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Abstract: This paper improves our understanding of the interplay of the proton plasma turbulent
heating sources of the expanding solar wind in the heliosphere. Evidence is shown of the connections
between the polytropic index, the rate of the heat absorbed by the solar wind, and the rate of change
of the turbulent energy, which heats the solar wind in the inner and outer heliosphere. In particular,
we: (i) show the theoretical connection of the rate of a heat source, such as the turbulent energy, with
the polytropic index and the thermodynamic process; (ii) calculate the effect of the pick-up protons in
the total proton temperature and the relationship connecting the rate of heating with the polytropic
index; (iii) derive the radial profiles of the solar wind heating in the outer and inner heliosphere; and
(iv) use the radial profile of the turbulent energy in the solar wind proton plasma in the heliosphere,
in order to show its connection with the radial profiles of the polytropic index and the heating of the
solar wind.

Keywords: polytropic index; turbulence; solar wind; space plasmas

1. Introduction

Solar wind protons flow throughout the supersonic heliosphere under expansive cooling and
turbulent heating. The turbulence in solar wind has two sources: (i) the solar-origin large-scale energy
fluctuations, and (ii) the excitation of plasma waves by newborn interstellar pickup ions. Other
secondary sources may exist, e.g., turbulence can also be generated in-situ in the solar wind by velocity
shears [1,2]. The turbulence affects the polytropic behavior of the solar wind plasma.

The meaning of the polytrope has its origin in the many turns of the thermodynamic state of a
system. It stands for a family of thermodynamic processes that follow a specific relationship among
thermal observables, e.g., density n, temperature T, and thermal pressure p, that is,

p(
→

R) ∝ n(
→

R)
γ
, or n(

→

R) ∝ T(
→

R)
ν
, (1a)

where the polytropic indices γ and ν are independent of the position vector, while they are related to
each other with:

γ = 1 + 1/ν or ν = 1/(γ− 1). (1b)

(Hereafter, the position vector
→

R measures the heliocentric distance.) Frequently, space and astrophysical
plasmas present positive correlations between density and temperature, caused by this polytropic
relationship, with a polytropic index ranging between the values of the isothermal (γ = 1) and isochoric
(γ→+∞) processes. The polytropic index of solar wind near 1 AU is close to the value of the adiabatic
process (γ = 5/3) (e.g., see: [3–12]). Note that values of polytropic index smaller than the adiabatic value
of 5/3 are used to account for unspecified heating mechanisms, such as turbulent heating. However, in
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a solar wind model with appropriate turbulence modeling, the actual heating mechanism is included
in a more complete way, and in that case the natural value of γ = 5/3 can be used (e.g., [13]).

The solar wind is expected to expand into the heliosphere with almost no energy variation, and
thus, it is cooled by an adiabatic expansion. However, the existence of turbulence significantly changes
this ideal picture; the turbulent heating of the solar wind leads to a polytropic index smaller than its
adiabatic value.

The solar wind plasma in the outer heliosphere is characterized by a polytropic index that slowly
decreases with the heliocentric distance R [14]. On the other hand, the solar wind plasma in the
inner heliosphere does not exhibit clear dependence of the adiabatic process with distance, though
it is expected to have a slight decrease with R [15]. In any case, the inner heliospheric plasma is
characterized by a variation of the polytropic index from its adiabatic value with δγ ~ 0.2, that is, from a
near adiabatic index γ ~ 1.65 (e.g., [9]), to some smaller value, e.g., γ ~ 1.45 (e.g., as derived from [16]).

Since the turbulent heating affects the solar wind thermodynamic process and polytropic index
value, we may ask: Are the radial profiles of polytropic index γ(R) and the rate of change of the
turbulent energy dEt/dt related to each other? Can we deduce the radial profile of turbulence rate from
the knowledge of the radial profile of the polytropic index?

The purpose of this paper is to show the connection between the polytropic index and the turbulent
energy rate in the solar wind proton plasma, by comparing their corresponding radial profiles in
the outer and inner heliosphere. In Section 2, we show the theoretical connection of the rate of a
heat source, such as the turbulent energy, with the polytropic index and the thermodynamic process.
In Section 3, we calculate the effect of the pick-up protons in the total proton temperature and the
relationship connecting the rate of heating with the polytropic index. In Section 4, we use the radial
profile of the turbulent energy in the solar wind proton plasma in the outer and inner heliosphere. We
show the connection between the radial profiles of the polytropic index and the turbulent heating of
the solar wind in the outer and inner heliosphere. Finally, in Section 5, we summarize the results.

