-primary neurological diseases
4	
5	Samir Abu-Rumeileh, ¹ Ahmed Abdelhak, ^{2,3} Matteo Foschi, ⁴ Lucio D'Anna, ^{5,6} Michele
6	Russo, ⁷ Petra Steinacker, ¹ Jens Kuhle, ⁸ Hayrettin Tumani, ³ Kaj Blennow ^{9,10} and Markus
7	Otto ^{1,3}
8	
9	1 Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale),
10	Germany
11	2 Department of Neurology, University of California San Francisco (UCSF), San Francisco,
12	USA
13	3 Department of Neurology, Ulm University Hospital, Ulm, Germany
14	4 Department of Neuroscience, Neurology Unit - S. Maria delle Croci Hospital of Ravenna,
15	AUSL Romagna, Ravenna, Italy
16	5 Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London
17	NHS Healthcare Trust, London, UK
18	6 Department of Brain Sciences, Imperial College London, London, UK
19	7 Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano,
20	Italy
21	8 Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical
22	Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and
23	Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
24	9 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
25	the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
26	10 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
27	
28	Correspondence to: Prof. Markus Otto, MD
29	Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale),
30	Germany

© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) 1

- 1 E-mail: markus.otto@uk-halle.de
- 2
- 3 **Running title**: NfL in non-primary neurological diseases
- 4

5 Keywords: biomarker; neurofilament light chain protein; serum; plasma

6

Abbreviations: AUC = area under the curve; BMI = body mass index; bvFTD = behavioral 7 variant of frontotemporal dementia; COVID-19 = coronavirus disease 19; ELISA = Enzyme-8 Linked Immunosorbent Assay; GFAP = glial fibrillary acidic protein; HbA1c = glycosylated 9 hemoglobin; ICU = intensive care unit; MS = multiple sclerosis; NfL = neurofilament light 10 chain protein; NfH = neurofilament heavy chain protein; NfM = neurofilament medium 11 chain; Nfs = neurofilaments; NSE = neuron-specific enolase; OHCA = out-of-hospital 12 cardiac arrest; S100B = S100 calcium-binding protein B; SARS-CoV-2 = severe acute 13 respiratory syndrome coronavirus type 2; SBP = systolic blood pressure; Simoa = single 14 molecule array; SSEP = somatosensory-evoked potentials; t-tau = total-tau; WMH = white 15 matter hyperintensities 16

1 Abstract

The advancing validation and exploitation of cerebrospinal fluid and blood neurofilament 2 light chain protein as a biomarker of neuroaxonal damage has deeply changed the current 3 diagnostic and prognostic approach to neurological diseases. Further, recent studies have 4 provided evidence of potential new applications of this biomarker also in non-primary 5 neurological diseases. In the present review we summarise the current evidence, future 6 7 perspectives, but also limitations, of neurofilament light chain protein as a cerebrospinal fluid 8 and blood biomarker in several medical fields, including intensive care, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with 9 the degree of neurologic impairment and outcome in patients admitted to intensive care units 10 or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk 11 factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the 12 investigation of neurofilament light chain protein in psychiatric disorders as well as in the 13 current coronavirus disease 19 (COVID-19) pandemic and in normal aging. Altogether, 14 current data outline a multifaceted applicability of cerebrospinal fluid and blood 15 neurofilament light chain protein ranging from the critical clinical setting to the development 16 17 of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum. 18

1 Introduction

2 The European Medical Agency and the Food and Drug Administration define a biomarker as 3 a biological molecule accessible in body fluids or tissues that can be exploited to follow physiological, disease and pharmacological processes in humans and animals.¹⁻³ 4 Accordingly, a biomarker could fall into several, not mutually exclusive, categories 5 depending on its diagnostic, prognostic, predictive or pharmacodynamic role.¹⁻³ Therefore, 6 advances in biomarker research have historically been critical to progress in a broad spectrum 7 8 of clinical conditions. The past decade has witnessed an explosion of interest in neurofilament light chain protein (NfL) as a biomarker reflecting neuroaxonal damage in 9 neurological disorders.^{4,5} Notably, the introduction of ultra-sensitive immune assays, having a 10 severalfold higher analytical sensitivity than for examples standard enzyme-linked 11 immunosorbent assay (ELISA) methods,⁶⁻⁹ has represented a substantial advancement into 12 the biomarker field, especially in the assessment of NfL concentration, given the possibility 13 to obtain rapid and robust quantification in blood samples.¹⁰ So far, results from hundreds of 14 studies have supported the multifaceted role of CSF and blood NfL, showing diagnostic, 15 prognostic and even pharmacodynamic utility neuroinflammatory, 16 in most neurodegenerative, cerebrovascular and traumatic disorders.^{4,5,11–22} 17

Nevertheless, there is also growing evidence that NfL may be able to track a subclinical 18 neuronal damage even in non-primary neurological diseases, which is likely associated with 19 the development of short- or long-term neurological sequelae. In this regard, the association 20 between NfL and the degree of neurologic impairment and outcome in patients admitted to 21 intensive care units (ICU) or in the perioperative phase along with the complex interplay 22 existing between cardiovascular risk factors and NfL levels are informative. Moreover, the 23 raising concern from worldwide healthcare systems for psychiatric disorders as well as the 24 current coronavirus disease 19 (COVID-19) pandemic provided two emerging settings in 25 which NfL has been investigated. Furthermore, some very recent pieces of evidence opened a 26 new perspective in terms of the possible prognostic implication of NfL in healthy elderly 27 individuals. Finally, few reports assessed NfL as a biomarker for neuronal injury in disorders 28 29 due to physical agents (i.e. decompression sickness, etc.) as well as in gynecological and dermatological conditions. 30

In the present review we provided an up-to-date and comprehensive overview of the current evidence, future perspectives, and limitations of NfL as a CSF and blood biomarker in non-

- 1 primary neurological disorders and in normal ageing, taking into account the lessons obtained
- 2 from this biomarker application in the field of neurological diseases.
- 3

4 Biological and analytical aspects of neurofilament light chain protein

Neurofilaments (Nfs) are exclusively expressed in mature neurons where they form fibrillary 5 networks representing the major cytoskeletal component, thus providing structural stability 6 and resistance against mechanical stress.^{23,24} Nfs are particularly abundant in the large-7 myelinated axons, such as those of motor neurons, where they are involved in the radial 8 growth of axons and dendritic branching, in axonal transport, and they act as scaffold for 9 microtubules to regulate positioning of cellular organelles.^{23,24} NfL, a class IV intermediate 10 filament protein of 68 kDa encoded by the NEFL gene located on chromosome 8 (8p21.2) 11 represents the most abundant intermediate filament protein in neurons.^{22,23,25,26} To build up 12 Nfs, NfL protein assembles into heteropolymers together with neurofilament medium chain 13 (NfM) and neurofilament heavy chain (NfH) proteins.^{23,25–27} The physiological turnover of 14 Nfs is very slow²⁸ and might be regulated by phosphorylation of NfM and especially NfH 15 subunits.^{29,30} The proteasome system is considered to be involved in the degradation of Nfs, 16 although little is known about Nf proteolysis under disease conditions.²⁴ 17

While NfL is secreted to, and readily measurable in CSF of healthy young people³¹ and 18 children ³², after processes that cause neuroaxonal damage, increased amounts of NfL are 19 released to the CSF and then are drained into the blood.^{4,5} NfL release might occur as 20 consequence of membrane disintegration as well as through regulated secretion of 21 exosomes.³³ Nevertheless, data concerning the influence of blood-brain barrier permeability 22 on blood NfL concentrationsare still to be fully elucidated.^{34,35} NfL levels can reliably be 23 quantified in the CSF using commercially available sandwich ELISAs. The CSF NfL mean 24 concentration in individuals without neurodegenerative diseases is about a few hundred pg/ml 25 up to 1 ng/ml with the levels increasing with age (refer chapters below).^{16,36} Correspondingly, 26 under non-pathological conditions, NfL blood concentration is approximately 15-60 fold 27 lower than in CSF and below the detection limit of classical sandwich ELISAs.^{10,37} However, 28 this issue has been recently overcome with the introduction of new analytical techniques. A 29 first effort in this direction was based on an electrochemiluminescence assay (Meso Scale 30 Discovery platform).³⁸ Some years later, sensitivity was further improved by the 31 implementation of digital ELISA technology by means of the single molecule array (simoa, 32

Quanterix),¹⁰ which enabled a reliable measurement of both serum and plasma NfL. Notably, 1 a comparison of NfL concentrations determined by these two different approaches is not 2 possible and even measurements obtained with simoa can vary according to different assays. 3 For example, the current version of the commercial simoa assay (NF-light Advantage kit, 4 5 Quanterix, US) with ready-to-use calibrators yields twice as high CSF NfL concentrations compared to the previous version that contains a lyophilized calibrator stock. Furthermore, 6 7 home-brew versions generally obtain higher NfL concentrations compared to commercial 8 assays due to different blocking buffers or other technical modifications. Finally, a technology dependent bias might be considered in the analytical process.^{10,35} Other recently 9 introduced NfL ultrasensitive assays are based on microfluidic ELISA systems (ELLA, 10 Proteinsimple)^{8,39} and advanced acridiniumester-(AE-) technology (ADVIA Centaur CP 11 System, Siemens Healthineers).^{9,40} Here, a strong correlation between the simoa and the 12 ELLA platforms has been reported.⁸ Taking into account all these issues, and for the 13 successful implementation of NfL as biomarker for clinical routine applications, a first step is 14 international multicenter round robin studies, with the aim to compare assay performance and 15 correlations across assays. Here, a first such study has recently been published.⁴¹ In the 16 second phase, the development of certified reference materials is needed, meaning large pools 17 of plasma/serum that have been aliquoted into high numbers of samples with specified NfL 18 levels, optimally three different with low/medium and high levels, that can be distributed to 19 kit vendors for quality assurance and harmonization of levels across assays and platforms. 20

21

22 Confounding factors influencing neurofilament light chain protein levels

Beside neuroaxonal damage, several physiological and pre-analytical factors might also 23 influence NfL levels, especially in blood. Although many mechanisms are yet not fully 24 understood, recent pieces of evidence highlighted the significant confounding role of these 25 variables, which should be carefully considered when measuring NfL in both healthy and 26 primary non-neurological conditions (Fig. 1). First, a significant inter-individual variability 27 has been reported in normal individuals, especially in the healthy elderly.^{42,43} Biological 28 fluctuations may explain variations between consecutive blood NfL measurements in both 29 healthy controls and patients.⁴⁴ However, blood NfL seems to be not subject to diurnal 30 changes, as differentially reported for other biomarkers.^{42,45} Furthermore, the biological 31 matrix and the type of tube can affect blood NfL measurements with slightly higher values 32 reported in serum compared to plasma samples⁴⁶ and with concentrations in citrate plasma > 33

20% lower than in EDTA plasma.⁴⁷ Concerning demographical variables, it is well-known 1 that NfL levels increase with age in both patients and healthy controls, whereas sex does not 2 impact NfL levels in the latter.⁴³ Both ageing and age-related comorbidities might be 3 responsible of this phenomenon (refer to chapter below).⁴³ Accordingly, there have been 4 recent efforts to establish age-related reference values for blood NfL.^{48–50} Other important 5 counfonding factors are blood volume and body mass index (BMI), which are inversely 6 7 associated with blood NfL, probably due to a dilution effect driven by blood volume increase.⁵¹ Conversely to blood NfL levels, CSF concentrations were not influenced by blood 8 volume.⁵¹ Taking into account the strong effect of these confounders, recent papers 9 highlighted the importance of age and/or BMI-adjustment of blood NfL values, to improve 10 the biomarker use at an individual level, especially in diseases like multiple sclerosis (MS) 11 with more subtle increases of NfL levels.^{50,52} Here, the usage of percentiles (or Z scores 12 which are interchangeable) based on large, international healthy control cohorts allows the 13 quantitative assessment of deviation from normal NfL concentrations.⁵⁰ In pregnancy, despite 14 the expanded blood volume, a progressive rise in blood NfL levels until delivery has been 15 reported.^{53,54} It remains still unclear whether this increase is driven by structural brain 16 changes (e.g. peri-partum transient grey matter atrophy)⁵⁵ or by NfL release from other 17 tissues during pregnancy (e.g. highly innervated uterine muscle).⁵⁶ Glycosylated hemoglobin 18 (HbA1c) has been also shown to significantly explain the variability on blood NfL levels.⁵⁷ 19 Furthermore, renal function influences blood NfL, with a respective increase in creatinine 20 values (or decrease in glomerular filtration rate) associated with higher biomarker levels.^{46,57–} 21 ⁵⁹ However, the mechanisms underlying this association are still to be fully elucidated.⁵⁸ On 22 another issue, an increase in blood NfL levels has been described in sports associated with 23 even different degrees of traumatic brain injuries, such as football, hockey and boxing.^{60–62} 24

25

26 Methods

The methods of this review followed Preferred Reporting Items for Systematic Reviews and meta-analysis (PRISMA) guidelines for scoping reviews. Five reviewers (SAR, AA, MF, LDA, MR) systematically searched PubMed for studies reporting on NfL and non-primary neurological conditions from last database opening on 28th February 2022. The search strategy was performed using specific search terms (Supplementary Methods). Titles and abstracts were screened to select articles relevant to the purpose of the review. Their reference lists were also hand-searched to increase the identification of useful data. We selected studies assessing the diagnostic and/or prognostic value and/or dynamic of NfL (in CSF and/or blood) in primary non-neurological conditions, including intensive and perioperative care, atrial fibrillation and cardiovascular risk factors, COVID-19, HIV, psychiatric disorders, normal aging and other minor non-primary neurological conditions. The selection was shared among all co-authors. Only studies on humans and articles in English language were included (Supplementary Figure 1).

