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Similar to animals, plants have evolved mechanisms for elastic energy
storage and release to power and control rapid motion, yet both groups
have been largely studied in isolation. This is exacerbated by the lack of con-
sistent terminology and conceptual frameworks describing elastically
powered motion in both groups. Iconic examples of fast movements can
be found in carnivorous plants, which have become important models to
study biomechanics, developmental processes, evolution and ecology.
Trapping structures and processes vary considerably between different car-
nivorous plant groups. Using snap traps, suction traps and springboard-
pitfall traps as examples, we illustrate how traps mix and match various
mechanisms to power, trigger and actuate motions that contribute to prey
capture, retention and digestion. We highlight a fundamental trade-off
between energetic investment and movement control and discuss it in a
functional-ecological context.
1. Introduction
‘Biologists have long been attracted to (…) extremes because they provide
especially clear examples from which to determine structure-function relations’
[1, p. 100]. Extremes of movement are particularly prevalent in predator–prey
interactions when organisms prioritize high speed and acceleration during
predator strikes or escape responses, such as the claw strikes of mantis
shrimp and the escape jumps of trap-jaw ants [2]. In animals, many of these
ultra-fast movements are spring-driven [3–6]. Springs can be used to overcome
power limits, particularly by animals small enough to benefit from the combination
of springs’ high power output with a small body mass [3]. Recent studies of spring-
driven systems illuminate the importance of conceptual frameworks and careful ter-
minology, replacing old concepts such as ‘power amplification’ [7] with new ones,
such as ‘latch-mediated spring actuation’ [4]. This new framework uses energy flow
through the elastic system to identify its parts (motor, latch, spring and actuated
mass) and processes (latching, loading and launching) [4,8,9]. Storage and release
of energy by springs have often been framed as a means to overcome limitations
imposed by muscles’ ability to produce power [7,10–12]. The new framework
acknowledges additional and alternative rationales for using springs, such as
energy efficiency, motion control, impedance matching between actuators and
load, and thermal robustness [3,4,7,8,13–16].

The mechanisms and energetics of ultra-fast movements have largely been
studied in animals; however, rapid predatory strikes are also used by many car-
nivorous plants. Can we apply the same principles and frameworks to plant
movements? Carnivorous plants differ from animal predators in fundamental
ways: (i) plants do not use muscles as motors [17], (ii) plants derive essential
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nutrients rather than energy from prey ([18], but see [19]),
and (iii) plants are modular organisms capable of continu-
ously growing and replacing functional organs. A modular
Bauplan not only relaxes the need for structural durability,
as plants can replace where animals need to repair, but it
also creates redundancy, which in turn facilitates the evol-
ution of specializations, i.e. subsets of organs with distinct
functions [20] as well as morphological plasticity—carnivor-
ous plants vary their biomass investment in traps in
response to nutrient and prey availability [21–24]. In animals
with their integrated Bauplan, such evolutionary innovation
[25] and plasticity are less common. Few animals vary their
morphology in response to prey availability or nutritional
status—for example, larvae of the salamander have two
different prey-induced morphs [26], and pythons absorb
energy-expensive digestive organs when they are not digest-
ing prey [27].

Owing to their stiff cells walls, plants cannot employ contrac-
tile proteins such as the muscle fibres of animals. Instead, most
plant movements (e.g. the opening and closing of stomata [28])
are powered by changes of hydrostatic pressure (turgor), driven
by energy-requiring water displacement processes between cells
and tissues [29]. Hydraulic actuation is rarely used by animal
predators [30,31]. While animal movements are generally limited
by muscle power output [32], the speed of hydraulic plant
movements is ultimately limited by the rate of fluid transport
across cell membranes [33]. Both animals and plants incorporate
the release of elastic energy to achieve movement speeds and
accelerations beyond these physiological limits.