2. Thermodynamics of Polytropes

In this section, we briefly derive the expression for the temperature and heating evolution of the
solar wind protons, considering polytropic radial expansion (see also: [17–20]). Given the polytropic
T ∝ nγ−1 and the spherical expansion n ∝ R−2 relationships, we obtain T ∝ R−2(γ−1), which is equivalent
to the gradient equation:

T ∝ R−2(γ−1)
⇔ dT/dR = −2(γ− 1) · T/R. (2)

According to the first law of thermodynamics, in the absence of any energy exchange with the
environment, the system is under an adiabatic process and the polytropic index is γa = 1 + 2/D, that is,
γa = 5/3, for degrees of freedom (d.o.f.) D = 3. However, in the presence of heating, the thermodynamic
process is not adiabatic and is described by a polytropic index γ , γa.

The first thermodynamic law gives:

dU + dW = dQ, (3a)

with:
dU =

1
2

D ·N · kBdT and dW = pdV, (3b)

where U is the internal energy of the N-particle system, and W is its work. Then, taking into account
that pV = NkBT, we find 1

2 ·D·Vdp + ( 1
2 ·D + 1)·pdV = dQ, and dividing by 1

2 ·D·pdV, we arrive at:

dQ
pdV

=
γa − γ

γa − 1
, (4a)
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or:

γ = 1 + (γa − 1)
(

dQ
pdV

− 1
)
, (4b)

where we used the definition of the polytropic index dlnp/dlnV =−γ (because p∝V−γ). Then, substituting
γ from Equation (4b) into Equation (2), we derive:

dT/dR = −2(γa − 1) · T/R + (γa − 1) · [dQ/(pdV)] · T/R. (5)

For d.o.f. D = 3, we have V = (4π/3)·R3 (or dV = 4π·R2dR) and γa − 1 = 2/3; also, we have p = N·kBT/V
and the heating per particle q = Q/N; then, we find:

dT/dR = −2(γa − 1) · T/R + kB
−1dq/dR = −2(γ− 1) · T/R. (6)

Therefore, the gradient of the heat absorbed by the solar wind, dq/dR, is given by:

dq/dR = 2(γa − γ) · kBTp/R, (7)

where we consider the proton plasma with temperature Tp. In order to find the heating rate dq/dt, we
consider the advection speed of the heating:

dq/dt = uR · dq/dR, (8)

hence, Equation (7) becomes:
dq/dt = 2(γa − γ) · uR · kBTp/R. (9a)

(Note that according to [17], the dissipation rate per mass is ε = − 3
2 dq/dt.) Then, using the notion of

proton thermal speed θp =
√

2kBTp/mp, where mp is the proton mass, we obtain:

(dq/dt)/mp = (γa − γ) · uR · θ
2

p /R. (9b)

The advection speed is:

uR =

{
Vsw advection at flow speed ,
θp advection at thermal speed ,

(10)

depending on whether the turbulent heating is advected at the solar wind plasma flow Vsw or the
thermal speed θp. Note that advection at thermal speed, instead of the bulk flow speed, is possible as a
limiting case, e.g., see references [21–23].

3. Effect of Pick-up Ions

Here, we add to Equation (9) the effect of pick-up ions (PUIs). According to [24], the PUI
temperature is summed to the solar wind proton temperature, as follows: The total proton pressure
sums the solar wind and pickup proton partial pressures, Pp,tot = Pp+Ppui, i.e., (np+npui)kBTp,tot =

npkBTp + npuikBTpui. The total temperature, Tp,tot, is derived from mixing solar wind and pickup
protons, i.e.,

Tp,tot = (Tp + nrTpui)/(1 + nr) with nr ≡ npui/np, (11a)

while:
θp, tot =

√
2kBTp,tot/mp, θp =

√
2kBTp/mp, and θpui =

√
2kBTpui/mp, (11b)

are the respective thermal speeds, which are related according to:

