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Silvy Lachance,4,5,10 Sébastien Lemieux,1,2,9,10,* and Claude Perreault1,4,5,10,11,*
1Institute for Research in
Immunology and Cancer
(IRIC), Université de
Montréal, Montreal, Quebec
H3C 3J7, Canada

2Department of Computer
Science and Research
Operations, Université de
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SUMMARY

Based on analyses of TCR sequences from over 1,000 individuals, we report that
the TCR repertoire is composed of two ontogenically and functionally distinct
types of TCRs. Their production is regulated by variations in thymic output and
terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived
from TDT-negative progenitors persist throughout life, are highly shared among
subjects, and are reported as disease-associated. Thus, 10%–30% of most
frequent cord blood TCRs are associated with common pathogens and autoanti-
gens. TDT-dependent TCRs present distinct structural features and are less
shared among subjects. TDT-dependent TCRs are produced in maximal numbers
during infancy when thymic output and TDT activity reach a summit, are more
abundant in subjects with AIRE mutations, and seem to play a dominant role in
graft-versus-host disease. Factors decreasing thymic output (age,male sex) nega-
tively impact TCR diversity. Males compensate for their lower repertoire diver-
sity via hyperexpansion of selected TCR clonotypes.

INTRODUCTION

Jawed vertebrates absolutely need a diversified TCR repertoire because classic abT cells must respondwith

exquisite specificity to an enormous diversity of ligands (Mittelbrunn and Kroemer, 2021). TCR diversity is

generated by somatic recombination of V(D)J gene segments and is further increased postnatally by nucle-

otide insertion mediated by terminal deoxynucleotidyl transferase (TDT). Notably, neonatal thymocytes,

which derive from fetal hematopoietic stem cells, do not express TDT (Rudd, 2020). TDT expression reaches

maximal expression in humans between 10 and 40 months (mo) of age, and then decreases progressively

during adolescence and adulthood (Deibel et al., 1983; Pahwa et al., 1981). Recent estimates of the potential

number of TCRs produced by V(D)J recombination range from 1015 (Mayer et al., 2019) to 1061 (deGreef

et al., 2020), which vastly outnumbers the number of distinct TCRs present in a human body. Indeed, the

adult human body contains approximately 4 3 1011T cells (Jenkins et al., 2010) composed of about 1010

TCR clonotypes of various sizes (deGreef et al., 2020; Lythe et al., 2016). Initially, T cell repertoires have

been presumed to be almost entirely private, and the occurrence of the same TCR in two unrelated individ-

uals was attributed to coincidence. However, with the development of high-throughput TCR sequencing

and state-of-the-art analytical algorithms, it became clear that interindividual sharing of TCR clonotypes

wasmore common than expected (Pogorelyy et al., 2017; Sethna et al., 2019; Soto et al., 2020). Furthermore,

some public cloneswere found to persist through an individual’s life (Chu et al., 2019; Pogorelyy et al., 2017).

Still, the extent of interindividual sharing of TCR clonotypes is not precisely known (Johnson et al., 2021).

Which factors influence TCR diversity? At face value, the reduced thymic output associated with aging and

male sex (Clave et al., 2018) should impinge on TCR diversity. However, in contrast to mice, humans can

compensate for a reduction of thymic output via minimal adjustments in homeostatic T cell proliferation

(Goronzy and Weyand, 2019). Hence, the relation between thymic output and TCR diversity may not be

linear. Nonetheless, analyses of TCR sequences in large cohorts have revealed a negative impact of aging

on TCR diversity, while the effect of sex remains questionable (DeWitt et al., 2018; Krishna et al., 2020).

Furthermore, there is an agreement that HLA polymorphism (i.e., heterozygosity for divergent alleles) posi-

tively correlates with TCR diversity and that some pathogens (e.g., CMV) can influence the composition of

the TCR repertoire (DeWitt et al., 2018; Krishna et al., 2020).
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Figure 1. The physical characteristics of public CDR3s

(A–E) Public CDR3s are defined as seen in at least two people in the cohort, while superpublic CDR3s are seen in at least half of the cohort. Number of unique

(B) V and (C) J genes encoding individual public CDR3aa. Relationship between the number of unique V and J genes shown by 2D histogram in

(D) superpublic and (E) public CDR3aa.

(F) Histplot showing convergent recombination of CDR3 nucleotide sequences in public CDR3aa: highly shared CDR3aa are coded by multiple synonymous

nucleotides sequences.