Motile traps of carnivorous traps have traditionally been
classified as ‘active’ as opposed to ‘passive’ (non-motile)
traps. This terminology has been called into question [34],
because it lumps together multiple processes that contribute
to a prey capture event (such as prey attraction, capture,
retention and digestion), and because it confounds motion
with control and energetic investment. In this review, we dis-
tinguish three aspects of what has previously been subsumed
in the terms ‘active’ and ‘passive’: (i) motion, (ii) the conver-
sion of metabolic energy into movement and (iii) the relative
timing of energy conversion and motion. (i) We use ‘motile’
(versus ‘non-motile’) to refer to traps that move during
some part of the prey capture process. The proposed termi-
nology for traps complements established terminology for
plant movements more generally [35,36]. (ii) We use ‘intrin-
sic’ to denote that energy to trigger or power the motion is
supplied by the metabolism of the plant and ‘extrinsic’ if
the energy comes from other organisms or abiotic factors
(such as wind or gravity). Powering and/or triggering
motion extrinsically implies that the organism no longer
entirely controls the process. (iii) We use ‘synchronous’
when energy is directly converted into movement, and ‘asyn-
chronous’ when energy input and release are separated in
time. Asynchronous traps convert metabolic energy first
into potential energy, which is stored in elastic structures
and released as kinetic energy at a later point. In the follow-
ing, we will discuss how animal and plant predators differ in
using intrinsically versus extrinsically and synchronously
versus asynchronously powered mechanisms to trigger and
power motion-based capture events. We then present three
case studies of carnivorous plants with fast motile traps
that exemplify the usefulness of distinguishing along these
three axes of motion, energy and timing. These examples
also illustrate how animals versus carnivorous plants address
the biomechanical demands of being ambush predators. We
focus on prey capture and retention because these two pro-
cesses are at the heart of how ‘active’ versus ‘passive’ traps
have traditionally been defined.
2. Distinguishing animal and plant predators
along the axes of motion, energy and timing

Animal and plant predators may employ motile or non-
motile mechanisms to capture prey. Movements differ with
respect to the energy source (intrinsic versus extrinsic) and
timing (synchronous versus asynchronous). Non-motile
traps often employ adhesives or pitfall mechanisms.

(a) Motile, intrinsically powered, synchronous
Most animal predators power fast prey capture intrinsically
and synchronously—i.e. using muscle power directly. The
speed of such muscle-powered movements is ultimately lim-
ited by (i) the power output rate of the muscle which is
capped at approximately 300 W kg−1 and decreases as
contraction speed increases [32], (ii) the time available for
muscle contraction—by definition short in a fast movement—
and (iii) the available acceleration distance which decreases
with body size. This size effect is exacerbated by the fact that
in order to reach the same absolute speed, a smaller animal
will need to achieve higher relative speed, as expressed in
body lengths per time. Unsurprisingly, it is the very small
animal predators that power their strikes asynchronously.
This is a noteworthy difference to plants, because the speed
of hydraulic plant movements is limited by the poroelastic
time, i.e. the time it takes water to be transported across tissues,
resulting in an inverse relationship of speed and size [33,37].
Therefore, most fast plant movements are actuated asynchro-
nously. Intrinsically and synchronously powered, fast trap
movements have only been described in one carnivorous
plant species, Drosera glanduligera, a sundew with hydraulically
actuated, small ‘snapping’ tentacles that catapult prey into glue
traps. Yet, the snapping time of roughly 75 ms is considerably
longer than the theoretical poroelastic time of 16 ms [38]. The
synchronously powered hydraulic movements of numerous
other species of sundews (Drosera) and butterworts (Pinguicula)
are much slower. In these species, movement aids prey reten-
tion rather than initial capture which is effected by sticky
secretions [39–41]. Intrinsically and synchronously powered
fast movements are confined to larger animals, but tend to be
small scale in plants.