θ 2
p, tot =

(
θ 2

p + nrθ
2

pui

)
/(1 + nr). (11c)
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From Table 1 in McComas et al. [24], we can easily derive the radial dependence of solar wind
temperature Tp and density np, as well as the PUI temperature Tpui and density npui:

Tp/[K] ≈ 0.9984·105
× (R/[AU])−0.74, np/[cm−3] ≈ 5.140 × (R/[AU])−1.8, (12a)

Tpui/[K] ≈ 4.069·105
× (R/[AU])0.68, npui/[cm−3] ≈ 3.006·10−3

× (R/[AU])−0.58, (12b)

nr ≡ npui/np ≈ 5.847·10−4
× (R/[AU])1.22. (12c)

Note: the 1 AU values, included in the above formulae, were estimated as the geometric averages of
the two 1 AU values, which can be estimated via the 30 AU and 90 AU datasets of Table 1 in [24].

The respective thermal speeds are given by:

θp/[km/s] ≈ 40.60 × (R/[AU])−0.37, θpui/[km/s] ≈ 82.96 × (R/[AU])0.34, (12d)

while the average solar wind flow speed is:

Vsw /[km/s] ≈ 517.26 × (R/[AU])−0.083. (12e)

Note: Equation (12e) was derived from the estimations of Vsw = 390 km/s at 30 AU and Vsw = 356
km/s at 90 AU, as given in [24].

Therefore, the presence of PUIs affects Equation (9a), replacing the solar wind proton temperature
with the total proton temperature:

dq/dt = 2(γa − γ) · uR · kBTp,tot/R, (13a)

or, using the thermal speed,

(dq/dt)/mp = (γa − γ) · uR · θ
2
p,tot/R, (13b)

while the advection speed is now given by:

uR =


Vsw advection at solar wind flow speed ,
θp advection at solar wind thermal speed ,
θp,tot advection at solar wind total thermal speed .

(14)

Finally, the above can be expressed in terms of the heliocentric distance, R:

1
mp

.
q(R) = δγ(R) · uR(R) · θ 2

p,tot(R)/R, (15a)

with δγ ≡ γa − γ, or:

1
mp

.
q(R)/[km2/s3] = δγ(R)×

5.699 · 10−3
· (R/[AU])−1.823

·
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

4.473 · 10−4
· (R/[AU]) 2.11

·
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

4.473 · 10−4
· (R/[AU]) 2.11

·

[
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

] 3
2
,

(15b)

depending on the advection speed, as shown in Equation (14).
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4. Polytropic Index Versus Turbulent Energy

The turbulent energy, developed along the solar wind radial expansion, is given by Et /mp = σz
2,

that is, the variance of the Elsässer vector variable
→

Z+. The Elsässer variables [25] are defined by:

→

Z± ≡
→

Vsw ±
→

Va, with
→

Va =
→

B/
√
µ ρ, (16)

where
→

Va is the Alfvén velocity, ρ is the mass density ≈ mp·n. The Elsässer vector variable
→

Z+ {
→

Z−}
corresponds to Alfvénic modes with an outward {inward} radial direction of propagation (in the solar
wind frame).

The turbulent energy heats the solar wind, and thus, affects the value of the polytropic index,
which may vary from near adiabatic γ ≈ γa to a smaller value γ < γa. When the polytropic index is
smaller than the adiabatic value, γ < γa, then the plasma is endothermic, i.e., a heat-absorbing system.
If there was no turbulent heating of the solar wind, then the radial expansion of the solar wind would
be purely adiabatic and the polytropic index equal to γ = γa. Below, we explain the connection between
the polytropic index and the turbulent heating separately for the inner and outer heliosphere:

In the inner heliosphere, the solar-origin large-scale energy fluctuations constitute the primary
source of turbulent heating. This turbulent energy decreases with heliocentric distance as [26–28]:

Et /mp = 103.48 ± 0.04
·(R/[AU])−1.43 ± 0.07, (17)

where R is in AU and energy in km2
·s−2 (setting proton mass to 1).

Since Et∝R−1.43, hence, dEt/dR∝R−2.43. We also consider that the polytropic index has a slow radial
variation, denoted by γa − γ = δγ(R); then, from Equation (2) we find Tp ∝ R−2(γ − 1) = R−1.33 − 2δ(R),
and from Equation (7) we have dq/dR∝δγ(R)·R−2.33 − 2δ(R); for slow radial variation, the two results are
consistent, both exhibiting a radial gradient dq/dR∝dEt/dR∝R−x, with x ≈ 2.33–2.43 (exact match for δγ
≈ 0.05).