(G) Intra-individual V gene usage diversity for two superpublic CDR3aa sequences, sorted by intra-individual entropy: CASSLAGDEQFF and

CASSLGGNQETQYF.

(H) CDR3aa sharing and number of mismatches to the annotated germline.

(I) Relation between the predicted recombination frequency and CDR3aa cohort sharing percentage.

(J) CDR3aa length binned by CDR3aa cohort sharing percentage.
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In this study, we analyzed the physical properties of CDR3 beta sequences in seven cohorts of individuals

and their implication in immune responses against pathogens, autoantigens, and alloantigens. We found

stark differences between male and female TCR repertoires, where males maintain a lower diversity but

high clonality (i.e., highly abundant TCR clonotypes). In comparison, female repertoires have a higher di-

versity of CDR3 at low clonal frequencies. A salient finding was the identification of two non-redundant

CDR3 repertoire layers based on physical characteristics, including length, number of insertions, and V/J

gene usage. The neonatal layer constitutes the entire TCR repertoire of cord blood, while the TDT-depen-

dent layer appears later in life. Unexpectedly, the cord blood TCR repertoire contains mainly public CDR3s

that are associated with common pathogens.
RESULTS

Physical characteristics of public and superpublic CDR3s

We defined as public a CDR3aa (CDR3 amino acid sequence) seen in at least two individuals, while a super-

public CDR3aa is present in at least half of the subjects. For our first experiment, we used the Britanova

cohort (Figure 1A), consisting of 79 healthy volunteers aged from 0 to 100 (see STAR Methods). We found

2,862,268 public and 15,088 superpublic CDR3aa, of which 21 were ubiquitous (present in all samples) (Fig-

ure 1A). To define the physical properties of public and superpublic CDR3aa, we first analyzed their V and J

gene usage by grouping the CDR3aa sequences by the annotated V or J gene identity. As expected (De-

Simone et al., 2018), while each unique CDR3aa sequence was encoded by mostly 1 or 2 J genes, many V

genes can contribute to the sameCDR3aa sequence. At the population level, we observed an average of 26

different V genes per public CDR3aa sequence (Figures 1B and 1C). For both public and superpublic

CDR3aas, sequences encoded by a higher diversity of J genes were also encoded by numerous V genes

(Figures 1D and 1E). In single individuals, up to eight different V genes could contribute to the same

CDR3aa (Figure 1G). Finally, as previously reported (Gil et al., 2020; Madi et al., 2014; Venturi et al.,

2008), we confirmed a positive correlation between the extent of CDR3aa sharing and the number of

different nucleotide sequences encoding each CDR3aa (Figure 1F). This positive correlation points toward

a trend of convergent recombination for public and superpublic CDR3aa (Quigley et al., 2010). We then

used the software IgBLAST (Ye et al., 2013) to obtain the number of mismatched (i.e., not germline) nucle-

otides in each CDR3aa sequence in the Britanova cohort (see STAR Methods). We found that sequences

shared by more individuals were also sequences with fewer mismatches (Figure 1H). This is consistent

with the idea that non-templated nucleotide addition is a random process, and therefore each nucleotide

mismatch lowers the likelihood of sequence sharing (Marcou et al., 2018; Sethna et al., 2019). Using the

OLGA software (see STAR Methods), we calculated the probability of a CDR3 nucleotide sequence being

generated during V(D)J recombination for individual CDR3aa sequences. We confirmed a positive corre-

lation between sequence publicness and recombination probability (Figure 1I). Finally, public sequences

were shorter than private ones (Figure 1J), presumably because non-templated nucleotide addition

lengthens the sequence (Marcou et al., 2018; Sethna et al., 2019).
CDR3aa sharing patterns change with age

Analysis of the Britanova cohort revealed a tight correlation between the extent of CDR3aa sharing among

subjects and the frequency of the corresponding clonotypes in individual subjects. Superpublic CDR3aa

were coded by high-frequency TCR clonotypes, and the most superpublic CDR3aa were found at

higher-than-expected cumulative frequencies (Figure 2A). We calculated pairwise repertoire overlap dis-

tance between individuals based on the Jaccard index (see STAR Methods). Using this distance, we per-

formed hierarchical clustering (Figures S1A and S1B) and found that individuals clustered by age and
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Figure 2. CDR3 sharing between individuals as a function of age

(A) Cumulative log10 frequency of CDR3 binned by cohort sharing percentage. The red dotted line indicates the expected frequency given the number of

individuals in each sharing bin.
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Figure 2. Continued

(B) Hierarchical clustering of individual repertoires based on pairwise Jaccard distance. Dendrogram leaves representing individuals are colored by sex, age

group, and the number of distinct CDR3aa found in individual repertoires.