(b) Motile, intrinsically powered, asynchronous
Animals and plants alike use spring-driven systems to control
energy flow during prey capture events. Small animal
predators and carnivorous plants with fast motile traps
overwhelmingly use asynchronous capture mechanisms. Intrinsi-
cally powered muscle contractions or hydraulic forces gradually
load springs over time, converting metabolic energy into elastic
energy. This accumulated energy is released when prey triggers
the removal of a ‘latch’ [3,42]. Examples for spring-powered prey
capture devices are the claws of mantis shrimp and the traps of
the Venus flytrap [10,43]. In animals, both the loading of the
spring and the release of the latch require metabolic energy
[3,4]. By contrast, only two species of carnivorous plants (Dionaea
muscipula and Aldrovanda vesiculosa) are known to use



royalsocietypublish

3
intrinsically powered latches and rely on hydraulic processes
during all phases of the trapping movement [44,45]. The asyn-
chronous suction traps of bladderworts (Utricularia) are
intrinsically powered, but extrinsically triggered, using kinetic
energy provided by the prey. Across carnivorous plants, fast
trap motions rely on the asynchronous release of gradually
accumulated, intrinsically supplied elastic energy.
ing.org/journal/rspb
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(c) Motile, extrinsically powered, synchronous
This mode of motion actuation is currently only known from
plants. The pitcher plant Nepenthes gracilis lures prey to the
underside of its roof-like trap lid, thereby manoeuvring it
into an optimal position to exploit its potential (gravitational)
energy. The actual trapping motion, a high-frequency
vibration that dislodges the prey into the trap, is actuated
extrinsically by the kinetic energy of falling raindrops [46].
We already mentioned bladderworts, where the energy to trig-
ger the trap opening is provided extrinsically. Prey touch and
bend trigger hairs which in turn deform the trap door, causing
it to snap-buckle and open [47,48]. The reduction of metabolic
costs for the predator comes at the expense of motion control: a
predator that relies on extrinsic energy to power or trigger
prey capture movements forfeits control over the timing of
the capture event and over the energy transferred during the
event. Predators that retain control over their prey capture
do so at some energetic expense.
(d) Motile, extrinsically powered, asynchronous
Interestingly, this combination does not appear to be realized
in nature. Even though bladderworts use asynchronous
energy release to operate their suction traps, they first need
to set the trap by metabolically costly water pumping pro-
cesses. The externally powered triggering is a synchronous
process, where externally supplied kinetic energy is directly
used to unlatch the trap door. An asynchronous trapping
motion where the stored elastic energy is externally supplied
has not been described to date.
(e) Non-motile
Plant, animal and human predators also use non-motile
traps. We can distinguish three types of non-motile traps
based on their operating principle: glue traps, pitfall traps
and ‘eel traps’. Eel traps use unidirectional ‘valve’ gates to
funnel prey into a dead end. Because no movement is
involved, there are no energy requirements beyond the con-
struction and maintenance costs of the trap. Examples are
the ‘flypaper’ leaves of non-motile sundew species and Droso-
phyllum, the ‘eel traps’ of the corkscrew plant Genlisea, the
webs of orb spiders and the pitfall traps of ant lions and
pitcher plants. Many traditional traps used by human hun-
ters also exploit similar principles, e.g. the glue sticks and
mist nets used by bird hunters or the bow nets of fishermen.
Although not directly employing movement, non-motile
traps rely to some extent on extrinsic energy, usually the
kinematic and gravitational potential energy of prey.

By comparing animal and plant predators, we found
similarities and differences. Both use spring-loaded mechan-
isms because prey capture often requires extremely rapid
movements and high accelerations [2,3]. Whereas all but
the smallest animals power their motion synchronously,
plants rarely do. Only plants appear to use extrinsically
powered motion.
3. The trapping process and its energetics for
three motile traps

Using three examples, we illustrate the complexity of the prey
capture process focusing on the latch-mediated spring actua-
tion framework [4], which characterizes the energy flow
through a spring-driven mechanism, in our case a prey trap-
ping mechanism. Prey capture events can be viewed as a
three-step cyclic process: (i) setting of the trap by the gradual
conversion of metabolic energy into elastic energy, i.e. a
motor loading a spring, which is held by a latch, (ii) trigger-
ing of latch removal and energy release, and (iii) prey capture
effected by the rapid conversion of potential into kinetic
energy, i.e. trap movement. A return to step (i) resets the
trap so it can fire again.
(a) Example 1: intrinsically powered triggering and
motion in asynchronous snap traps