In another approach, the inner heliospheric plasma is characterized by a variation of the polytropic
index from its adiabatic value with δγ ~ 0.2, that is, from a near adiabatic index γ ~ 1.65 (e.g., [9]) to
some smaller value, e.g., γ ~ 1.45 (e.g., as derived from [16]); also, see Appendix A. Setting δγ ~ 0.2 in
Equation (15b), we derive the radial profile of the solar wind heating rate (per proton mass) in units
(km2/s3), depending on the advection speed (as shown in Equation (14)):

1
mp

.
q(R)/[km2/s3] =


1.140 · 10−3

· (R/[AU])−1.823
·

1+2.383·10−3
·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

8.946 · 10−5
· (R/[AU]) 2.11

·
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

8.946 · 10−5
· (R/[AU]) 2.11

·

[
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

] 3
2
.

(18)

In Figure 1, the heat rate
.
q(R) (per mp) is plotted for advection speeds uR: Vsw (green), θp (red),

and θp,tot (blue). For comparison, we co-plotted the radial profile of the modeled (thin black lines) rate

of turbulent energy
.
Et(R) (per mp), derived using data from Voyager 2 S/C for R between 1 AU–30 AU

by [29] (see also [30]). We observe the coincidence of the plotted and modeled turbulent energy with
the heat rate up to R ~ 10 AU for advection speed given by the solar wind speed (green). Near R ~ 20
AU and beyond, the turbulent energy appears to better coincide with the heat rate for advection speed
given by the total (solar wind plus pick-up) proton thermal speed (blue).
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AU by [29] (see also [30]). We observe the coincidence of the plotted and modeled turbulent energy 
with the heat rate up to R ~ 10 AU for advection speed given by the solar wind speed (green). Near 
R ~ 20 AU and beyond, the turbulent energy appears to better coincide with the heat rate for advection 
speed given by the total (solar wind plus pick-up) proton thermal speed (blue). 

In addition, the heating rate profile is in agreement with the observational results derived by 
Marino et al. [20]. In particular, these authors estimated for the first time the turbulent energy transfer 
rate, which can contribute to the in-situ heating of solar wind. Their results (c.f., Table 1 in [20]) are 
co-plotted within the square inset in Figure 1, with average energy flux ~(1.86 ± 0.95) × 10−4 km2/s3, 
ranging between 3.1 AU and 4.2 AU (plotted in the pink horizontal line). The agreement of these 
measurements with the rest of the modeled graphs is apparent. 

 

Figure 1. The heat rate ( )q R  is plotted for advection speeds uR: Vsw (green), θp (red), and θp,tot (blue), 
and co-plotted with the modeled (black) values of the turbulent energy rate t ( )E R , for the Voyager 
2 data computed and plotted as a function of R by [29]; the horizontal dash lines represent the 
modeled turbulent energy rate with adding the effect of PUIs (various models). We observe that the 
advection speed coincides with the solar wind speed (green) for R up to ~10 AU, while it may be 
better described by the total (solar wind plus pick-up) proton thermal speed (blue) for R near ~20 AU 
and beyond. (Note: all energies are plotted per proton mass). The square inset includes the 
measurements of turbulent energy transfer rates per R, calculated by Marino et al. (Table 1 in [20]). 
(Note: this figure uses a modified part of Figure 7 from [29].) 

In the outer heliosphere, the excitation of plasma waves by newborn interstellar PUIs is the 
primary source of turbulent heating. The rate of this turbulent energy dEt/dt increases with increasing 
the heliocentric distance R (c.f., Figure 5 in [30]), and is expected to match the heating rate dq/dt in 
Equation (15b). According to this, the rate is proportional to the polytropic difference (γa – γ), speed, 
and temperature, and inversely proportional to R. Speed decreases slowly with increasing R, thus the 
only way the heating rate can increase with R is when the difference (γa – γ) and/or temperature T 
increase with increasing R. Voyager 2 data showed that the temperature increases with R beyond 
some minimum located between 20 AU and 50 AU (c.f., Figure 3 in [30]). In addition, Elliott et al. [14] 