(C and D) Boxplots show the distribution of the number of distinct public CDR3aa found in individuals and the age of individuals in each of the four clusters

from Figure 2B.

(E) The median number of mismatches to the germline found in CDR3aa of individuals by age group.

(F) The average number of mismatches to the germline found in CDR3aa of individuals grouped by CDR3aa frequency in each repertoire. Colors represent

various age groups.

(G) Aging correlates with an accumulation of high-frequency clonotypes with a high recombination frequency (as determined by OLGA score).

(H) Mean loglikelihood of fit for CDR3aa found in age groups in abscissa for models trained on age groups in ordinate. Each row represents a model trained

on the age group, and each column represents the test CDR3aa; each cell contains the mean loglikelihood of fit for a Gaussian mixture model (see STAR

Methods).

(I) The proportion of public CDR3aa in different age groups.

(J) Summed clonality of public CDR3aa in various age groups.

See also Figures S1 and S2.
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repertoire diversity (Figure 2B), especially when looking at superpublic CDR3-sharing patterns. Indeed,

upon splitting the dendrogram of superpublic CDR3s into four clusters (Figure 2B), we found that individ-

uals in the different clusters had different repertoire sizes and age distribution (Figures 2C and 2D). Clusters

#2 and #4 showed maximum divergence: individuals in cluster #2 had an average of 0.6 3 106 different

CDR3 sequences and a mean age of 40, against only 0.1 3 106 sequences and a mean age of 93 in cluster

#4 (Figures 2C and 2D). We wondered whether variations in TDT activity with age (Bonati et al., 1992; Deibel

et al., 1983; Pahwa et al., 1981) could impact on repertoire sharing. When we aligned each CDR3 to the

germline from the reference genome and counted the number of mismatches (see STAR Methods), we

found that, indeed, cord blood CDR3s (TDT-negative) contained fewer mismatches than samples from

other age groups (Figure 2E). Finally, when we grouped CDR3aa by descending order of frequency (see

STAR Methods), we found that the most frequent CDR3aa displayed fewer mismatches than those with

lower frequency, most distinctively in cord blood (Figure 2F).

Further clone size analyses showed that as individuals age, they accumulate in their repertoires more very

high-frequency CDR3aa (at frequencies above 0.0001 of total repertoire), which have a recombination fre-

quency in the higher ranges (above 10�10) (Figure 2G). Moreover, a low clonal frequency for high recombi-

nation frequency sequences could be partly due to undersampling in the repertoire (Sethna et al., 2019)

since only a certain amount of CDR3s are sequences. We used a two-step strategy to evaluate the relation-

ship between clonality and the probability of recombination at different ages. We fitted a Gaussian mixture

model for each age group, and then we calculated the loglikelihood of data from other age groups under

this model (see STAR Methods). We found that models fitted on repertoires of younger individuals did not

fit with data from older individuals. However, since models fitted on older individuals had a similar likeli-

hood for all age groups, we concluded that older repertoires retain characteristics of younger repertoires

and outgrow them with time (Figure 2H). What distinguishes older repertoires from younger ones is a large

quantity of high-frequency (presumably hyperexpanded) CDR3aa with a high recombination probability

(Figures 2G and 2H).

For individual samples in the Britanova cohort, the proportion of public CDR3aa was maximum in cord

blood, dropped abruptly in children, and increased progressively with age after that (Figure 2I). As a result,

the proportion of public CDR3aa in subjectsR65 years of age was similar to that in cord blood. The pro-

gressive increase in the fraction of public CDR3aa from childhood to old age was even more conspicuous

when considering the clonality of each CDR3aa (see STAR Methods, the section on CDR3 sharing): almost

70% of repertoires in individuals R65 years of age were composed of public CDR3aa (Figure 2J). Though

cord blood and samples from subjectsR65 years of age contained similar proportions of public CDR3aa