Motile snap traps (figure 1; electronic supplementary
material, table S1) are found in the Venus flytrap (D. musci-
pula) and in the waterwheel plant (A. vesiculosa), two sister
species within the Droseraceae [50]. Fast trap closure is
possible because of the rapid conversion of gradually
accumulated elastic energy into kinetic energy. Typically,
these traps catch a single prey per strike [48,51] and can
catch additional prey only after resetting. The traps are set
by mechanically pre-stressing the trap lobes [49,52,53].
Triggering begins with an electrophysiological signalling
cascade when mechanosensory trigger hairs on the inside
of the trap are bent [52,54]. In the Venus flytrap, this initiates
intrinsically powered turgor changes that cause the trap lobes
to deform, initially increasing the concavity of the lobes, until
they snap-buckle to become convex, thereby converting
mechanical pre-stress into rapid motion [53,55,56]. Both
lobes move independently of each other, which occasionally
results in asynchronous snapping events [57]. Hence, each
lobe of the Venus flytrap works as a separate motor, spring
and latch unit (figure 1).

By contrast, the traps of the waterwheel plant structurally
separate motor and spring. While the motor is still located in
the trap lobes, the spring is situated in the midrib between
them. Upon triggering, energetically costly turgor changes
in motor zones flanking the midrib [58–60] initiate the release
of pre-stress [49]. The midrib flexes downwards and the trap
shuts [61]. In contrast to the Venus flytrap, the lobes do not
change their curvature during this process, and their move-
ment is mechanically coupled via the midrib. As a result,
the trap forms a single kinematic element and the lobes
always move in synchrony [45].

After shutting, both traps further narrow and form a
tightly sealed ‘stomach’. The waterwheel plant achieves this
via hydraulics and the continued release of elastic energy
from the midrib, whereas the Venus flytrap uses metaboli-
cally powered hydraulic processes alone [49,58,62]. The
traps of both species can snap repeatedly and re-open by
means of energy-requiring growth processes [58,63]. In sum-
mary, snap traps convert energy during all steps of the
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trapping cycle: trap setting, triggering and latch removal, and
trapping movement.

(b) Example 2: extrinsic triggering of intrinsically
powered motion in asynchronous suction traps

The underwater suction traps of bladderworts (Utricularia)
(figure 2; electronic supplementary material, table S1) are
the fastest of all motile carnivorous plant traps [47,65]. Like
snap traps, they typically catch one prey item at a time and
can trap repeatedly [66]. Again, the ultra-fast trapping
motion results from the sudden release of stored elastic
energy [8], but without additional intrinsic energetic costs
for triggering. The trap has two kinematic elements, the
hollow ‘bladder’ with elastic lateral walls and the trapdoor
that seals the trap entrance. Both elements need to move as
a functional unit for successful prey capture [67].