Figure 1. The heat rate
.
q(R) is plotted for advection speeds uR: Vsw (green), θp (red), and θp,tot (blue),

and co-plotted with the modeled (black) values of the turbulent energy rate
.
Et(R), for the Voyager 2

data computed and plotted as a function of R by [29]; the horizontal dash lines represent the modeled
turbulent energy rate with adding the effect of PUIs (various models). We observe that the advection
speed coincides with the solar wind speed (green) for R up to ~10 AU, while it may be better described
by the total (solar wind plus pick-up) proton thermal speed (blue) for R near ~20 AU and beyond. (Note:
all energies are plotted per proton mass). The square inset includes the measurements of turbulent
energy transfer rates per R, calculated by Marino et al. (Table 1 in [20]). (Note: this figure uses a
modified part of Figure 7 from [29].)

In addition, the heating rate profile is in agreement with the observational results derived by
Marino et al. [20]. In particular, these authors estimated for the first time the turbulent energy transfer
rate, which can contribute to the in-situ heating of solar wind. Their results (c.f., Table 1 in [20]) are
co-plotted within the square inset in Figure 1, with average energy flux ~(1.86 ± 0.95) × 10−4 km2/s3,
ranging between 3.1 AU and 4.2 AU (plotted in the pink horizontal line). The agreement of these
measurements with the rest of the modeled graphs is apparent.

In the outer heliosphere, the excitation of plasma waves by newborn interstellar PUIs is the
primary source of turbulent heating. The rate of this turbulent energy dEt/dt increases with increasing
the heliocentric distance R (c.f., Figure 5 in [30]), and is expected to match the heating rate dq/dt in
Equation (15b). According to this, the rate is proportional to the polytropic difference (γa – γ), speed,
and temperature, and inversely proportional to R. Speed decreases slowly with increasing R, thus
the only way the heating rate can increase with R is when the difference (γa – γ) and/or temperature
T increase with increasing R. Voyager 2 data showed that the temperature increases with R beyond
some minimum located between 20 AU and 50 AU (c.f., Figure 3 in [30]). In addition, Elliott et al. [14]
analyzed New Horizons data for the radial range 22–38 AU. The polytropic index γ was derived from
fitting eight consecutive pairs of temperature−density values and then averaging the results over solar
wind speed for each radial 1 AU-bin of New Horizons data (according to the method of [31]). They
found that γ decreases, or (γa – γ) increases, with increasing R; specifically, the linear fit to the radial
profile of γ led to the relationship γ(R) − 1 ≈ −0.0316·(R-30), thus the solar wind is isothermal for R
near Rm ~ 30-35AU, while for R > Rm we observed γ < 1, corresponding to anti-correlation between n
and T (because of T ∝ nγ−1).

Furthermore, we used the relationship of the polytropic index expressed in terms of the heliocentric
distance R in the outer heliosphere, derived by [14]:

δγ(R) ≡ γa − γ(R) = 0.0316·[(R/[AU]) − 9], (19a)
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in order to derive the heating rate, according to Equation (15b), namely:

1
mp

.
q(R)/[km2/s3] =

5.122 · 10−2
· [(R/[AU]) − 9] · (R/[AU])−1.823

·
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

4.020 · 10−3
· [(R/[AU]) − 9] · (R/[AU]) 2.11

·
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

4.020 · 10−3
· [(R/[AU]) − 9] · (R/[AU]) 2.11

·

[
1+2.383·10−3

·(R/[AU]) 2.64

1+5.847·10−4·(R/[AU]) 1.22

] 3
2

,

(19b)

depending on the advection speed, whether it is given by the solar wind flow speed, proton thermal
speed, or the solar wind and pick-up proton total thermal speed, as shown in Equation (14).