8

9 Neurofilament light chain protein as a biomarker in adult and pediatric intensive care 10 units

Post-anoxic encephalopathy after resuscitated out-of-hospital cardiac arrest (OHCA) is one of 11 the leading causes of long-term neurological disability and mortality in patients admitted to 12 ICUs.⁶³ To date the prognostic evaluation of neurologic outcome after OHCA is still complex 13 and have poor accuracy, and relies typically on a multimodal approach, including clinical 14 examination, neuroradiological investigations, EEG, somatosensory-evoked potentials 15 (SSEP), and biofluid markers.^{64,65} In this regard, neuron-specific enolase (NSE) is currently 16 the only blood biomarker recommended by European and American guidelines for post-17 cardiac arrest care.^{64–68} However, false positives are common as a consequence of haemolysis 18 and only samples taken 3 days after the event may show a prognostic value.^{69,70} In the very 19 last years, NfL emerged as a feasible and accurate marker for prediction of survival and 20 neurological outcome after cardiac arrest in both adult and pediatric patients. In this regard, 21 small cohort studies provided already in the early 2010s preliminary data of interest by 22 analysing neurofilament proteins in CSF or blood using standard immunoassays^{71–73} (**Table 1** 23 and Supplementary Table 1). In a huge cohort study based on the Target Temperature 24 25 Management After Cardiac Arrest trial NfL levels were measured at 24, 48 and 72 hours after 26 OHCA in 717 patients, of whom 360 (50%) showed poor neurological outcome 6 months later. Blood NfL concentrations increased in the first-time interval but remained stable at 72 27 hours and were significantly higher at all time points in patients with poor compared to those 28 29 with good clinical outcome, reaching overall an optimal accuracy [area under the curve (AUC) 0.94] in the prediction of poor neurologic outcome at 6 months.⁶⁴ Several other 30 studies^{65,68,74,75} confirmed the same findings and provided new insights, such as steadily high 31 NfL concentrations even at late time points suggesting the potential use of NfL as both early 32

and late prognostic marker.^{65,76} Overall NfL showed a clearly higher prognostic value than 1 head CT, SSEP, EEG, bedside clinical tests⁶⁴ or other serum biomarkers (tau protein, NSE 2 and S100 calcium-binding protein B - S100B),^{64,65,68} implicating that the current 3 recommendations in the prognostic evaluation after OHCA could be improved by upgrading 4 with blood NfL.^{65,68,74} In this regard, NfL might be a more suitable predictive marker 5 compared to NSE in the early course of the disease.^{74,75} Indeed, a multivariable model 6 integrating clinical variables, NSE after 72 hours and NFL on any of the three first days 7 8 showed a very promising prognostic performance with low risk of false-positive predictions although retaining a low number of false-negative predictions.⁷⁵ On another hand, given the 9 high prevalence of electrographic status epilepticus after cardiac arrest and the current debate 10 about its pathogenic role,⁷⁷ the finding of higher serum NfL in subjects with electrographic 11 status epilepticus compared to those without the syndrom and similar initial brain injury 12 might suggest an additional secondary brain structural injury due to status epilepticus itself.⁷⁷ 13 Sepsis-associated encephalopathy represents another important contributor of mortality and 14

long-term morbidity in the ICU setting^{78,79} Sepsis-associated encephalopathy is defined as a
diffuse brain dysfunction related to sepsis without evidence of primary CNS infection.⁸⁰
Differently from classic biomarkers, such as S100B protein, and NSE, which generated
contradictory findings,^{81,82} preliminary data concerning CSF and serum NfL in sepsisassociated encephalopathy were promising. In this regard, NfL seemed to correlate with
disease severity, poorer functional outcome after 100 days and also with the extent of MRI
brain damage (white matter hyperintensities – WMH).⁸³

Among other common complications in the ICU setting, the ICU-acquired weakness shows 22 an incidence of 40% and includes several entities such as critical illness myopathy, critical 23 illness polyneuropathy or critical illness neuromyopathy.⁸⁴ Nevertheless, while Fisse et al. 24 did not find significant differences in blood NfL levels between patients with and without 25 critical illness polyneuropathy/neuromyopathy at any timepoint,⁷⁶ a recent paper disclosed 26 values 27 higher blood NfL in COVID-19 patients with critical illness polyneuropathy/neuromyopathy.⁸⁵ Most interestingly, in a cohort of patients admitted to ICU 28 with a broad spectrum of different neurological and non-neurological diseases, NfL 29 maintained the association with outcome irrespective of the underlying disease.⁷⁶ Considering 30 the high specificity of NfL for neuroaxonal damage and the difficult assessment of 31 neurological involvement in analgosedated patients, NfL might be thus adopted as a surrogate 32 marker of CNS involvement in all patients admitted to ICU.⁷⁶ 33

1 In the field of pediatric intensive care, likewise in adults, blood NfL seems to increase more in nonsurvivors compared to survivors after cardiac arrest.⁸⁶ Moreover, few pilot studies 2 found elevated blood NfL concentrations in newborns with hypoxic-ischemic encephalopathy 3 to be associated with insult severity evaluated through brain imaging⁸⁷⁻⁹⁰ and with poor 4 outcomes in those subjects, who undergone mild therapeutical hypothermia, currently a 5 recognised standard care of hypoxic-ischemic encephalopathy.^{89,90} Similarly, in preterm 6 infants with neonatal brain injury serum NfL dynamics appeared predictive of motor 7 outcome.⁹¹ 8

9

10 The potential role of neurofilament light chain protein in the perioperative care

11 The perioperative period can be associated with a wide range of neurological short and long-12 term sequelae.⁹² Clinical and radiological investigations could help to assess major 13 postoperative complications (i.e. stroke), while other subtle manifestations such as post-14 operative cognitive decline are difficult to diagnose and currently underrecognized.⁹³ A 15 sensitive, easily accessible and longitudinally measurable biofluid marker for neurological 16 damage might represent a valuable addition to the current diagnostic tools, given that the use 17 of CT and MRI might be limited by logistics, limited sensitivity and spatial resolution.

In this regard, several studies revealed no significant changes in CSF NfL concentrations up 18 to 48 hours after surgery in the absence of neurological complications and regardless of type 19 of surgical intervention.⁹⁴⁻⁹⁸ Contrary, blood NfL levels seem to show a more dynamic 20 profile. Indeed, a 67% elevation of blood NfL has been reported postoperatively at 48 hours 21 in the study by Evered *et al.*⁹⁹ Of note, in around 77% of the patients included in this study 22 major lower limb surgery with general anesthesia and spinal and/or perineural blockade were 23 24 performed, which might be associated with incidental subclinical nerve fiber injury. Other studies examining other surgery branches, revealed conflicting results. From one side a 25 marked increase in blood NfL has been documented during the procedure and up to seven 26 days postoperative in patients who underwent cardiac surgery, specifically in the group 27 having extracorporeal circulation¹⁰⁰ as well as in cases with perioperative myocardial 28 injury.¹⁰¹ Furthermore, although a mild increase in NfL 3-5 days post-surgery, no association 29 has been reported between blood NfL and cerebral oxygenation saturation¹⁰² or mean arterial 30 pressure values^{101,103} in different types of surgery. On the other side, one study¹⁰⁴ reported an 31 increase of blood tau but not of blood NfL over a follow-up period up to 3 months after major 32 33 cardiac surgeries. Nevertheless, none of the above-mentioned studies could conclude if the 1 elevation of NfL (if present) was solely attributed to the surgical intervention and not to the general anesthesia. However, in the study by Deiner et al. no elevation of blood NfL has been 2 detected up to 5 hours after inhalation anesthesia without a following surgery, rendering a 3 structural neurotoxic effect, as assessed by NfL, of general inhalation anesthesia to be 4 neglectable.¹⁰⁵ 5

Among postoperative sequelae ischemic complications represent a significant portion. Here, 6 7 an early (till post-operative day 3) increase in CSF NfL has been documented in patients with 8 postoperative symptomatic spinal cord ischemic lesions compared to controls in the studies from Winnerkvist *et al.*¹⁰⁶ and Merisson *et al.*⁹⁶ Beyond that, post-operative neurocognitive 9 disorders, and among them delirium, are currently underdiagnosed, undertreated, only 10 partially preventable complications, which are associated with long-term morbidity and 11 mortality and a significant financial consequence of up to \$17275 in payments in the one 12 year after the index surgical procedure.^{107,108} Bearing in mind that delirium is a manifestation 13 of a putative neurological demise, several studies reported a more accentuated blood or CSF 14 NfL increase in delirium patients compared to those who did not develop delirium,¹⁰⁹⁻¹¹¹ 15 peaking at day two and month one¹¹² and correlating with the degree of MRI white matter 16 injury¹⁰⁹ (Table 2). Of interest, cases with higher NfL levels during the preoperative 17 assessment (fourth quartile) had almost 4 times (3.71 OR; 95% CI: 1.09–12.58) higher risk to 18 develop postoperative delirium compared to patients with lower NfL levels (first quartile).¹¹² 19 Therefore, two main underlying pathophysiological mechanisms might be responsible for 20 postoperative delirium: 1) structural alterations associated with neuroaxonal loss 2) 21 concomitant neurodegeneration (reflected by higher NfL levels) predisposing or concurring 22 to the development of delirium. On another issue, NfL was also explored in post-operative 23 cognitive decline, which can be usually diagnosed between 30 days and 12 months after 24 surgery.⁹⁹ Here a couple of studies reported a post-operative increase in serum NfL without 25 any significant correlation with cognitive performance after 3 months.^{98,102} Likewise, CSF 26 27 NfL measurement collected during spinal anesthesia failed to predict delayed post-operative neurocognitive disorders.¹¹³

29

Associations between atrial fibrillation, other cardiovascular risk factors and neurofilament light chain protein

3 Patients with atrial fibrillation show a higher incidence of both ischemic stroke and cognitive impairment compared to the non-atrial fibrillation population.^{114–117} In this regard, several 4 possible pathogenetic mechanisms might be responsible, ranging from subclinical embolic 5 ischemic infarcts, or chronic cerebral hypoperfusion to shared cardiovascular risk factors.¹¹⁸ 6 Given its sensitivity for neuroaxonal damage, blood NfL has been recently evaluated in 7 patients with atrial fibrillation, with the aim to identify possible interconnections between 8 atrial fibrillation, neuronal damage and dementia.¹¹⁹ Hence, Polymeris et al.¹¹⁹ found an 9 independent positive association between CHA2DS2-VASc score¹¹⁴ and serum NfL in atrial 10 fibrillation patients without recent stroke or transient ischemic attack. Higher CHA2DS2-11 VASc score was in turn related with an increased risk of dementia in these groups,¹²⁰ with 12 higher NfL levels associating with a worse cognitive performance.¹¹⁹ The authors suggested 13 that a complex relationship between cerebral ischemia and hypoperfusion (as suggested by 14 the associations between NfL, white matter lesion volume at MRI, heart failure and lower 15 mean arterial pressure) and neuronal damage (caused by ageing and brain atrophy) may be 16 involved in the pathogenesis of cognitive impairment in patients with atrial fibrillation.^{119,121} 17

As concern cardiovascular risk factors, serum NfL levels have been investigated in patients 18 with diabetes mellitus, hypertension and habitual cigarette smoking.³⁵ Diabetes mellitus has 19 been found to independently associate with higher serum NfL levels in atrial fibrillation 20 patients, with increased levels of HbA1c positively correlating with serum NfL 21 concentration.^{119,122} Furthermore, a cross-sectional study showed increased blood NfL levels 22 in patients with type I diabetes mellitus and impaired awareness of hypoglycemia,¹²³ and an 23 association between high marker levels, reduced cerebral gray matter volume and higher 24 degree of hypoglycemic severity unawareness. Indeed, small vessel disease and non-ischemic 25 glycemic dysregulation-induced neuroaxonal central nervous system injury may be 26 responsible for the increase in serum NfL levels observed in diabetes mellitus patients. 27 119,124,125 28

Data concerning blood NfL levels in patients with arterial hypertension appear discordant.
Few studies recently reported higher blood NfL levels in hypertensive than normotensive
patients^{122,126} while CSF NfL levels were similar between these groups.¹²⁶ On the other side,
lower mean arterial pressure resulted to be inversely related with blood NfL concentration in
atrial fibrillation patients, perhaps as a consequence of cerebral hypoperfusion.¹¹⁹ These

1 findings may be explained by the neuropathological evidence of a higher rate of brain infarcts in subjects showing either late-life higher average systolic blood pressure (SBP) or faster 2 decline in SBP.¹²⁷ Given that elevated SBP has been linked to the pathogenesis of 3 atherosclerosis and arteriolosclerosis,¹²⁷ serum NfL levels were found to be increased in 4 patients with MRI signs of small vessels disease¹²⁸ or with recent small subcortical 5 infarcts.¹²⁹ On the counterpart, faster decline in SBP may cause cerebral hypoperfusion, 6 which is a well-known risk factor for accelerated cognitive decline, potentially increasing 7 serum NfL levels.^{127,130} 8