As in snap traps, setting the trap is intrinsically powered.
Water is continually pumped out of the trap lumen [68], lead-
ing to a sub-ambient hydrostatic pressure of up to 0.14 bar
inside the trap [69–71]. The pumping mechanism (i.e. the
motor) is not yet fully understood but appears to rely on
respiration-driven, energy-consuming counter-transport of
ions and water [69,70,72]. As the sub-ambient pressure
inside the trap builds up, the lateral walls (i.e. the springs)
bulge inwards, accumulating elastic energy (figure 2a,e).
Owing to its dome-shaped geometry, the trapdoor resists the
sub-ambient pressure and keeps the trap sealed [47]. Trap
opening is triggered purely mechanically when prey touch
the stiff trigger hairs on the outside of the trapdoor, causing
it to deform and buckle inwards [39,47,64]. Water is sucked
into the trap lumen at extreme accelerations [8,47,64,73], caus-
ing the trap walls to buckle outwards. The trapdoor swings
back elastically and closes via reverse snap-buckling, and the
trapping cycle starts anew [67]. Bladderwort traps can also
fire spontaneously [47,74] via intrinsic actuation (the door
buckles under the trap’s pressure); however, this extraordinary
behaviour is not yet fully understood either mechanistically or
in terms of its ecological relevance. So, in contrast to snap
traps, where prey triggers an intrinsically powered signalling
cascade, the triggering and latch removal in bladderworts
is extrinsically actuated by the prey: the trigger hairs act as
mechanical levers that locally bend the door and initiate
buckling. Hence, the loading of the bladderwort trap is an
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energy-requiring process [74], but the ultra-fast suction occurs
without further energy investment and control opportunity
for the plant.

(c) Example 3: extrinsically powered triggering and
motion in springboard-pitfall traps

The tropical slender pitcher plant (N. gracilis) is currently the
only known carnivorous plant that uses an external energy
source to actuate a fast trapping motion [46,75] (figure 3; elec-
tronic supplementary material, table S1). The kinetic energy
of falling raindrops is directly transferred into trap move-
ment. The construction costs of the trap are the only
investment by the plant, which are low in comparison to
photosynthetically active leaves, and similar to the cost of
growing non-motile pitfall traps in other species [76].
A common feature of Nepenthes pitcher traps is a canopy-
like lid which protects the trap against flooding by rain. In
N. gracilis, this lid is adapted to work as an impact-powered
torsion spring, flicking insects into the pitcher during tropical
downpours. This unusual trapping mechanism is based on
the combination of three structural adaptations [75]: (i) the
lid itself is stiff, but the tissue between pitcher and lid
bends easily; (ii) epicuticular wax crystals on the lower lid
surface reduce the attachment forces of insects; yet the surface
provides sufficient grip for insects in the absence of pertur-
bations; and (iii) the lid is oriented horizontally and
positioned closely above the trap opening, maximizing the
chance that dislodged insects fall into the pitcher. Together,
these adaptations enable N. gracilis to exploit the impact
force of large raindrops as a power source to drive a fast
trapping movement. Neither physiological motors nor
trigger-dependent latches are required, and the movement
itself is a completely passive mechanical response to an exter-
nal impact. In close analogy to the prey capture mechanism
of N. gracilis, splash-cup plants (e.g. Chrysosplenium sp. and
Mazus sp.) exploit raindrop impacts to disperse their seeds
from the bottom of specially adapted cup-shaped flower
structures [77], whereas other plants exploit raindrops,
wind or passing-by animals to actuate small elastically
deformable catapults for diaspore dispersal [78].
4. Control over movement comes at the cost of
additional energy requirements

Energetic investment in motile trapping mechanisms varies
considerably between carnivorous taxa. Why do we not see
extrinsically powered trapping motions more widely? The
reason could be that relying on extrinsic power means less
control over the trapping process. The springboard lid of
N. gracilis is actuated by a falling raindrop. As such, the
trap action is not only out of the plant’s control, but also inde-
pendent of the presence of prey. The high frequency and
erratic occurrence of rainstorms in the tropical habitats of
N. gracilis may increase the odds for successful capture, but
the only direct influence that the plant can exert is an
increased investment in nectar secretion in order to attract
more prey to the underside of the lid [46]. Nevertheless, the
plant cannot control if visitors will be present during a
drop impact. It should be noted that N. gracilis, like all
other pitcher plants, possesses additional non-motile trap-
ping mechanisms based on slippery surfaces lining the trap
mouth and interior [79,80]. The motion-based lid trapping
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mechanism is a supplementary strategy, unlike those of other
carnivorous taxa like Aldrovanda, Dionaea and Utricularia that
depend exclusively on motile traps.