In Figure 2, the heat rate
.
q(R) is again plotted for advection speeds uR: Vsw (green), θp (red),

and θp,tot (blue). For comparison, we co-plotted the radial profile of the observed (black circles) rate

of turbulent energy
.
Et(R), derived using data from Voyager 2 S/C and computed for R between 10

AU and 75 AU by [30]. Beyond 10 AU pickup ions are the dominant source of energy injection into
the flow that leads to the heating the solar wind thermal protons. As a result, the advection speed
coincides better with the total (solar wind plus pick-up) proton thermal speed (blue) for R near ~20 AU
and beyond.
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AU and beyond. 
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by newborn interstellar PUIs (black circles), which was derived using data from Voyager 2 S/C by 
[30]; (all energies are plotted per proton mass). The turbulence energy in the outer heliosphere is 
mostly caused by the scattering of ionized interstellar neutrals (pickup ions), which supplies energy 
through wave-particle interactions. We observe that the advection speed coincides better with the 
total (solar wind plus pick-up) proton thermal speed (blue) for R near ~20 AU and beyond. (Note: this 
figure uses a modified part of Figure 5 from [30].). 

Figure 2. The heat rate
.
q(R) is plotted for advection speeds uR: Vsw (green), θp (red), and θp,tot (blue),

and co-plotted with the turbulent energy rate,
.
Et(R), originated from the excitation of plasma waves by

newborn interstellar PUIs (black circles), which was derived using data from Voyager 2 S/C by [30];
(all energies are plotted per proton mass). The turbulence energy in the outer heliosphere is mostly
caused by the scattering of ionized interstellar neutrals (pickup ions), which supplies energy through
wave-particle interactions. We observe that the advection speed coincides better with the total (solar
wind plus pick-up) proton thermal speed (blue) for R near ~20 AU and beyond. (Note: this figure uses
a modified part of Figure 5 from [30].).

The matching of the advection speed with the thermal speed may be explained by the following
reasons:

(i) The derivation of energy rate by [30] may not describe the whole PUI turbulent energy;
(ii) The PUI turbulent energy measurements used Voyager 2 dataset [24], while the PUI turbulent

energy modeled by this paper used the PUI kinetic energy measured by New Horizons dataset [30].
Moreover, the two datasets were collected on different parts of solar cycle;

(iii) Part of the PUI kinetic energy may be transformed into turbulent energy. In general, the PUI
average kinetic energy Epui is different to the energy from the excitation of plasma waves by
newborn interstellar PUIs, Et,pui, that is, one of the sources of solar wind turbulent heating.
Newly-born PUIs are created as an unstable ring beam in the plasma frame, generating magnetic
waves that pitch angle scatter them. The process of PUI isotropization (pitch angle scattering
to near-isotropy) yields heating of the solar wind ions via energy transfer with magnetic wave
interactions. The energy that is created into magnetic waves is a small fraction of the gyrational
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energy of the PUIs, Epui. Indeed, Epui is significantly larger than Et,pui; e.g., at R ~ 40AU, the rate
of Epui is ~1.5 orders of magnitude larger than the rate of Et,pui:

dEt,pui/dR ≈ 8·[km/s]2
·[AU]−1 and dEpui/dR ≈ 245·[km/s]2

·[AU]−1 (per proton mass). (20)

(Note: for Epui, see Figure 7 in [24]; for Et,pui see the rate of change in Figure 5 in [30], which is
co-plotted in Figure 2;)

(iv) More complicated modeling of the heat flux may be necessary, e.g., including proton and electron
species [31];

(v) Finally, advection at thermal speed, instead of the bulk flow speed, is possible as a limiting case,
e.g., see: [21–23].

Moreover, in Figure 2 we observe a variation between the curves representing advection at the
total proton or at just the solar wind proton thermal speeds. It is possible that the advection occurs
simply via the solar wind protons, thus, at their thermal speed. Then, as the solar wind expands farther
in the outer heliosphere, the intensity and effect of pick-up ions increases, while the already picked-up
protons have become matured enough to also contribute to the advection; hence, the shift to the total
thermal speed as R increases beyond ~50 AU. Surely, future analyses will reveal the quantitative details
of this process.

5. Conclusions

The paper improved the understanding of the interplay and partition of the sources of proton
plasma turbulent heating of the expanding solar wind in the inner and outer heliosphere.

The sources of turbulence in the heliosphere can be divided into two groups: (1) solar-origin
large-scale energy fluctuations (stream shears and shock waves) driven turbulence, and (2) interstellar
PUI driven turbulence (e.g., [27]). Both of these groups of sources contribute to solar wind heating, but
(1) is dominant in the inner heliosphere and (2) is dominant in the outer heliosphere.