9 Finally, the relationship between cigarette smoking habit and NfL needs to be further 10 investigated. Indeed, a recent longitudinal study found 20% higher serum NfL levels in 11 smoker patients with multiple sclerosis included in the BENEFIT trial at long-term 12 assessment (11 year) when compared to nonsmokers.¹³¹ On another hand, in patients with 13 atrial fibrillation, past smoking status was negatively associated with serum NfL levels.¹¹⁹

14

15 Neurofilament light chain protein in major human infectious diseases

16 COVID-19

Since severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic 17 outbreak in January 2020 a plethora of neurologic syndromes have been described in 18 association with coronavirus diseases 2019 (COVID-19).^{132–137} Furthermore, general 19 neurologic symptoms (e.g. delirium, headache, dizziness, anosmia) are reported in 30% of all 20 COVID-19 cases,^{134,138} although subtle CNS involvement might be also more frequent and 21 still underrecognized.¹³⁹ Central and peripheral nervous system damage in COVID-19 may be 22 driven by multiple mechanisms encompassing direct viral invasion, cytokines storm, para- or 23 post-infectious autoimmunity and secondary effects of severe systemic disorder.^{140,141} Taking 24 in to account these findings, NfL might help to clarify the pathophysiological mechanisms 25 26 underlying neurological complications of COVID-19, as well as the presence of subtle neuroaxonal injury. In this regard, the marker levels have been assessed in COVID-19 patients with 27 encephalopathy,^{142–145} stroke,¹⁴⁴ Guillain Barré-syndrom spectrum,^{145,146}, headache¹⁴⁵, critical 28 illness polyneuropathy/neuromyopathy⁸⁵ and multisystem inflammatory syndroms^{147,148} 29 (Supplementary Table 2). In some reports, patients with COVID-19 encephalopathy showed 30 a CSF profile more consistent with a neuroinflammatory process rather than with a neuro-31 axonal demise (e.g. normal NfL levels, but increased concentrations of neuroinflammatory 32

biomarkers).^{142,143} Similarly, prominent neuroinflammatory changes, along with increased 1 biomarkers of glial activation, were disclosed in 13 cases with COVID-19 related 2 encephalitis, while only patients with severe neurological symptoms exhibited very high CSF 3 levels of NfL and total tau (t-tau).¹⁴⁹ Conversely, other studies^{144,145} found in the same 4 diagnostic groups increased CSF NfL and t-tau levels as neurochemical evidence of 5 widespread damage following systemic concurrent processes, such as hypoxia, sepsis and 6 hypercoagulability. Here, neuroinflammatory changes were observed only in COVID-19 7 stroke patients.¹⁴⁴ Furthermore, when compared to COVID-19-related encephalopathy or 8 headache, COVID-19-associated inflammatory neurological conditions (e.g. meningitis, 9 encephalitis, myelitis, acute disseminated encephalomyelitis) showed higher median CSF 10 NfL concentrations, maybe due to a more severe axonal injury in the presence of an 11 exacerbated inflammatory process.145,150 12

By stratifying patients according to disease course, mild-to-moderate COVID-19 cases with 13 only minor (e.g. anosmia, headache) or without neurological symptoms showed higher blood 14 NfL levels compared to age-matched control subjects, suggesting the presence of a subtle 15 neuro-axonal damage in the former group.^{151,152} Interestingly children with asymptomatic to 16 moderate COVID-19 showed no increase in blood NfL values, in line with the higher rate of 17 neurologic complications in older COVID-19 patients.¹⁴⁷ Otherwise, patients with severe 18 COVID-19 seem to display early peak in blood glial fibrillary acidic protein (GFAP) levels 19 20 and sustained sNfL increase during disease course, reflecting an early astrocytic response followed by a lagged neuro-axonal damage.^{154–156} However, apart from one study¹⁵⁶ the 21 persistence of neurological symptoms or chronic fatigue after recovery from SARS-CoV-2 22 infection seems not to be associated with a significant neuroaxonal damage, as suggested by 23 several studies.^{155,157,158} In particular, blood NfL normalized at 6 months of follow-up with no 24 association between the initial increase in the acute stage and the presence of long-term 25 symptoms.¹⁵⁵ 26

From the prognostic point of view, NfL might play a predictive role for COVID-19 severity
and outcome, as suggested by either cross-sectional or prospective studies.^{152,154,155,159–161}
Specifically, elevated CSF or blood NfL levels seem to be associated with a higher rate of
ICU admission and mechanical ventilation,^{152,159,162} prolonged ICU stay,¹⁵⁹ as well as severe
disease course and unfavorable clinical outcome.^{160–163} Moreover, NfL concentrations in nonsurvivors seems to increase over repeated measurements, whereas levels in survivors might
be stable over time.¹⁶³ Of note, a single study showed a trend toward lower serum NfL levels

in hospitalized COVID-19 patients treated with remdesivir, potentially opening future
 perspectives in the monitoring of treatment response.¹⁶⁴

3

4 *HIV*

NfL may represent a valuable tool to evaluate ongoing CNS injury during HIV infection with 5 potential applications either in clinical and research settings.^{6,165} Indeed, increased levels of 6 CSF NfL have been widely reported in HIV-patients, not only in those with HIV-associated 7 8 dementia (where the marker reached the highest levels) but also in a proportion (about 30%) of untreated "neuro-asymptomatic" patients and in those with reduced (<250 μ /L) blood 9 CD4+ cell count.^{6,165} Furthermore, antiretroviral therapy seems to potentially reduce CSF 10 NfL values,^{6,165} although treated and virologically suppressed patients may exhibit 11 persistently increased CSF NfL levels, suggesting a subtle but significant HIV-related 12 neuronal pathogenicity.¹⁶⁵ Finally, preliminary data concerning the role of plasma NfL as a 13 pharmacodynamic marker for antiretroviral drugs showed no biomarker evidence of neuro-14 axonal injury when switching tenofovir to a different formulation with potentially increased 15 CNS exposure.¹⁶⁶ 16

17

18 The role of neurofilament light chain protein in primary psychiatric disorders

One of the reasons influencing the current underestimation of the true global burden due to 19 mental illness disease might rely on the great overlap between psychiatric and neurological 20 disorders.¹⁶⁷ In this regard, several studies investigated the potential value of NfL, on either 21 CSF or blood, across the heterogeneous spectrum of primary psychiatric disorders and in the 22 23 differential diagnosis with primary neurologic diseases with conflicting results (Supplementary Table 3). Firstly, few studies^{168–171} demonstrated higher CSF NfL 24 concentrations in patients with bipolar disorder, schizophrenia and depression compared with 25 control groups. Interestingly the association between the marker and decreased cognitive 26 performance in patients with bipolar disorder¹⁶⁹ seems to be in accordance with structural 27 imaging studies,^{172,173} which showed an association between cognitive decline and deep white 28 matter hyperintensities. Similarly, the increase of CSF NfL in patients with schizophrenia and 29 depression might support the notion that both diseases may incorporate neurodegenerative 30 aspects.¹⁷⁴ Very recently, NfL has been found to be elevated also in blood samples of patients 31

with anorexia nervosa¹⁷⁵⁻¹⁷⁷ with a negative correlation with BMI¹⁷⁶ and a tendency to decreased levels after weight restoration.^{175,177} These results may support the thesis of ongoing mild neuronal injury during the underweight phase of anorexia nervosa, a phenomenon that is also highlighted by the evidence of MRI structural grey matter or white matter changes, with many of these findings appearing to reserve upon recovery.¹⁷⁸ Of note, in these studies the degree of NfL increase was relatively minor in all psychiatric disorders compared to other diseases.

On another issue, there is accumulating evidence that both CSF and blood NfL might be a 8 potential discriminative biomarker between primary psychiatric disorders and 9 neurodegenerative disorders^{179,180}, such as frontotemporal dementia,^{181,182} which may share a 10 significant clinical overlap.¹⁸³ Few preliminary studies^{180,184} documented significantly lower 11 CSF NfL levels in patients with several types of primary psychiatric disorders compared to 12 patients with neurodegenerative [e.g. behavioral variant of frontotemporal dementia 13 (bvFTD)] or neurological disorders and a high diagnostic accuracy for the marker in the 14 discrimination between the two groups.¹⁸⁰ Similarly, Al Shweiki *et al.* was the first to report 15 elevated plasma NfL in bvFTD compared to schizophrenia, depression, and bipolar disorder 16 and being discriminative from these disorders with AUCs ranging between 0.89 and 0.94.¹⁸⁵ 17 A similar discriminative value (AUC = 0.83) was also documented by Katisko *et al.*¹⁸⁶ 18

19

20 Neurofilament light chain protein in other non-primary neurological conditions

NfL levels have been sparsely investigated in other non-primary neurological conditions,
including gynecological and dermatological disorders, as well as in diseases related to
physical agents. Preliminary findings from available studies are reported in Supplementary
Text.

25

26 The interplay between normal ageing and neurofilament light chain protein

Normal aging is associated with gradual atrophy and microstructure alterations of grey and
white matters.^{43,187} Thus, several morphologic and biochemical instruments have been
investigated with the attempt to accurately estimate these processes.^{43,187} In this regard,
several cross-sectional, longitudinal and population-based studies revealed a marked
progressive increase of CSF and blood NfL with ageing and a significantly higher variability
of the biomarker levels in older subjects, suggesting from one side the accelerated neuronal

1 injury at older age, and from the other, the possible contribution of subclinical brain tissue damage driven by ageing-related comorbidities.^{18,43,65,188–192} Nevertheless, besides neuronal 2 damage, a reduced CSF turnover may contribute to NfL rise with ageing.⁴³ Moreover, the 3 marker has been variably associated with ageing-related brain white matter alterations, brain 4 volume changes and neuropsychological performances among different studies, 43,190,191 5 confirming similar results in CSF¹⁹³ and supporting the existence of a continuum between 6 physiological aging and incipient, subclinical pathology, and manifest disease.¹⁹¹ In line with 7 8 this theory, in cognitively unimpaired subjects elevated CSF NfL levels have been strongly associated with risk of mild cognitive impairment and hippocampal atrophy independently 9 from Alzheimer's disease pathology.^{194,195} However, a recent wide cohort study found no 10 association between plasma NfL and cognitive decline or incipient Alzheimer's disease, 190 11 not excluding, however, a possible contribution of NfL in predicting cognitive impairment 12 other than Alzheimer's disease. 13

So far, two recent population-based studies scrutinized the significance of NfL for the 14 prediction of survival in elderly healthy individuals.^{191,192} In the first, lower serum NfL levels 15 were associated with longer survival in nonagenarians and centenarians and predicted 16 mortality with a better performance compared to previously described multi-item scales of 17 cognitive or physical functioning.¹⁹² In the same paper, mice undergoing a low-calorie diet, a 18 regimen that has been associated with extended survival showed attenuated age-related 19 increase in plasma NfL and lived longer than mice in a control group.¹⁹² The second work 20 focused on elderly individuals without pre-defined neurological conditions, and revealed that 21 serum NfL, but not tau, was a significant prognostic marker for all-cause mortality if no 22 detailed clinical history or MRI data was available.¹⁹¹ 23

24

25 **Discussion**

Close may be the time where biofluid biomarkers and, especially NfL, can represent an easily accessible, cheap and reproducible tool to investigate the neurological involvement in human subjects in different clinical fields. Here, we provided an extensive overview of currently available data on CSF and blood NfL in non-primary neurological conditions, including diseases mostly belonging to the intensive care, surgery, cardiology, psychiatry and infectious disease panoramas together with physiological states such as normal ageing (**Fig. 2**, **Fig. 3**).

1 Firstly, evidence suggests the potential value of blood NfL as a useful test in the prognostic 2 evaluation in hypoxic-ischemic encephalopathy mostly after OHCA with relevant clinical implications. Indeed, the marker might help clinicians to stratify subjects with the aim to take 3 rapid, safe and ethical decisions and carry on early therapeutic interventions in patients with 4 5 good prognosis and to avoid prolonged and futile treatment in those without chance of adequate survival.^{70,76,196} Indeed, more than 80% of patients admitted to ICU after 6 resuscitation in case of OHCA develop hypoxic-ischemic injury and 2/3 of them die after 7 withdrawal of life-sustaining treatment due to a predicted poor neurological outcome.⁶³ In 8 this regard, NfL assessment might improve the prognostic accuracy of current clinical scores 9 and multivariable algorithms and, interestingly, seem to outperform not only the performance 10 of classic fluid markers (e.g. NSE) but also that of neurophysiological and neuroimaging 11 investigations. In the era of COVID-19 pandemic this issue could be also relevant with the 12 view to optimize the high occupation rate of ICUs. 13

Strictly connected to the above-mentioned topic is the investigation of the perioperative 14 dynamic of NfL, which might provide valuable clues on understanding the effect of surgery, 15 surgical procedures, such as extracorporeal circulation during cardiac surgery, and 16 anaesthetic drugs and anesthesic regimens (such as blood-pressure control) on neuronal 17 health. Given the lack of an elevation in CSF NfL (at least over the short period of follow-up 18 time) both after surgery and inhalation anesthesia, an early relevant CNS structural damage 19 20 associated with uncomplicated non-neurological surgeries appears to be less likely. Hence, the reported high blood NfL levels after major cardiac and orthopaedic surgeries might be 21 22 potentially explained by the damage of peripheral nerves during surgical manipulations, or by the post-surgical temporary distribution of the renal functions. Indeed, an acute kidney injury 23 typically occurs within the first few days in up to 30% of patients undergoing cardiac 24 surgery,¹⁹⁷ which partially coincides with the reported post-operative dynamics of NfL in the 25 studies mentioned above. One hint supporting this notion is also the association between NfL 26 levels and blood loss volume during surgery.^{101,109} Moreover, the finding of elevated blood 27 NfL concentrations in postoperative delirium has some relevant implications. From one side 28 it supports the notion that postsurgical delirium is accompanied by a structural neuronal 29 damage. On the other side, since preoperative blood NfL values seem to be predictive for 30 postoperative delirium, adding NfL measurements to the standard presurgical evaluation 31 32 might help the clinicians to identify subjects who are more vulnerable to this complication with the aim to early initiate appropriate preventive strategies and to better select patients in 33 34 clinical trials. In contrast to these promising potentials, NfL seems to not predict long-term

postoperative cognitive impairment, suggesting that subtle central nervous system injury
 should take place over the prolonged postoperative period.