(Figure 2I), their clonality was very different (Figure 2J). Cord blood cells had a more uniformly distributed

repertoire of public CDR3aa, without the hyperexpanded clones present in subjectsR65 (Figures 2I and

2J). We validated our observation in two additional cohorts. In the Emerson cohort, containing TCR-Seq

data from 666 healthy individuals (Emerson et al., 2017), we could split individuals by CMV status. We found

that an age-related skew in public fraction can be observed in CMV+ and CMV– subjects (Figures S2A–

S2D). The Thome cohort is smaller but contains TCR-Seq data from deceased donors’ spleen and lymph

nodes rather than blood (Thome et al., 2016). T cells were sorted by naive or effector memory phenotype

in this study; we, therefore, analyzed those categories separately. We found the same trend of sharing by

age group for the naive T cells (Figures S2E and S2F) but not for the effector memory T (TEM) cells in
iScience 25, 104968, September 16, 2022 5
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secondary lymphoid organs (Figures S2G and S2H). The latter divergence warrants further investigation but

must be considered preliminary because it is based on analyses of a small cohort of deceased donors.

These results indicate that as individuals age, their repertoire becomes preferentially populated by clones

with high recombination frequencies. A high recombination frequency is likely instrumental in the abun-

dance of highly public clones. Another possible explanation could be a preferential expansion of these

T cells due to homeostatic proliferation (Murray et al., 2003) or immune activation.
The impact of sex on the TCR repertoire

Aside from age, male sex is the factor with the most negative impact on thymic output (Clave et al., 2018).

Therefore, we analyzed the potential influence of sex on CDR3 repertoire diversity and publicness by

grouping individuals into broader age groups to maintain adequate comparison numbers between cate-

gories (Figure S3A). Overall, we found that males had fewer CDR3aa in their repertoires than females: this

was the case for public (Figure 3A) and superpublic CDR3aa (Figure 3B). When we examined repertoire
6 iScience 25, 104968, September 16, 2022
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Figure 4. Cord blood samples contain pathology-annotated CDR3s

(A) Heatmap shows, for subjects of the Britanova cohort, the frequency of CDR3aa listed in the McPAS microbial pathogens dataset (Tickotsky et al., 2017).

Rows represent individuals, columns unique CDR3aa, and cell color indicates CDR3aa clone size. Row dendrogram leaves are colored by age group.
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Figure 4. Continued

(B) Age distribution for individuals in three individual (Y axis) clusters from (A).

(C) Boxplot showing CDR3 lengths for CDR3 in the five X axis clusters from (A).

(D) Boxplot showing predicted recombination frequency for CDR3 in five X axis clusters from (B).

(E) Line and barplots show the percentage CDR3aa associated with autoantigens (Tickotsky et al., 2017), or pathogens (Tickotsky et al., 2017) in individual

cord blood samples from the Britanova cohort, by varying top N most frequent CDR3aa.

See also Figure S4 and S5.
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diversity using Shannon entropy, we found that repertoires of females were more diverse than those of

males (Figures 3C and 3D). Accordingly, small-size CDR3aa clonotypes represented 70% of the repertoire

in females and 50% in males (Figures 3G and 3H). In contrast, hyperexpanded CDR3 clonotypes constituted

30% of repertoire in males and 10% in females. Differences between males and females were present in all

age groups and always reached statistical significance in subjects aged 2–45 but not in other groups

(Figures 3A–3D). These results highlight a prominent sexual dimorphism in the TCR repertoire and suggest

that it results from differences in thymic output. Female repertoires are more diverse, and males present a

lower measured repertoire diversity with hyperexpansion of selected TCR clonotypes.

Sharing of disease-specific CDR3s in different age groups

Next, we downloaded and explored the McPAS database, a manually curated catalog of pathology-asso-

ciated TCR sequences (Tickotsky et al., 2017) to assess sharing in the context of pathology-specific TCR

sequences. We found minimal overlap (0.1%–3%) between TCRs in two McPAS categories: microbial path-

ogens and autoimmune diseases (Figure S4A). To gain further insight into disease-related CDR3s, we took

CDR3aa listed in theMcPASmicrobial pathogens dataset and analyzed their frequency in subjects from the