At the other end of the spectrum, the snapping mechan-
isms of the Venus flytrap and the waterwheel plant involve
multiple intrinsically powered hydraulic processes: (i) latch
removal, entailing the release of initially stored pre-stress;
(ii) rapid snapping; and (iii) slow final closure of the trap,
each providing an opportunity for the plant to fine-tune
trap function. Because the setting of the trap, latch removal
and initial motion actuation are intrinsically powered, the
plant can control all of these processes. This is evident in
the famous ability of the Venus flytrap to ‘count’: at least
two instances of trigger hair bending within a restricted
time frame are needed to overcome an electrophysiological
threshold and initiate the signalling cascade that leads to a
snapping event. By integrating multiple successive mechano-
sensory signals over time, Venus flytraps minimize the risk of
‘dryfiring’ a trap when there is no prey [52,81–83]. After
snapping, continued stimulation is needed to induce the
(intrinsically powered) formation of a tightly sealed ‘stomach’
[43,84]. In the absence of further action potentials, the traps
soon reopen.

This high level of control not only helps to avoid false
triggering and unnecessary initiation of costly digestion pro-
cesses after unsuccessful trapping attempts, but also allows
the plant to respond to physiological and environmental
stresses and demands. Water-stressed Venus flytraps
reduce their sensitivity to mechanical stimulation, presum-
ably because the digestion process is strongly water
dependent [85]. Environmental factors may also pose con-
straints on intrinsic movement control. Aldrovanda traps
show a reduced snapping speed in response to lower
water temperature [49,58]. The traps’ temperature sensitivity
is caused by the hydraulically powered aspects of the trap
movement: the elastic response of the midrib is the same
in both temperature regimes. This temperature insensitivity
of elastically powered processes is consistent with obser-
vations in animal predators [14] and indicates a relatively
big influence of hydraulics on the overall motion perform-
ance in Aldrovanda.

Bladderworts employ extrinsically powered triggering.
Thereby, they forgo the adjustability of their trap response,
but still ensure that the trap is activated in the presence of
prey. Aquatic Utricularia are unlikely to experience water
stress and might not need to restrict the responsiveness of
their traps. However, the traps of non-aquatic bladderworts
(e.g. terrestrials, epiphytes) are not constantly surrounded by
water and, therefore, may become short-circuited by the aspira-
tion of air bubbles. Several physiological, structural and
mechanical features of the trapdoor region have been inter-
preted as countermeasures to this risk, e.g. appendages that
might hold a water reservoir in front of the trap mouth [86,87].
5. How costly are physiological processes?
The universal limitation of biological processes by available
energy, in the ‘currency’ of ATP, is a major evolutionary
driver and has shaped organisms, including their sensory
and motor control systems [88]. This limitation is somewhat
relaxed in green plants that can photosynthesize carbo-
hydrates to ‘fuel’ their physiological processes. Carnivorous
plants predominantly colonize sun-exposed, permanently
wet habitats such as bogs, tropical cloud forests and aquatic
habitats, where energy conservation might not be under
strong selective pressure. Indeed, carnivorous plants have
been shown to be nutrient- rather than energy-limited [89].
In order to understand the costs and benefits of different
motile mechanisms, we need to quantify and compare
energy consumption and nutrient uptake rates. Does the
investment of carbohydrates in attractive nectar in N. gracilis
match the costs of electrophysiological signalling in D. musci-
pula or the constant running of the ‘water pump’ in
Utricularia? What is the pay-off of different trapping mechan-
isms? The prey-triggered action of snap traps and suction
bladders increases the success rate of the individual ‘strike’
but comes at the cost of an inactive resetting phase. By contrast,
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the opportunisticN. gracilis pitcher can trap continually, as long
as rainfall persists [75]. Snap traps typically catch one prey item
at a time, but can capture exceptionally large individuals
[51,90]. The traps remain tightly sealed during prey digestion
and can therefore not trap further prey during this period
[58,91]. The bladders of Utricularia typically also trap individ-
ual prey, but in contrast with snap traps, they reset quickly
after prey capture, and further prey can be caught while diges-
tion is ongoing [66]. The springboard trap of N. gracilis can not
only catch multiple insects in a single strike, but the slippery
surfaces of the pitfall trap may trap further prey at the same
time. As in all pitfall traps, prey accumulates and is digested
continually in the fluid pool at the bottom of the pitcher.
Proc.R.Soc.B
288:20210771
6. Complexity and diversity of trapping systems
The examples above highlight the varying levels of energy
investment in movement as well as the diversity of realized
actuation mechanisms. When looking at the entirety of carni-
vorous plant traps (electronic supplementary material,
table S1), an additional level of complexity becomes apparent
because movement is regularly employed alongside other,
non-motile mechanisms such as pitfall, glue or eel trapping
[39]. We already saw that N. gracilis combines the
movement-based, but extrinsically actuated lid trapping
mechanism [46] with the use of non-motile, slippery pitfall
traps akin to those of other Nepenthes species, Sarraceniaceae,
Cephalotus follicularis and carnivorous Bromeliads. Several
species of sundews, e.g. D. glanduligera, employ fast-moving
‘catapulting’ snap tentacles in combination with sticky ‘flypa-
per’ secretions to capture prey [38]. In D. glanduligera, fast
tentacle movement is irreversible while the (slower) tentacles
of several other species are capable of resetting and snapping
repeatedly [36]. Moreover, movement is employed not only for
the act of trapping itself, but may also help to secure and
digest already captured prey, as in the slow-moving ‘flypaper’
leaves of motile sundews (Drosera) and butterworts (Pingui-
cula) that engulf captured insects in digestive mucus, or it
may kill the prey, as in the crushing ‘stomachs’ formed by Dio-
naea and Aldrovanda [36,39,91]. Hence, different species use
combinations of motile and non-motile structures as well as
intrinsically or extrinsically powered processes to catch,
retain and kill their prey.