In the cardiological field the evidence of associations between NfL and most cardiovascular risk factors is growing and support the well-known notion of a strict interplay between heart, vascular and brain diseases. In this regard, the potential application of NfL rely on its usefulness to detect subclinical neuronal damage in patients with cardiovascular risk factors and to stratify patients with atrial fibrillation at risk of cognitive impairment, allowing the initiation of intense preventive and follow-up measures.¹²¹

On another issue, the current experience of COVID-19 pandemic has prompted the scientists 9 to reconsider the management of infectious diseases as a priority in worldwide healthcare 10 systems. The data collected in one year of pandemic together with those in recent years on 11 other endemic diseases, such as HIV, suggested that NfL measurement in biofluids might be 12 useful to track pathophysiological changes in nervous system (e.g. infection-associated 13 neuroaxonal damage concomitant or after neuroinflammation, underlying mechanisms of 14 long-COVID syndrome) and to monitor disease trajectory and long-term complications even 15 in subjects without early and full-blown neurological manifestations. In this regard, higher 16 levels of CSF and/or blood protein might predict a higher grade of disease severity and/or 17 18 unfavorable outcome. Notably, due to the limited accessibility for current neurophysiological and neuroimaging investigations in the context of COVID-19 pandemic-imposed restrictions, 19 20 easily measurable blood markers can also be advantageous by providing useful diagnostic and prognostic information by overcoming the limit of medical isolation procedures. 21

22 Concerning the potential role of NfL in psychiatric diseases current data are discordant. From one side some pieces of evidence revealed higher concentrations of the marker in those 23 24 conditions, such as schizophrenia, bipolar disorder, depression and anorexia nervosa, where a neurodegenerative process, even subtle, could not be excluded. From the other side, many 25 26 studies supported the role of NfL in the biochemical discrimination between primary psychiatric disorders and neurodegenerative disorders, such as bvFTD. Nevertheless, the 27 pathophysiological processes underlying NfL raise in patients with primary psychiatric 28 comorbidities is still partially unclear and should be further addressed in future studies. 29

In other conditions belonging to the fields of gynecology, dermatology and disorders due to
physical agents, evidence on NfL is still limited and should be addressed in further studies.
Nevertheless, promising findings concern the potential role of NfL as an accurate predictor of
preeclampsia development.

In the present review we decided to include a short focus on normal ageing, given its relevance as a unique physiological entity in the continuum between healthiness and neurodegeneration. In this regard, recent studies showed a significant role for blood NfL in the prediction not only of future cognitive decline but also of mortality in the elderly. Here, given that MRI and neuropsychological evaluations are often not available in the routine due to costs and time-consume, blood NfL might be a feasible tool measured in the next future within a prognostic check-up in elderly individuals.

Although the very promising results, the application of NfL in the routine setting of all 8 above-mentioned fields is currently hampered by some unresolved issues and limitations 9 which deserve further analyses. First, in the studies concerning OHCA, surgery and COVID-10 19, many patients could have suffered from age-related neurological comorbidities such as 11 Alzheimer's disease, and cerebrovascular disease, which are notoriously associated with 12 increased NfL levels, therefore influencing the final diagnostic and prognostic values. 13 However, given the relatively low blood marker concentrations in these diseases the effect on 14 prognostication is, from our point of view, quite unlikely.⁶⁴ Similarly, renal excretion 15 dynamics and medications used in ICU and anesthesia might also influence NfL levels. 16 Nevertheless, the decrease in NfL concentrations after 5 h from general anesthesia inhalation 17 18 compared to baseline may suggest that NfL levels in ICU patients might be even larger in magnitude but partially masked by anesthesia-induced decrease.^{105,163} 19

Second, the marker cut-offs maximizing the diagnostic and prognostic accuracies, even when 20 analysed at the same time-points, are heterogenous across studies. Possible contributors in 21 22 these terms might also be the relatively lack of longitudinal evaluations compared to crosssectional analyses, different cohort selection criteria and assay types. Here, large studies in 23 control populations have recently been published or are under way to develop age and BMI-24 25 adjusted reference ranges and to allow the evaluation of NfL values independently of these 26 confounding factors. The aim is to establish reference values to understand which levels are 27 in the normal range and how strongly individual values may deviate from the physiological state to better estimate which NfL changes might be considered clinically relevant. 28 Nevertheless, the definition of an optimized clinically useful cut-off value or meaningful 29 change in NfL levels that would be applied to more than one condition remains to date 30 challenging. For example, in the Target Temperature Management After Cardiac Arrest trial, 31 the difference in biomarker medians between subjects with poor and good outcome was 3290 32 pg/ml (3344 vs 54 pg/ml) at 72 h after OHCA.⁶⁴ Conversely, in MS, a change of 5 pg/ml 33 (from 10 pg to 15 pg/ml) in a 40-year-old patient leads to a change in age- and BMI-adjusted 34

1 Z score from 1.3 (90.3 percentile) to 2.1 (98.2 percentile), which is a level that is associated with a 3.15-fold increase in risk for developing disease activity.⁵⁰ Thus, in subjects after 2 3 OHCA, an increase of just 5 pg/ml is not expected to have relevant clinical meaningfulness. Moreover, it is still a matter of debate whether single or repeated measurements with trends 4 5 over time might further improve the sensitivity of this biomarker to predict neurological outcome in non-primary neurological diseases. Hence, further studies are needed to evaluate 6 7 the inclusion of NfL in validated predictive multi-modal models, which include clinical 8 scores, electrophysiological and neuroimaging investigations. In addition, the NfL increase in chronic conditions (i.e., subclinical neurodegeneration, minor cerebrovascular damage, etc.) 9 could make the interpretation of levels following acute injuries misleading. Moreover, 10 although the availability of many commercial kits, NfL measurements are not yet 11 standardized and worldwide accessible given the significantly high costs. 12

13 Taking into account all these issues, it is likely that an estimation of how strongly individual NfL measurements deviate from normal levels based on large and adequately adjusted (e.g. 14 age, BMI, renal function, etc.) reference datasets reflecting the general population, might be 15 an important advancement compared to the mere analysis of raw and unadjusted levels.^{48,50,57} 16 In this regard, NfL levels might be a general marker of CNS health and thus, may play a 17 potential role in complex frailty indices for geriatric patients that suffer on comorbidities, 18 which affect NfL levels (i.e., neurodegeneration, renal and cardiovascular diseases, diabetes, 19 20 etc.).

In conclusion, available data outline a multifaceted applicability of CSF and blood NfL measurement, first as an independent marker of neuroaxonal damage and, more generally, of nervous system involvement in several primary non-neurological diseases. The great diagnostic and prognostic performances of NfL might be soon exploited to accelerate the diagnostic ascertainment in critical clinical settings, optimise a precision medicine approach, simplify patient recruitment in clinical trials and test the potential benefit of new therapeutical agents.

28

29 Funding

30 No funding was received towards this work.

1 Competing interests

A.A. received research grants from the German Multiple Sclerosis Society (DMSG), Roche 2 3 and Denali Therapeutics, all unrelated to the work presented in this paper. J.K. received 4 speaker fees, research support, travel support and/or served on advisory boards of the Swiss MS Society, Swiss National Research Foundation (320030_189140/1), University of Basel, 5 Progressive MS Alliance, Bayer, Biogen, Celgene, Merck, Novartis, Roche and Sanofi, all 6 unrelated to the work presented in this paper. H.T. reports funding for research projects, 7 8 lectures and travel from Alexion, Bayer, Biogen, Celgene/Bristol-Myers-Squibb, GlaxoSmithKline, Janssen, Genzyme, Merck Serono, Novartis, Roche, Sanofi/Genzyme, 9 10 Siemens and Teva, and received research support from Chemische Fabrik Karl Bucher GmbH, German Multiple Sclerosis Society (DMSG) and the German Ministry for Education 11 12 and Research (BMBF), all unrelated to the work presented in this paper. K.B has served as a 13 consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, Biogen, JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Roche Diagnostics, and Siemens 14 Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), 15 which is a part of the GU Ventures Incubator Program, all unrelated to the work presented in 16 this paper. M.O. gave scientific advice to Axon, Biogen Idec, Fujirebio and Roche, all 17 unrelated to the work presented in this paper. No other disclosures are reported. 18

19

20 Supplementary material

21 Supplementary material is available at *Brain* online.

1 **References**

- Food and Drug Administration CfDEaRC. Guidance for industry and FDA staff:
 qualification process for drug development tools. Food and Drug Administration, 2014,
 1–32. Available from: http://www.fda.gov/cder/guidance/index.htm.
- 5 2. Food and Drug Administration CfDEaR. E16 biomarkers related to drug or
 biotechnology product development: context, structure, and format of qualification
 submissions. Food and Drug Administration, 2011 August. Available from:
 www.fda.gov/downloads/Drugs/GuidanceComplicanceRegulatoryInformation/
 Guidelines/UCM 267449.pdf.
- https://www.ema.europa.eu/en/human-regulatory/research-development/scientificadvice-protocol-assistance/novel-methodologies-biomarkers/opinions-letters-supportqualification-novel-methodologies-medicine-development.
- Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nature Reviews Neurology. 2018;14(10). doi:10.1038/s41582-018-0058-z
- Bridel C, van Wieringen WN, Zetterberg H, et al. Diagnostic Value of Cerebrospinal
 Fluid Neurofilament Light Protein in Neurology. JAMA Neurology. 2019;76(9).
 doi:10.1001/jamaneurol.2019.1534
- Gisslén M, Price RW, Andreasson U, et al. Plasma Concentration of the Neurofilament
 Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional
 Study. EBioMedicine. 2016;3. doi:10.1016/j.ebiom.2015.11.036
- 7. Kuhle J, Barro C, Andreasson U, et al. Comparison of three analytical platforms for
 quantification of the neurofilament light chain in blood samples: ELISA,
 electrochemiluminescence immunoassay and Simoa. Clinical Chemistry and
 Laboratory Medicine (CCLM). 2016;54(10). doi:10.1515/cclm-2015-1195
- B. Gauthier A, Viel S, Perret M, et al. Comparison of Simoa and Ella to assess serum neurofilament-light chain in multiple sclerosis. Annals of Clinical and Translational Neurology. 2021;8(5):1141-1150. doi:10.1002/acn3.51355
- 28 9. https://www.siemens-healthineers.com/en-us/press-room/press-releases/snfl-
- 29 breakthrough-device-designation.
- Kuhle J, Barro C, Andreasson U, et al. Comparison of three analytical platforms for
 quantification of the neurofilament light chain in blood samples: ELISA,
 electrochemiluminescence immunoassay and Simoa. Clinical Chemistry and
 Laboratory Medicine (CCLM). 2016;54(10). doi:10.1515/cclm-2015-1195
- Cantó E, Barro C, Zhao C, et al. Association Between Serum Neurofilament Light 34 11. Chain Levels and Long-term Disease Course Among Patients With Multiple Sclerosis 35 Neurology. 36 Followed up for Years. JAMA 2019;76(11). 12 37 doi:10.1001/jamaneurol.2019.2137
- Huss A, Senel M, Abdelhak A, et al. Longitudinal Serum Neurofilament Levels of 12. 38 Multiple Sclerosis Patients Before and After Treatment with First-Line 39 Immunomodulatory Therapies. 2020:8(9). 40 Biomedicines. doi:10.3390/biomedicines8090312 41
- Abu-Rumeileh S, Capellari S, Stanzani-Maserati M, et al. The CSF neurofilament light
 signature in rapidly progressive neurodegenerative dementias. Alzheimer's Research &
 Therapy. 2018;10(1). doi:10.1186/s13195-017-0331-1
- 45 14. Abu-Rumeileh S, Baiardi S, Ladogana A, et al. Comparison between plasma and
 46 cerebrospinal fluid biomarkers for the early diagnosis and association with survival in
 47 prion disease. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91(11).
 48 doi:10.1136/jnnp-2020-323826