The turbulent energy from solar-origin sources is decreasing along the solar wind radial expansion
in the heliosphere; however, the turbulent energy from the interstellar-PUI-origin source is increasing
(denoted with Et,pui). See, for example, the radial profile of the rate of Et,pui in the outer heliosphere,
which increases with increasing R, estimated using Voyager 2 data by [30].

We showed the connection between the polytropic index and the turbulent energy rate in
the solar wind proton plasma, by comparing their corresponding radial profiles in the outer and
inner heliosphere.

Specifically, we observed that the advection speed coincides with the solar wind speed (green) for
R up to ~10 AU, while it better coincides with the total (solar wind plus pick-up) proton thermal speed
(blue) for R near ~20 AU and beyond.

In summary, we:

(i) Showed the theoretical connection of the rate of a heat source, such as the turbulent energy, with
the polytropic index and the thermodynamic process;

(ii) Calculated the effect of the pick-up protons in the total proton temperature and the relationship
connecting the rate of heating with the polytropic index;

(iii) Derived the radial profiles of the solar wind heating in the outer and inner heliosphere;
(iv) Used the radial profile of the turbulent energy in the solar wind proton plasma in the outer and

inner heliosphere, in order to show their connection with the radial profiles of the polytropic
index and the heating of the solar wind.

While we showed the first evidence of the connection among the polytropic index γ, the rate of
the heat absorbed by the solar wind dq/dt, and the rate of turbulent energy dEt

+/dt, during the heating
of the solar wind in the inner and outer heliosphere, the exact connection between them is unknown.
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Future data and theoretical analyses can determine the Elsässer variables, Et
+ and Et

−, and employ
the theoretical 3D-model [30] to model the evolution of the turbulent energy, and then compare with
the heating related to the polytropic index. Datasets of both the inner (e.g., Helios 1 and 2, ACE,
Wind, Ulysses) and outer (Voyager 1 and 2, updated New Horizons, Pioneers 1 and 2) heliosphere
can be used. Furthermore, the analysis of Elliott et al. [14] can be repeated to derive the polytropic
index radial profile using Voyager 1 and 2 datasets, and compare it with the results of [14] for the
New Horizons data. The connection of the polytropic index with (i) the kappa index [12,32], the
parameter that governs and labels kappa distributions [33,34], (ii) the Debye length [35–39], (iii) the
mean-free-path [40], may be used and involved.

Funding: This research was funded by NASA’s HGI Program grant number NNX17AB74G.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the appendix, we summarize the formulae and method used for the derivation of the polytropic
index, its smoothing averaged value and its standard error. (For more details, see: [11].)

We use the density n and temperature T of the ith and (i + 1)th data points to derive the polytropic
index at the ith data point and its error, that is:

γi = 1 + ln(Ti+1/Ti)/ ln(ni+1/ni), (A1a)

δγi =
√

2 ·
√
(δ ln T)2 + (γi − 1)2(δ ln n)2

· [ln(ni+1/ni)]
−1. (A1b)

Note: we apply the above when ith and (i + 1)th data points correspond to invariant Bernoulli integral
to reduce the possibility of streamline crossing [5,7].

According to [9], smoothing the time series involves finding the M-step moving average:

γ(M) =
M∑

i=1

δγi
−2γi/

M∑
i=1

δγi
−2. (A2)

The error of the weighted mean is a combination of the propagated uncertainty:

δγprop =
1√

M∑
i=1

δγ−2
i

, (A3a)

and the statistical uncertainty (which is related to the curvature of the total residuals, e.g., [41–43]):

δγstat =

√√√√√√√√√√√√√√√ 1
M

M∑
i=1

δγ−2
i (γi − γ)

2

M∑
i=1

δγ−2
i −

(
M∑

i=1
δγ−2

i

)−1

·

M∑
i=1

δγ−4
i

, (A3b)

which are combined to give the total uncertainty of the weighted mean:

δγ(M) =

√
(δγprop)

2
+ (δγstat)

2
. (A3c)

(For several applications of the above statistics, see: [41–47].)
The above were applied in [9], showing that the polytropic index uncertainty is of the order ~0.2

in the solar wind proton plasma near 1 AU (c.f., the mean and standard error of the polytropic indices
plotted in Figure 4 and Figure 5 in [9]).
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