The astonishing diversity of trap functions and mechan-
isms makes carnivorous plants ideal candidates for the
study of plant movement. Especially traps with ‘outlier’ func-
tions, i.e. those that differ from the status quo of their
congeners, can provide valuable insights into the underlying
mechanisms of movement. Comparison of lid kinematics,
surface texture, and experimental trapping success between
N. gracilis and a closely related non-motile pitfall trapping
species, Nepenthes rafflesiana, revealed the key adaptations
underlying the lid spring mechanism [75]. By comparing
snap tentacles with other, slow-moving Drosera tentacles,
we may unravel the morphological and physiological adap-
tations that enable fast tentacle movement [38,92]. Equally,
comparing resettable versus ‘single use’ snap tentacles may
elucidate trade-offs between movement speed and durability
of trapping structures. Within the bladderworts, Utricularia
multifida might be such an insight-providing outlier, because
its traps did not show any firing events, or any water pump-
ing activity in laboratory studies [86,93]. Hence, it is
speculated that this species possesses non-motile eel traps
similar to closely related corkscrew plants (Genlisea) [94].
7. Conclusion and outlook
Using three examples, we highlighted the diversity of motion
amplification and control strategies in motile carnivorous
plant traps. We discussed the multitier investment of meta-
bolic energy to power individual capture events in the
context of frameworks for animal movement. The traditional
distinction of ‘active’ versus ‘passive’ carnivorous plant traps
(sensu [39]) obscured this functional diversity and failed to
capture the underlying trade-off between structural and
metabolic investment on the one hand, and control over the
trapping process on the other [95,96] (electronic supplementary
material, table S1).

The similarities between fast animal and plant motions
are striking: both organismal groups employ ‘mechanical
tricks’ in the form of springs to overcome innate limitations
of muscles or hydraulics. Although not discussed here, the
same holds true for fast fungal movement, e.g. in the context
of spore discharge [97,98]. Comparative cross-kingdom ana-
lyses of the functional principles and resilience of the
various mechanisms as well as their evolutionary pathways
and ecological significances constitute important aspects for
future studies.
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