- Verde F, Steinacker P, Weishaupt JH, et al. Neurofilament light chain in serum for the
 diagnosis of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery &
 Psychiatry. 2019;90(2). doi:10.1136/jnnp-2018-318704
- 4 16. Steinacker P, Feneberg E, Weishaupt J, et al. Neurofilaments in the diagnosis of
 5 motoneuron diseases: a prospective study on 455 patients. Journal of Neurology,
 6 Neurosurgery & Psychiatry. Published online August 21, 2015. doi:10.1136/jnnp-20157 311387
- 8 17. Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder. Neurology. 2017;88(10).
 10 doi:10.1212/WNL.00000000003680
- Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association
 Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients
 With Alzheimer Disease. JAMA Neurology. 2019;76(7).
 doi:10.1001/jamaneurol.2019.0765
- 15 19. Shahim P, Politis A, van der Merwe A, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology. 2020;95(6). doi:10.1212/WNL.00000000009983
- Egle M, Loubiere L, Maceski A, Kuhle J, Peters N, Markus HS. Neurofilament light
 chain predicts future dementia risk in cerebral small vessel disease. Journal of
 Neurology, Neurosurgery & Psychiatry. Published online February 8, 2021.
 doi:10.1136/jnnp-2020-325681
- 21 21. Miller T, Cudkowicz M, Shaw PJ, et al. Phase 1–2 Trial of Antisense Oligonucleotide
 22 Tofersen for SOD1 ALS. New England Journal of Medicine. 2020;383(2).
 23 doi:10.1056/NEJMoa2003715
- Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological
 Diseases and the Efficacy of Therapies. Frontiers in Neuroscience. 2021;15.
 doi:10.3389/fnins.2021.689938
- 27 23. Gentil BJ, Tibshirani M, Durham HD. Neurofilament dynamics and involvement in neurological disorders. Cell and Tissue Research. 2015;360(3). doi:10.1007/s00441-014-2082-7
- Bomont P. The dazzling rise of neurofilaments: Physiological functions and roles as
 biomarkers. Current Opinion in Cell Biology. 2021;68. doi:10.1016/j.ceb.2020.10.011
- 32 25. Malka-Gibor E, Kornreich M, Laser-Azogui A, et al. Phosphorylation-Induced
 33 Mechanical Regulation of Intrinsically Disordered Neurofilament Proteins. Biophysical
 34 Journal. 2017;112(5). doi:10.1016/j.bpj.2016.12.050
- Yuan A, Sasaki T, Kumar A, et al. Peripherin Is a Subunit of Peripheral Nerve
 Neurofilaments: Implications for Differential Vulnerability of CNS and Peripheral
 Nervous System Axons. Journal of Neuroscience. 2012;32(25).
 doi:10.1523/JNEUROSCI.1081-12.2012
- 39 27. Deek J, Chung PJ, Kayser J, Bausch AR, Safinya CR. Neurofilament sidearms
 40 modulate parallel and crossed-filament orientations inducing nematic to isotropic and
 41 re-entrant birefringent hydrogels. Nature Communications. 2013;4(1).
 42 doi:10.1038/ncomms3224
- 43 28. Millecamps S, Gowing G, Corti O, Mallet J, Julien JP. Conditional NF-L Transgene
 44 Expression in Mice for In Vivo Analysis of Turnover and Transport Rate of
 45 Neurofilaments. Journal of Neuroscience. 2007;27(18).
 46 doi:10.1523/JNEUROSCI.5299-06.2007
- Rao M v., Yuan A, Campbell J, Kumar A, Nixon RA. The C-Terminal Domains of NF-47 29. 48 H and NF-M Subunits Maintain Axonal Neurofilament Content by Blocking Turnover 49 of the Stationary Neurofilament Network. **PLoS** ONE. 2012:7(9). doi:10.1371/journal.pone.0044320 50

- Snider NT, Omary MB. Post-translational modifications of intermediate filament
 proteins: mechanisms and functions. Nature Reviews Molecular Cell Biology.
 2014;15(3). doi:10.1038/nrm3753
- 4 31. Olsson M, Ärlig J, Hedner J, Blennow K, Zetterberg H. Sleep deprivation and
 5 cerebrospinal fluid biomarkers for Alzheimer's disease. Sleep. 2018;41(5).
 6 doi:10.1093/sleep/zsy025
- 7 32. Olsson B, Alberg L, Cullen NC, et al. NFL is a marker of treatment response in
 children with SMA treated with nusinersen. Journal of Neurology. 2019;266(9).
 doi:10.1007/s00415-019-09389-8
- 33. Gafson AR, Barthélemy NR, Bomont P, et al. Neurofilaments: neurobiological
 foundations for biomarker applications. Brain. 2020;143(7). doi:10.1093/brain/awaa098
- Kalm M, Boström M, Sandelius Å, et al. Serum concentrations of the axonal injury
 marker neurofilament light protein are not influenced by blood-brain barrier
 permeability. Brain Research. 2017;1668. doi:10.1016/j.brainres.2017.05.011
- Barro C, Chitnis T, Weiner HL. Blood neurofilament light: a critical review of its application to neurologic disease. Annals of Clinical and Translational Neurology. 2020;7(12). doi:10.1002/acn3.51234
- 36. Yilmaz A, Blennow K, Hagberg L, et al. Neurofilament light chain protein as a marker
 of neuronal injury: review of its use in HIV-1 infection and reference values for HIVnegative controls. Expert Review of Molecular Diagnostics. 2017;17(8).
 doi:10.1080/14737159.2017.1341313
- Andersson E, Janelidze S, Lampinen B, et al. Blood and cerebrospinal fluid
 neurofilament light differentially detect neurodegeneration in early Alzheimer's
 disease. Neurobiology of Aging. 2020;95. doi:10.1016/j.neurobiolaging.2020.07.018
- 25 38. Gaiottino J, Norgren N, Dobson R, et al. Increased Neurofilament Light Chain Blood
 26 Levels in Neurodegenerative Neurological Diseases. PLoS ONE. 2013;8(9).
 27 doi:10.1371/journal.pone.0075091
- 39. Halbgebauer S, Steinacker P, Verde F, et al. Comparison of CSF and serum neurofilament light and heavy chain as differential diagnostic biomarkers for ALS.
 Journal of Neurology, Neurosurgery & Psychiatry. 2022;93(1):68-74.
 doi:10.1136/jnnp-2021-327129
- Benatar M, Wuu J, Andersen PM, et al. Design of a Randomized, Placebo-Controlled,
 Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant
 Carriers: the ATLAS Study. Neurotherapeutics. Published online May 18, 2022.
 doi:10.1007/s13311-022-01237-4
- Gray E, Oeckl P, Amador MDM, et al. A multi-center study of neurofilament assay
 reliability and inter-laboratory variability. Amyotrophic Lateral Sclerosis and
 Frontotemporal Degeneration. 2020;21(5-6). doi:10.1080/21678421.2020.1779300
- 42. Hviid CVB, Madsen AT, Winther-Larsen A. Biological variation of serum neurofilament light chain. Clinical Chemistry and Laboratory Medicine (CCLM).
 41 2022;60(4):569-575. doi:10.1515/cclm-2020-1276
- 42 43. Khalil M, Pirpamer L, Hofer E, et al. Serum neurofilament light levels in normal aging
 43 and their association with morphologic brain changes. Nature Communications.
 44 2020;11(1). doi:10.1038/s41467-020-14612-6
- 45 44. Bridel C, Verberk IMW, Heijst JJA, Killestein J, Teunissen CE. Variations in consecutive serum neurofilament light levels in healthy controls and multiple sclerosis
 47 patients. Multiple Sclerosis and Related Disorders. 2021;47:102666.
 48 doi:10.1016/j.msard.2020.102666

- 45. Benedict C, Blennow K, Zetterberg H, Cedernaes J. Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men. Neurology.
 2020;94(11):e1181-e1189. doi:10.1212/WNL.00000000008866
- 4 46. Rübsamen N, Willemse EAJ, Leppert D, et al. A Method to Combine Neurofilament
 5 Light Measurements From Blood Serum and Plasma in Clinical and Population-Based
 6 Studies. Frontiers in Neurology. 2022;13. doi:10.3389/fneur.2022.894119
- Ashton NJ, Suárez-Calvet M, Karikari TK, et al. Effects of pre-analytical procedures on
 blood biomarkers for Alzheimer's pathophysiology, glial activation, and
 neurodegeneration. Alzheimer's & Dementia: Diagnosis, Assessment & Disease
 Monitoring. 2021;13(1). doi:10.1002/dad2.12168
- Simrén J, Andreasson U, Gobom J, et al. Establishment of reference values for plasma neurofilament light based on healthy individuals aged 5-90 years. Brain Communications. Published online July 4, 2022. doi:10.1093/braincomms/fcac174
- 49. Hviid CVB, Knudsen CS, Parkner T. Reference interval and preanalytical properties of serum neurofilament light chain in Scandinavian adults. Scandinavian Journal of Clinical and Laboratory Investigation. 2020;80(4):291-295.
 doi:10.1080/00365513.2020.1730434
- 50. Benkert P, Meier S, Schaedelin S, et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. The Lancet Neurology. 2022;21(3):246-257. doi:10.1016/S1474-4422(22)00009-6
- Manouchehrinia A, Piehl F, Hillert J, et al. Confounding effect of blood volume and
 body mass index on blood neurofilament light chain levels. Annals of Clinical and
 Translational Neurology. 2020;7(1):139-143. doi:10.1002/acn3.50972
- S2. Abdelhak A, Cordano C, Boscardin WJ, et al. Plasma neurofilament light chain levels
 suggest neuroaxonal stability following therapeutic remyelination in people with
 multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. Published online
 June 16, 2022:jnnp-2022-329221. doi:10.1136/jnnp-2022-329221
- S3. Cuello JP, Martínez Ginés ML, Kuhle J, et al. Neurofilament light chain levels in
 pregnant multiple sclerosis patients: a prospective cohort study. European Journal of
 Neurology. 2019;26(9):1200-1204. doi:10.1111/ene.13965
- 54. Evers KS, Huhn EA, Fouzas S, et al. Impact of parturition on maternal cardiovascular
 and neuronal integrity in a high risk cohort a prospective cohort study. BMC
 Pregnancy and Childbirth. 2019;19(1):403. doi:10.1186/s12884-019-2570-6
- 35 55. Hoekzema E, Barba-Müller E, Pozzobon C, et al. Pregnancy leads to long-lasting
 36 changes in human brain structure. Nature Neuroscience. 2017;20(2):287-296.
 37 doi:10.1038/nn.4458
- 38 56. Haase EB, Buchman J, Tietz AE, Schramm LP. Pregnancy-induced uterine neuronal
 39 degeneration in the rat. Cell and Tissue Research. 1997;288(2):293-306.
 40 doi:10.1007/s004410050815
- 41 57. Fitzgerald KC, Sotirchos ES, Smith MD, et al. Contributors to serum NfL levels in people without neurologic disease. Annals of Neurology. Published online June 21, 2022. doi:10.1002/ana.26446
- Akamine S, Marutani N, Kanayama D, et al. Renal function is associated with blood
 neurofilament light chain level in older adults. Scientific Reports. 2020;10(1):20350.
 doi:10.1038/s41598-020-76990-7
- 47 59. Polymeris AA, Helfenstein F, Benkert P, et al. Renal Function and Body Mass Index
 48 Contribute to Serum Neurofilament Light Chain Levels in Elderly Patients With Atrial
 49 Fibrillation. Frontiers in Neuroscience. 2022;16. doi:10.3389/fnins.2022.819010

- Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a
 biomarker for mild traumatic brain injury in contact sports. Neurology.
 2017;88(19):1788-1794. doi:10.1212/WNL.00000000003912
- 4 61. Shahim P, Tegner Y, Marklund N, Blennow K, Zetterberg H. Neurofilament light and
 5 tau as blood biomarkers for sports-related concussion. Neurology. 2018;90(20):e1780e1788. doi:10.1212/WNL.00000000005518
- 7 62. Oliver JM, Jones MT, Kirk KM, et al. Serum Neurofilament Light in American
 8 Football Athletes over the Course of a Season. Journal of Neurotrauma.
 9 2016;33(19):1784-1789. doi:10.1089/neu.2015.4295
- Sandroni C, Grippo A, Nolan JP. ERC-ESICM guidelines for prognostication after
 cardiac arrest: time for an update. Intensive Care Medicine. 2020;46(10).
 doi:10.1007/s00134-020-06224-x
- Moseby-Knappe M, Mattsson N, Nielsen N, et al. Serum Neurofilament Light Chain
 for Prognosis of Outcome After Cardiac Arrest. JAMA Neurology. 2019;76(1).
 doi:10.1001/jamaneurol.2018.3223
- 16 65. Disanto G, Prosperetti C, Gobbi C, et al. Serum neurofilament light chain as a
 prognostic marker in postanoxic encephalopathy. Epilepsy & Behavior. 2019;101.
 doi:10.1016/j.yebeh.2019.07.033
- Callaway CW, Donnino MW, Fink EL, et al. Part 8: Post–Cardiac Arrest Care: 2015
 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and
 Emergency Cardiovascular Care. Circulation. 2015;132(18 suppl 2).
 doi:10.1161/CIR.0000000000262
- Kolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European
 Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015.
 Resuscitation. 2015;95. doi:10.1016/j.resuscitation.2015.07.018
- 26 68. Wihersaari L, Ashton NJ, Reinikainen M, et al. Neurofilament light as an outcome
 27 predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive
 28 Care Medicine. 2021;47(1). doi:10.1007/s00134-020-06218-9
- Luescher T, Mueller J, Isenschmid C, et al. Neuron-specific enolase (NSE) improves 29 69. clinical risk scores for prediction of neurological outcome and death in cardiac arrest 30 Results from 31 patients: a prospective trial. Resuscitation. 2019;142. doi:10.1016/j.resuscitation.2019.07.003 32
- Taccone FS, Nolan JP, Hoedemaekers CWE. Neurofilament to predict post-anoxic
 neurological outcome: are we ready for the prime time? Intensive Care Medicine.
 2021;47(1). doi:10.1007/s00134-020-06309-7
- Rosén H, Karlsson JE, Rosengren L. CSF levels of neurofilament is a valuable
 predictor of long-term outcome after cardiac arrest. Journal of the Neurological
 Sciences. 2004;221(1-2). doi:10.1016/j.jns.2004.03.003
- Rosén C, Rosén H, Andreasson U, et al. Cerebrospinal fluid biomarkers in cardiac
 arrest survivors. Resuscitation. 2014;85(2). doi:10.1016/j.resuscitation.2013.10.032
- 41 73. Rana OR, Schröder JW, Baukloh JK, et al. Neurofilament light chain as an early and sensitive predictor of long-term neurological outcome in patients after cardiac arrest.
 43 International Journal of Cardiology. 2013;168(2). doi:10.1016/j.ijcard.2012.12.016
- Hunziker S, Quinto A, Ramin-Wright M, et al. Serum neurofilament measurement
 improves clinical risk scores for outcome prediction after cardiac arrest: results of a
 prospective study. Critical Care. 2021;25(1). doi:10.1186/s13054-021-03459-y
- Andersson P, Johnsson J, Björnsson O, et al. Predicting neurological outcome after outof-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm. Critical Care. 2021;25(1). doi:10.1186/s13054-021-03505-9

- Fisse AL, Pitarokoili K, Leppert D, et al. Serum neurofilament light chain as outcome
 marker for intensive care unit patients. Journal of Neurology. Published online October
 23, 2020. doi:10.1007/s00415-020-10277-9
- 4 77. Lybeck A, Friberg H, Nielsen N, et al. Postanoxic electrographic status epilepticus and
 5 serum biomarkers of brain injury. Resuscitation. 2021;158.
 6 doi:10.1016/j.resuscitation.2020.10.027
- 7 78. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term Cognitive Impairment and
 Functional Disability Among Survivors of Severe Sepsis. JAMA. 2010;304(16).
 doi:10.1001/jama.2010.1553
- 10 79. Iwashyna TJ. Survivorship Will Be the Defining Challenge of Critical Care in the 21st
 11 Century. Annals of Internal Medicine. 2010;153(3). doi:10.7326/0003-4819-153-312 201008030-00013
- 13 80. Chaudhry N, Duggal AK. Sepsis Associated Encephalopathy. Advances in Medicine.
 2014;2014. doi:10.1155/2014/762320
- 15 81. Anderson BJ, Reilly JP, Shashaty MGS, et al. Admission plasma levels of the neuronal
 injury marker neuron-specific enolase are associated with mortality and delirium in
 sepsis. Journal of Critical Care. 2016;36. doi:10.1016/j.jcrc.2016.06.012
- 18 82. Nguyen DN, Spapen H, Su F, et al. Elevated serum levels of S-100β protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock*. Critical Care Medicine. 2006;34(7).
 21 doi:10.1097/01.CCM.0000217218.51381.49
- 22 83. Ehler J, Petzold A, Wittstock M, et al. The prognostic value of neurofilament levels in
 23 patients with sepsis-associated encephalopathy A prospective, pilot observational
 24 study. PLOS ONE. 2019;14(1). doi:10.1371/journal.pone.0211184
- Appleton RT, Kinsella J, Quasim T. The incidence of intensive care unit-acquired
 weakness syndromes: A systematic review. J Intensive Care Soc. 2015;16(2).
 doi:10.1177/1751143714563016
- 85. Frithiof R, Rostami E, Kumlien E, et al. Critical illness polyneuropathy, myopathy and
 neuronal biomarkers in COVID-19 patients: A prospective study. Clinical
 Neurophysiology. 2021;132(7). doi:10.1016/j.clinph.2021.03.016
- 86. Kirschen MP, Yehya N, Graham K, et al. Circulating Neurofilament Light Chain Is
 Associated With Survival After Pediatric Cardiac Arrest*. Pediatric Critical Care
 Medicine. 2020;21(7). doi:10.1097/PCC.00000000002294
- Bouglas-Escobar M, Yang C, Bennett J, et al. A Pilot Study of Novel Biomarkers in
 Neonates With Hypoxic-Ischemic Encephalopathy. Pediatric Research. 2010;68(6).
 doi:10.1203/PDR.0b013e3181f85a03
- 88. Toorell H, Zetterberg H, Blennow K, Sävman K, Hagberg H. Increase of neuronal
 injury markers Tau and neurofilament light proteins in umbilical blood after
 intrapartum asphyxia. The Journal of Maternal-Fetal & Neonatal Medicine.
 2018;31(18). doi:10.1080/14767058.2017.1344964
- 41 89. Shah DK, Ponnusamy V, Evanson J, et al. Raised Plasma Neurofilament Light Protein
 42 Levels Are Associated with Abnormal MRI Outcomes in Newborns Undergoing
 43 Therapeutic Hypothermia. Frontiers in Neurology. 2018;9.
 44 doi:10.3389/fneur.2018.00086
- Shah DK, Yip PK, Barlas A, et al. Raised Plasma Neurofilament Light Protein Levels
 After Rewarming Are Associated With Adverse Neurodevelopmental Outcomes in
 Newborns After Therapeutic Hypothermia. Frontiers in Neurology. 2020;11.
 doi:10.3389/fneur.2020.562510

- Goeral K, Hauck A, Atkinson A, et al. Early life serum neurofilament dynamics predict
 neurodevelopmental outcome of preterm infants. Journal of Neurology.
 2021;268(7):2570-2577. doi:10.1007/s00415-021-10429-5
- 4 92. Hood R, Budd A, Sorond FA, Hogue CW. Peri-operative neurological complications.
 5 Anaesthesia. 2018;73. doi:10.1111/anae.14142
- Monk TG, Price CC. Postoperative cognitive disorders. Current Opinion in Critical
 Care. 2011;17(4). doi:10.1097/MCC.0b013e328348bece
- 8 94. Reinsfelt B, Ricksten SE, Zetterberg H, Blennow K, Fredén-Lindqvist J, Westerlind A.
 9 Cerebrospinal Fluid Markers of Brain Injury, Inflammation, and Blood-Brain Barrier
 10 Dysfunction in Cardiac Surgery. The Annals of Thoracic Surgery. 2012;94(2).
 11 doi:10.1016/j.athoracsur.2012.04.044
- 95. Anckarsäter R, Anckarsäter H, Bromander S, Blennow K, Wass C, Zetterberg H. Non neurological surgery and cerebrospinal fluid biomarkers for neuronal and astroglial
 integrity. Journal of Neural Transmission. 2014;121(6). doi:10.1007/s00702-013-1156 0
- Merisson E, Mattsson N, Zetterberg H, et al. Total-tau and neurofilament light in CSF
 reflect spinal cord ischaemia after endovascular aortic repair. Neurochemistry
 International. 2016;93. doi:10.1016/j.neuint.2015.12.003
- 19 97. Danielson M, Reinsfelt B, Westerlind A, Zetterberg H, Blennow K, Ricksten SE.
 20 Effects of methylprednisolone on blood-brain barrier and cerebral inflammation in
 21 cardiac surgery—a randomized trial. Journal of Neuroinflammation. 2018;15(1).
 22 doi:10.1186/s12974-018-1318-y
- 23 98. Danielson M, Wiklund A, Granath F, et al. Association between cerebrospinal fluid
 24 biomarkers of neuronal injury or amyloidosis and cognitive decline after major surgery.
 25 British Journal of Anaesthesia. 2021;126(2). doi:10.1016/j.bja.2020.09.043
- 26 99. Evered L, Silbert B, Scott DA, Zetterberg H, Blennow K. Association of Changes in
 27 Plasma Neurofilament Light and Tau Levels With Anesthesia and Surgery. JAMA
 28 Neurology. 2018;75(5). doi:10.1001/jamaneurol.2017.4913
- 29 100. Alifier M, Olsson B, Andreasson U, et al. Cardiac Surgery is Associated with
 30 Biomarker Evidence of Neuronal Damage. Journal of Alzheimer's Disease. 2020;74(4).
 31 doi:10.3233/JAD-191165
- Sanders RD, Craigova L, Schessler B, et al. Postoperative troponin increases after
 noncardiac surgery are associated with raised neurofilament light: a prospective
 observational cohort study. British Journal of Anaesthesia. 2021;126(4).
 doi:10.1016/j.bja.2020.10.012
- Larsen JR, Kobborg T, Shahim P, Blennow K, Rasmussen LS, Zetterberg H. Serum neuroproteins, near-infrared spectroscopy, and cognitive outcome after beach-chair
 shoulder surgery: Observational cohort study analyses. Acta Anaesthesiologica
 Scandinavica. 2021;65(1). doi:10.1111/aas.13691
- 40 103. Wiberg S, Holmgaard F, Blennow K, et al. Associations between mean arterial pressure during cardiopulmonary bypass and biomarkers of cerebral injury in patients 41 undergoing cardiac surgery: secondary results from a randomized controlled trial. 42 Interactive CardioVascular 43 and Thoracic Surgery. 2021;32(2). doi:10.1093/icvts/ivaa264 44
- 45 104. DiMeglio M, Furey W, Hajj J, et al. Observational study of long-term persistent
 46 elevation of neurodegeneration markers after cardiac surgery. Scientific Reports.
 47 2019;9(1). doi:10.1038/s41598-019-42351-2
- 48 105. Deiner S, Baxter MG, Mincer JS, et al. Human plasma biomarker responses to
 49 inhalational general anaesthesia without surgery. British Journal of Anaesthesia.
 50 2020;125(3). doi:10.1016/j.bja.2020.04.085

- Winnerkvist A, Anderson RE, Hansson LO, et al. Multilevel somatosensory evoked
 potentials and cerebrospinal proteins: indicators of spinal cord injury in
 thoracoabdominal aortic aneurysm surgery. European Journal of Cardio-Thoracic
 Surgery. 2007;31(4). doi:10.1016/j.ejcts.2007.01.007
- 5 107. Salluh JIF, Wang H, Schneider EB, et al. Outcome of delirium in critically ill patients:
 6 systematic review and meta-analysis. BMJ. 2015;350(may19 3).
 7 doi:10.1136/bmj.h2538
- 8 108. Boone MD, Sites B, von Recklinghausen FM, Mueller A, Taenzer AH, Shaefi S.
 9 Economic Burden of Postoperative Neurocognitive Disorders Among US Medicare
 10 Patients. JAMA Network Open. 2020;3(7). doi:10.1001/jamanetworkopen.2020.8931
- Casey CP, Lindroth H, Mohanty R, et al. Postoperative delirium is associated with
 increased plasma neurofilament light. Brain. 2020;143(1). doi:10.1093/brain/awz354
- 13 110. Halaas NB, Blennow K, Idland AV, et al. Neurofilament Light in Serum and
 14 Cerebrospinal Fluid of Hip Fracture Patients with Delirium. Dementia and Geriatric
 15 Cognitive Disorders. 2018;46(5-6). doi:10.1159/000494754
- 16 111. Saller T, Petzold A, Zetterberg H, et al. A case series on the value of tau and
 neurofilament protein levels to predict and detect delirium in cardiac surgery patients.
 Biomedical Papers. 2019;163(3). doi:10.5507/bp.2019.043
- Fong TG, Vasunilashorn SM, Ngo L, et al. Association of Plasma Neurofilament Light
 with Postoperative Delirium. Annals of Neurology. 2020;88(5). doi:10.1002/ana.25889
- 113. Evered L, Silbert B, Scott DA, Ames D, Maruff P, Blennow K. Cerebrospinal Fluid
 Biomarker for Alzheimer Disease Predicts Postoperative Cognitive Dysfunction.
 Anesthesiology. 2016;124(2). doi:10.1097/ALN.00000000000953
- Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and
 management of atrial fibrillation developed in collaboration with the European
 Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal.
 2021;42(5). doi:10.1093/eurheartj/ehaa612
- Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM. Refining Clinical Risk
 Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a
 Novel Risk Factor-Based Approach. Chest. 2010;137(2). doi:10.1378/chest.09-1584
- 116. Dagres N, Chao T, Fenelon G, et al. European Heart Rhythm Association
 (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society
 (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on
 arrhythmias and cognitive function: What is the best practice? Journal of Arrhythmia.
 2018;34(2). doi:10.1002/joa3.12050
- 117. Kalantarian S, Stern TA, Mansour M, Ruskin JN. Cognitive Impairment Associated
 With Atrial Fibrillation. Annals of Internal Medicine. 2013;158(5_Part_1).
 doi:10.7326/0003-4819-158-5-201303050-00007
- 118. Diener HC, Hart RG, Koudstaal PJ, Lane DA, Lip GYH. Atrial Fibrillation and
 Cognitive Function. J Am Coll Cardiol. 2019;73(5). doi:10.1016/j.jacc.2018.10.077
- 41 119. Polymeris AA, Coslovksy M, Aeschbacher S, et al. Serum neurofilament light in atrial
 42 fibrillation: clinical, neuroimaging and cognitive correlates. Brain Communications.
 43 2020;2(2). doi:10.1093/braincomms/fcaa166
- Kim D, Yang PS, Yu HT, et al. Risk of dementia in stroke-free patients diagnosed with
 atrial fibrillation: data from a population-based cohort. European Heart Journal.
 2019;40(28). doi:10.1093/eurheartj/ehz386
- 47 121. Dietzel J, Haeusler KG, Endres M. Does atrial fibrillation cause cognitive decline and dementia? EP Europace. 2018;20(3). doi:10.1093/europace/eux031

- 1 122. Korley FK, Goldstick J, Mastali M, et al. Serum NfL (Neurofilament Light Chain)
 Levels and Incident Stroke in Adults With Diabetes Mellitus. Stroke. 2019;50(7).
 doi:10.1161/STROKEAHA.119.024941
- 4 123. Sampedro F, Stantonyonge N, Martínez-Horta S, et al. Increased plasma neurofilament
 5 light chain levels in patients with type-1 diabetes with impaired awareness of
 6 hypoglycemia. BMJ Open Diabetes Research & Care. 2020;8(1). doi:10.1136/bmjdrc7 2020-001516
- 8 124. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics
 9 to therapeutic challenges. The Lancet Neurology. 2010;9(7). doi:10.1016/S147410 4422(10)70104-6
- Malone JI. Diabetic Central Neuropathy: CNS Damage Related to Hyperglycemia.
 Diabetes. 2016;65(2). doi:10.2337/dbi15-0034
- 126. Mielke MM, Syrjanen JA, Blennow K, et al. Plasma and CSF neurofilament light:
 Relation to longitudinal neuroimaging and cognitive measures. Neurology. 2019;93(3).
 doi:10.1212/WNL.00000000007767
- 16 127. Arvanitakis Z, Capuano AW, Lamar M, et al. Late-life blood pressure association with
 17 cerebrovascular and Alzheimer disease pathology. Neurology. 2018;91(6).
 18 doi:10.1212/WNL.00000000005951
- Peters N, van Leijsen E, Tuladhar AM, et al. Serum Neurofilament Light Chain Is
 Associated with Incident Lacunes in Progressive Cerebral Small Vessel Disease.
 Journal of Stroke. 2020;22(3). doi:10.5853/jos.2019.02845
- 129. Gattringer T, Pinter D, Enzinger C, et al. Serum neurofilament light is sensitive to
 active cerebral small vessel disease. Neurology. 2017;89(20).
 doi:10.1212/WNL.00000000004645
- 130. Wolters FJ, Zonneveld HI, Hofman A, et al. Cerebral Perfusion and the Risk of
 Dementia. Circulation. 2017;136(8). doi:10.1161/CIRCULATIONAHA.117.027448
- 131. Cortese M, Munger KL, Martínez-Lapiscina EH, et al. Vitamin D, smoking, EBV, and
 long-term cognitive performance in MS. Neurology. 2020;94(18).
 doi:10.1212/WNL.00000000009371
- 132. Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19.
 Nature Reviews Neurology. 2020;16(11). doi:10.1038/s41582-020-0398-3
- 133. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. The
 Lancet Neurology. 2020;19(9). doi:10.1016/S1474-4422(20)30221-0
- Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With
 Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology. 2020;77(6).
 doi:10.1001/jamaneurol.2020.1127
- 135. Paterson RW, Brown RL, Benjamin L, et al. The emerging spectrum of COVID-19
 neurology: clinical, radiological and laboratory findings. Brain. 2020;143(10).
 doi:10.1093/brain/awaa240
- 40 136. Frontera JA, Sabadia S, Lalchan R, et al. A Prospective Study of Neurologic Disorders
 41 in Hospitalized Patients With COVID-19 in New York City. Neurology. 2021;96(4).
 42 doi:10.1212/WNL.000000000010979
- Abu-Rumeileh S, Abdelhak A, Foschi M, Tumani H, Otto M. Guillain–Barré syndrome
 spectrum associated with COVID-19: an up-to-date systematic review of 73 cases.
 Journal of Neurology. 2021;268(4). doi:10.1007/s00415-020-10124-x
- 46 138. Guan W jie, Ni Z yi, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019
 47 in China. New England Journal of Medicine. 2020;382(18).
 48 doi:10.1056/NEJMoa2002032

- 139. Zhou L, Zhang M, Wang J, Gao J. Sars-Cov-2: Underestimated damage to nervous
 system. Travel Medicine and Infectious Disease. 2020;36.
 doi:10.1016/j.tmaid.2020.101642
- 4 140. Li Y, Bai W, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a
 5 role in the respiratory failure of COVID-19 patients. Journal of Medical Virology.
 6 2020;92(6). 2doi:10.1002/jmv.25728
- 7 141. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the
 8 CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic
 9 Mechanisms. ACS Chemical Neuroscience. 2020;11(7).
 10 doi:10.1021/acschemneuro.0c00122
- 142. Pilotto A, Odolini S, Masciocchi S, et al. Steroid-Responsive Encephalitis in Coronavirus Disease 2019. Annals of Neurology. 2020;88(2). doi:10.1002/ana.25783
- 13 143. Edén A, Kanberg N, Gostner J, et al. CSF biomarkers in patients with COVID-19 and
 14 neurological symptoms. Neurology. Published online October 1, 2020.
 15 doi:10.1212/WNL.00000000010977
- 16 144. Garcia MA, Barreras P v., Lewis A, et al. Cerebrospinal fluid in COVID-19
 17 neurological complications: Neuroaxonal damage, anti-SARS-Cov2 antibodies but no
 18 evidence of cytokine storm. Journal of the Neurological Sciences. 2021;427.
 19 doi:10.1016/j.jns.2021.117517
- 145. Espíndola OM, Brandão CO, Gomes YCP, et al. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. International Journal of Infectious Diseases. 2021;102. doi:10.1016/j.ijid.2020.10.044
- Senel M, Abu-Rumeileh S, Michel D, et al. Miller-Fisher syndrome after COVID-19:
 neurochemical markers as an early sign of nervous system involvement. European
 Journal of Neurology. 2020;27(11). doi:10.1111/ene.14473
- 27 147. Geis T, Brandstetter S, Toncheva AA, et al. Serum neurofilament light chain (sNfL)
 28 values in a large cross-sectional population of children with asymptomatic to moderate
 29 COVID-19. Journal of Neurology. Published online April 23, 2021.
 30 doi:10.1007/s00415-021-10554-1
- 148. Ngo B, Lapp SA, Siegel B, et al. Cerebrospinal fluid cytokine, chemokine, and SARS CoV-2 antibody profiles in children with neuropsychiatric symptoms associated with
 COVID-19. Multiple Sclerosis and Related Disorders. 2021;55.
 doi:10.1016/j.msard.2021.103169
- Pilotto A, Masciocchi S, Volonghi I, et al. SARS-CoV-2 encephalitis is a cytokine
 release syndrome: evidences from cerebrospinal fluid analyses. Clinical Infectious
 Diseases. Published online January 4, 2021. doi:10.1093/cid/ciaa1933
- Paterson RW, Benjamin LA, Mehta PR, et al. Serum and cerebrospinal fluid biomarker
 profiles in acute SARS-CoV-2-associated neurological syndromes. Brain
 Communications. 2021;3(3). doi:10.1093/braincomms/fcab099
- 41 151. Ameres M, Brandstetter S, Toncheva AA, et al. Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. Journal of Neurology. 2020;267(12). doi:10.1007/s00415-020-10050-y
- Mariotto S, Savoldi A, Donadello K, et al. Nervous system: subclinical target of SARSCoV-2 infection. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91(9).
 doi:10.1136/jnnp-2020-323881
- 47 153. Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and
 48 neuronal injury commonly found in COVID-19. Neurology. 2020;95(12).
 49 doi:10.1212/WNL.00000000010111

- 1 154. Cooper J, Stukas S, Hoiland RL, et al. Quantification of Neurological Blood-Based
 Biomarkers in Critically III Patients With Coronavirus Disease 2019. Critical Care
 Explorations. 2020;2(10). doi:10.1097/CCE.0000000000238
- 4 155. Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal
 5 injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine.
 6 2021;70. doi:10.1016/j.ebiom.2021.103512
- 7 156. Sun B, Tang N, Peluso MJ, et al. Characterization and Biomarker Analyses of Post 8 COVID-19 Complications and Neurological Manifestations. Cells. 2021;10(2).
 9 doi:10.3390/cells10020386
- 157. Bozzetti S, Ferrari S, Zanzoni S, et al. Neurological symptoms and axonal damage in
 COVID-19 survivors: are there sequelae? Immunologic Research. Published online
 August 7, 2021. doi:10.1007/s12026-021-09220-5
- 13 158. Mantovani E, Mariotto S, Gabbiani D, et al. Chronic fatigue syndrome: an emerging
 14 sequela in COVID-19 survivors? Journal of NeuroVirology. Published online August 2,
 15 2021. doi:10.1007/s13365-021-01002-x
- 159. Virhammar J, Nääs A, Fällmar D, et al. Biomarkers for central nervous system injury in
 cerebrospinal fluid are elevated in COVID-19 and associated with neurological
 symptoms and disease severity. European Journal of Neurology. Published online
 January 19, 2021. doi:10.1111/ene.14703
- Sutter R, Hert L, de Marchis GM, et al. Serum Neurofilament Light Chain Levels in the
 Intensive Care Unit: Comparison between Severely Ill Patients with and without
 Coronavirus Disease 2019. Annals of Neurology. 2021;89(3). doi:10.1002/ana.26004
- 161. Masvekar RR, Kosa P, Jin K, et al. Prognostic value of serum/plasma neurofilament
 light chain for <scp>COVID</scp> -19-associated mortality. Annals of Clinical and
 Translational Neurology. 2022;9(5):622-632. doi:10.1002/acn3.51542
- 26 162. de Lorenzo R, Loré NI, Finardi A, et al. Blood neurofilament light chain and total tau
 27 levels at admission predict death in COVID-19 patients. Journal of Neurology.
 28 Published online May 10, 2021. doi:10.1007/s00415-021-10595-6
- 29 163. Aamodt AH, Høgestøl EA, Popperud TH, et al. Blood neurofilament light
 30 concentration at admittance: a potential prognostic marker in COVID-19. Journal of
 31 Neurology. Published online March 20, 2021. doi:10.1007/s00415-021-10517-6
- Prudencio M, Erben Y, Marquez CP, et al. Serum neurofilament light protein correlates
 with unfavorable clinical outcomes in hospitalized patients with COVID-19. Science
 Translational Medicine. 2021;13(602). doi:10.1126/scitranslmed.abi7643
- Jessen Krut J, Mellberg T, Price RW, et al. Biomarker Evidence of Axonal Injury in
 Neuroasymptomatic HIV-1 Patients. PLoS ONE. 2014;9(2).
 doi:10.1371/journal.pone.0088591
- Hermansson L, Yilmaz A, Price RW, et al. Plasma concentration of neurofilament light
 chain protein decreases after switching from tenofovir disoproxil fumarate to tenofovir
 alafenamide fumarate. PLOS ONE. 2019;14(12). doi:10.1371/journal.pone.0226276
- 41 167. Vigo D v, Kestel D, Pendakur K, Thornicroft G, Atun R. Disease burden and government spending on mental, neurological, and substance use disorders, and self-harm: cross-sectional, ecological study of health system response in the Americas. The Lancet Public Health. 2019;4(2). doi:10.1016/S2468-2667(18)30203-2
- 45 168. Jakobsson J, Bjerke M, Ekman CJ, et al. Elevated Concentrations of Neurofilament Cerebrospinal Fluid Bipolar 46 Light Chain in the of Disorder Patients. Neuropsychopharmacology. 2014;39(10). doi:10.1038/npp.2014.81 47
- 169. Rolstad S, Jakobsson J, Sellgren C, et al. Cognitive Performance and Cerebrospinal
 Fluid Biomarkers of Neurodegeneration: A Study of Patients with Bipolar Disorder and
 Healthy Controls. PLOS ONE. 2015;10(5). doi:10.1371/journal.pone.0127100

- Rodrigues-Amorim D, Rivera-Baltanás T, del Carmen Vallejo-Curto M, et al. Plasma
 β-III tubulin, neurofilament light chain and glial fibrillary acidic protein are associated
 with neurodegeneration and progression in schizophrenia. Scientific Reports.
 2020;10(1). doi:10.1038/s41598-020-71060-4
- 5 171. Gudmundsson P, Skoog I, Waern M, et al. Is there a CSF biomarker profile related to
 6 depression in elderly women? Psychiatry Research. 2010;176(2-3).
 7 doi:10.1016/j.psychres.2008.11.012
- 8 172. Kempton MJ, Geddes JR, Ettinger U, Williams SCR, Grasby PM. Meta-analysis,
 9 Database, and Meta-regression of 98 Structural Imaging Studies in Bipolar Disorder.
 10 Archives of General Psychiatry. 2008;65(9). doi:10.1001/archpsyc.65.9.1017
- 173. Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA.
 Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus
 major depressive disorder. Bipolar Disorders. 2008;10(1). doi:10.1111/j.1399 5618.2008.00435.x
- 15 174. Rund BR. Is schizophrenia a neurodegenerative disorder? Nordic Journal of Psychiatry.
 2009;63(3). doi:10.1080/08039480902767286
- 17 175. Nilsson IAK, Millischer V, Karrenbauer VD, et al. Plasma neurofilament light chain
 concentration is increased in anorexia nervosa. Translational Psychiatry. 2019;9(1).
 doi:10.1038/s41398-019-0518-2
- Wentz E, Dobrescu SR, Dinkler L, et al. Thirty years after anorexia nervosa onset,
 serum neurofilament light chain protein concentration indicates neuronal injury.
 European Child & Adolescent Psychiatry. Published online October 11, 2020.
 doi:10.1007/s00787-020-01657-7
- Hellerhoff I, King JA, Tam FI, et al. Differential longitudinal changes of neuronal and
 glial damage markers in anorexia nervosa after partial weight restoration. Translational
 Psychiatry. 2021;11(1). doi:10.1038/s41398-021-01209-w
- Phillipou A, Rossell SL, Castle DJ. The neurobiology of anorexia nervosa: A
 systematic review. Australian & New Zealand Journal of Psychiatry. 2014;48(2).
 doi:10.1177/0004867413509693
- Fourier A, Formaglio M, Kaczorowski F, et al. A combination of total tau and
 neurofilaments discriminates between neurodegenerative and primary psychiatric
 disorders. European Journal of Neurology. 2020;27(7). doi:10.1111/ene.14247
- 180. Eratne D, Loi SM, Walia N, et al. A pilot study of the utility of cerebrospinal fluid
 neurofilament light chain in differentiating neurodegenerative from psychiatric
 disorders: A 'C-reactive protein' for psychiatrists and neurologists? Australian & New
 Zealand Journal of Psychiatry. 2020;54(1). doi:10.1177/0004867419857811
- 181. Ducharme S, Dickerson BC. The Neuropsychiatric Examination of the Young-Onset
 Dementias. Psychiatric Clinics of North America. 2015;38(2).
 doi:10.1016/j.psc.2015.01.002
- 40 182. Ducharme S, Dols A, Laforce R, et al. Recommendations to distinguish behavioural
 41 variant frontotemporal dementia from psychiatric disorders. Brain. 2020;143(6).
 42 doi:10.1093/brain/awaa018
- Krudop WA, Kerssens CJ, Dols A, et al. Identifying bvFTD Within the Wide Spectrum
 of Late Onset Frontal Lobe Syndrome: A Clinical Approach. The American Journal of
 Geriatric Psychiatry. 2015;23(10). doi:10.1016/j.jagp.2015.04.002
- 46 184. Vijverberg EGB, Dols A, Krudop WA, et al. Cerebrospinal fluid biomarker
 47 examination as a tool to discriminate behavioral variant frontotemporal dementia from
 48 primary psychiatric disorders. Alzheimer's & Dementia: Diagnosis, Assessment &
 49 Disease Monitoring. 2017;7(1). doi:10.1016/j.dadm.2017.01.009

- al Shweiki MR, Steinacker P, Oeckl P, et al. Neurofilament light chain as a blood 1 185. psychiatric disorders from 2 biomarker to differentiate behavioural variant frontotemporal dementia. Journal of Psychiatric Research. 2019;113. 3 doi:10.1016/j.jpsychires.2019.03.019 4
- 5 186. Katisko K, Cajanus A, Jääskeläinen O, et al. Serum neurofilament light chain is a
 discriminative biomarker between frontotemporal lobar degeneration and primary
 psychiatric disorders. Journal of Neurology. 2020;267(1). doi:10.1007/s00415-01909567-8
- 9 187. Giorgio A, Santelli L, Tomassini V, et al. Age-related changes in grey and white matter
 10 structure throughout adulthood. Neuroimage. 2010;51(3).
 11 doi:10.1016/j.neuroimage.2010.03.004
- 12 188. Yilmaz A, Blennow K, Hagberg L, et al. Neurofilament light chain protein as a marker
 13 of neuronal injury: review of its use in HIV-1 infection and reference values for HIV14 negative controls. Expert Review of Molecular Diagnostics. 2017;17(8).
 15 doi:10.1080/14737159.2017.1341313
- 16 189. Lleó A, Alcolea D, Martínez-Lage P, et al. Longitudinal cerebrospinal fluid biomarker
 17 trajectories along the Alzheimer's disease continuum in the BIOMARKAPD study.
 18 Alzheimer's & Dementia. 2019;15(6). doi:10.1016/j.jalz.2019.01.015
- 19 190. Nyberg L, Lundquist A, Nordin Adolfsson A, et al. Elevated plasma neurofilament
 light in aging reflects brain white-matter alterations but does not predict cognitive
 decline or Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment &
 Disease Monitoring. 2020;12(1). doi:10.1002/dad2.12050
- Rübsamen N, Maceski A, Leppert D, et al. Serum neurofilament light and tau as
 prognostic markers for all-cause mortality in the elderly general population—an
 analysis from the MEMO study. BMC Medicine. 2021;19(1). doi:10.1186/s12916-02101915-8
- Kaeser SA, Lehallier B, Thinggaard M, et al. A neuronal blood marker is associated
 with mortality in old age. Nature Aging. 2021;1(2). doi:10.1038/s43587-021-00028-4
- 193. Moore EE, Hohman TJ, Badami FS, et al. Neurofilament relates to white matter
 microstructure in older adults. Neurobiology of Aging. 2018;70.
 doi:10.1016/j.neurobiolaging.2018.06.023
- Idland AV, Sala-Llonch R, Watne LO, et al. Biomarker profiling beyond amyloid and 32 194. tau: cerebrospinal fluid markers, hippocampal atrophy, and memory change in 33 cognitively unimpaired older adults. Neurobiology 2020;93. 34 of Aging. doi:10.1016/j.neurobiolaging.2020.04.002 35
- Kern S, Syrjanen JA, Blennow K, et al. Association of Cerebrospinal Fluid
 Neurofilament Light Protein With Risk of Mild Cognitive Impairment Among
 Individuals Without Cognitive Impairment. JAMA Neurology. 2019;76(2).
 doi:10.1001/jamaneurol.2018.3459
- 40 196. Diaz-Arrastia R, Shahim P, Sandsmark DK. Molecular biomarkers in the neurological
 41 ICU. Current Opinion in Critical Care. Published online January 2020.
 42 doi:10.1097/MCC.0000000000000703
- 43 197. Mariscalco G, Lorusso R, Dominici C, Renzulli A, Sala A. Acute Kidney Injury: A
 44 Relevant Complication After Cardiac Surgery. The Annals of Thoracic Surgery.
 45 2011;92(4). doi:10.1016/j.athoracsur.2011.04.123
- 46

1 Figure legends

Figure 1 Confounding variables affecting blood NfL levels in healthy subjects and patients. Blood NfL may be affected by several physiological and pre-analytical confounding factors which can increase (red area: aging, pregnancy, sports injury, increased glycated hemoglobin – HbA1c) or decrease (blue area: increased body mass index and blood volume) its levels. Other variables, including renal function, biological matrix of the sample, biological fluctuations and inter-individual variability, can influence NfL blood levels bidirectionally (yellow area). Created with BioRender.com

9

Figure 2 Most promising applications of CSF and blood NfL in non-primary neurological diseases and current limitations. The figure shows the most promising applications of CSF and blood NfL in the medical fields of intensive care, surgery, internal medicine and psychiatry. Furthermore, major limitations of the marker hampering its clinical utilization on a wide scale are displayed. Created with BioRender.com

15

Figure 3 Distribution of blood NfL levels in most important non-primary neurological diseases. The figure shows blood NfL elevation in several non-primary neurological diseases which have been examined in the present review. Narrows represent approximate mean fold increases of blood NfL in each condition compared to controls. We obtained the approximate mean fold increase values based on available blood NfL values reported in papers included in the review.^{64,65,68,74,100,154,161,164,176–178,186,187} Created with BioRender.com

22

- 1 Table I Main studies exploring NfL performance in the adult and pediatric ICU setting and mostly in patients after
- 2 cardiac arrest

	Paper	Countr y of studied populati on	Examin ed biofluid	Assay	n	Primary outcome and timing	Good/p oor Outco me, n	Sample timing (after CA)	Best AUC (sampl e timing)	Se ns (%)	S р ес (%)	Cu t- off
	Anderss on et al. ⁷⁵	Multicent ric: Europe and Australia	Serum	Simoa	939 adults with OHCA	CPC at 6 months	440/492	24, 48, 72 h	0.92 when NfL analyzed alone.	-		
	Disanto et al. ⁶⁵	Switzerla nd	Serum	Simoa	l4 adults with OHCA	Death at I month	7/7	Median 2 (1–3) days, range (0– 17 days)	0.98	.83	100	343 7 pg/ ml
	Fisse et al. ⁷⁶	Germany	Serum	Simoa	35 adults admitted to ICU	mRS at end of follow-up (median follow-up time 26 days)		Day I and every 7 days during ICU treatmen t			-	-
	Goeral et al. ⁹¹	Austria	Serum	Simoa	48 preterm infants with PIVH	Neurodevelop ment (motor and cognitive skills) or death at 2 years	22/24	From 3 to 7 time points (not specified time)	0.71	-	-	-
	Hunzike r et al. ⁷⁴	Switzerla nd	Serum	Simoa	164 adults with OHCA	CPC at hospital discharge	66/98	Day I	0.77	72	82	50 Pg/ ml
-	Kirsche n et al. ⁸⁶	USA	Serum	Simoa	32 children with ARDS and OHCA; 18 healthy controls	Survival	13/19	Within 24 h (from ARDS onset)	0.78	-	-	-
	Moseby- Knappe et al. ⁶⁴	Multicent ric: Europe and Australia	Serum	Simoa	717 adults with OHCA	CPC at 6 months	357/360	24, 48, 72 h	0.94 (Day 3)	70	99	112 2 pg/ ml
•	Rana et al. ⁷³	Germany	Serum	ELISA Therm o- Fisher	85 adults with OHCA	mGOS at 6 months	43/18	Days I (within 2 h), 2, 3, 5, 7	0.99 (Day 7)	94	100	252 Pg/ ml
-	Rosén et al. ⁷¹	Sweden	CSF	ELISA	22 adults with OHCA	GOS at best- recorded result at any of the time points (12 days - I year)	10/12	Mean 17.5, range 12– 30 days	-	92	90	962 2 μg/l
	Rosén et al. ⁷²	Sweden	CSF	ELISA Uman Diagno stic	21 adults with OHCA	GOS at best- recorded result at any of the time points (12 days - I year)	10/11	12–14 days	-	-	-	-
	Shah et al. ⁸⁹	UK	Plasma	ELISA IBL	26 newborns with hypoxic- ischemic encephalop athy treated with therapeutic hypothermi a for 72 h	MRI pattern predictive of outcome	13/13	At target temperat ure, prior to rewarmin g, and after rewarmin g	0.97 (after rewarmi ng)	92	92	417 Pg/ ml

Wilshes	Finland	Plasma	Simoa	112 adults	CPC at 6	73/39	Admissio	0.98	85	99	344
sari et	and			with	months		n, 24, 48,	(Day 3)			pg/
al. ⁶⁸	Denmark			OHCA			72 h				ml

¹ See also Supplementary Table I. ARDS = Acute respiratory distress syndrome; AUC = area under the curve; CA = cardiac arrest; CPC =

2 cerebral performance categories scale; CSF = cerebrospinal fluid; ELISA = Enzyme-Linked Immunosorbent Assay; GOS = Glasgow

3 Outcome scale; ICU = intensive care unit; mGOS = modified Glasgow Outcome Score; mRS = modified Rankin Scale; NfL = neurofilament

- 4 light chain protein; OHCA = out of hospital cardiac arrest; PIVH = peri/intraventricular hemorrhage; Sens = sensitivity; Spec = specificity; -
- 5 = not reported.
- 6

1 Table 2 Blood NfL in post-operative delirium

Study	Examined biofluid	Assay	n	Design	Incidence of delirium in the study	Serum NfL levels in both groups (Delirium versus no delirium, respectively) (postoperative day, total follow-up days)	Postoperative NfL dynamics in blood	Correlation between NfL and Delirium scores	Factors affecting NfL concentration
Casey et al. ¹⁰⁹	Plasma	Simoa	102 patients ^b	prospective observational study	36.1%	Higher levels in delirium patients compared to no-delirium group <i>P</i> < 0.001	Mean difference pre-post 0.240log10(pg/ml) (POD1) with more pronounced increase in the delirium group	Improvement of the overall model fitness by the addition of NfL ΔR2 = 0.199	IL-8, IL-10 and IL-1B concentrations; duration of operation and volume of blood loss
Fong et al. ¹¹²	Plasma	Simoa	108 patients ^a	Nested matched case-control as a part of a prospective observational study	50%	Median paired difference 16.2 pg/ml and 13.6 pg/ml (POD2, 30, respectively)	Remained elevated at Day30	Change in NfL level from preoperative to POD2 correlated with delirium severity (rank correlation coefficient= 0.31)	-
Halaas et al. ¹¹⁰	Serum and CSF	ELISA	314 patients with hip fracture and 135 healthy controls ^b	Prospective observational study	51.6%	94 versus 54 pg/ml 135 versus 92 pg/ml (preoperative, POD5)	-	-	-
Saller et al. ¹¹¹	Serum	Simoa	9 patients	Case series	33.3%	No significant difference between both groups (n = 6 versus n = 3)	In the group developing delirium, up to a seven-fold increase in NfL at the time of discharge (POD4-30)	-	-

2

3 CSF = cerebrospinal fluid; ELISA = Enzyme-Linked Immunosorbent Assay; IL = interleukin; POD = postoperative day; - = not reported

4 ^aAge-matched control group.

5 ^bAge-adjusted analysis, or age in control group did not differ statistically from patient group.