Britanova cohort (Figure 4A). The hierarchical clustering dendrogram was separated into three clusters for

individuals (I1 to I3) and five clusters for CDR3aa (C1 to C5). Age had a dramatic influence on both dimen-

sions of this orthogonal clustering. Among clusters for individuals, cluster I2 was composed solely of cord

blood samples, whereas individuals in clusters I1 and I3 had a mean age of 82 and 26 years of age, respec-

tively (Figure 4B). The CDR3aa-based clustering adopted the following pattern: i) CDR3aa in cluster C1

were present almost exclusively in cord blood, ii) those in cluster C2 were present in few individuals without

any clear pattern, and iii) CDR3aa in clusters C4 and C5 were present in young individuals (cord blood and

<45 years.o.) (Figure 4A). Cluster C3 was remarkable in that it contained the most highly shared CDR3aa;

they were found at high frequency in cord blood and lower frequency in almost all other individuals.

CDR3aa in cluster C3 were shorter and displayed a greater recombination frequency than CDR3aa in the

four other clusters (Figures 4C and 4D). Observations on microbial pathogens-related CDR3aas were

replicated in autoimmune disease-associated CDR3aa (Figures S4B–S4E). First, cord blood (cluster I1 in

Figure S4B) contained more autoimmunity-associated CDR3aa. Second, the most highly shared CDR3aa

(cluster C1 in Figure S4B) were shorter and displayed a greater recombination frequency than CDR3aa in

the four other clusters.

The key finding was that a large portion of the most frequent CDR3aas found in cord blood was disease-

related CDR3aas. To evaluate this, for each top N CDR3aa by frequency, we calculated the percentage of

those CDR3aas that matched disease-related CDR3aas in bothMcPAS CDR3aa sets. Indeed, 10% to 30% of

most frequent CDR3aa in individual cord blood samples (Britanova cohort) were associated with known

pathogens and autoantigens (Figure 4E). Since the Britanova cohort only contains CDR3 beta sequences,

without CDR3 alpha or HLA, this result is likely an overestimation but can still be used to compare between

age groups and individuals. In some cord blood samples, the summed proportions of CDR3aa associated

with autoantigens and pathogens were superior to 50% (Figure 4E). We conclude that all individuals have

many disease-reacting clones at a high frequency in their repertoires before birth. Are disease-related

CDR3s present in older subjects? To address this question, we first filtered out low-confidence clonotypes

(Figure S5A), i.e. clonotypes with a frequency below the detection limit (0.00001 of repertoire), as done for

Figure 4A. Then, we compared percentages of overlaps before and after the frequency filter (Figure S5B).

We found that only cord blood repertoires contained a high percentage of pathogen- and autoantigen-

specific CDR3aas present at high frequencies, compared to other age groups (Figure S5B). We then sorted

the clonotypes by decreasing frequency and found that cord blood but not repertoires of other age groups

contained pathogen and autoantigen-associated CDR3aas among their most frequent clonotypes

(Figures S5C and S5D). We validated that this was specific to pathogen and autoantigen-associated

CDR3 by repeating the same comparison for a randomly sampled set of unrelated CDR3aas (Figure S5E).

Two points can be made from this analysis. First, in cord blood, disease-related CDR3aa are enriched in
8 iScience 25, 104968, September 16, 2022



Figure 5. CDR3aa profile in subjects with AIRE mutations

(A–C) Boxplots showing, for the regulatory (Treg) and conventionalT cell (Tconv) compartments, (A) the public fraction, (B)

the recombination frequency, and (C) the number of mismatches in subjects with AIRE mutations vs. controls.

(D) Boxplots show the CDR3aa length distribution in the Sng cohort. (*p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney-

Wilcoxon).
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high-frequency clonotypes. Second, the remarkable representation of disease-related CDR3aa in the ‘‘pre-

immune’’ repertoire of cord blood is lost in older individuals.

Our data support the notion that TCRs generated during fetal life can persist (or be continuously gener-

ated) for decades in adults (Pogorelyy et al., 2017). More importantly, they show that most of these TCRs

participate in a wide variety of immune responses in adult life. Globally, our data presented so far suggest

the existence of two types of CDR3: the superpublic ones, shared by many individuals and present before

birth, and the private repertoire, dependent on TDT modifications. For the remainder of the study, we will

refer to these two types of TCRs as neonatal and TDT-dependent.
Negative selection targets TDT-dependent TCRs

Irrespective of their TCR type, neonatal or TDT-dependent, T cells are subjected to intrathymic positive and

negative selection. Mutations in the AIRE protein are known to be associated with perturbations in negative

selection and thereby causing autoimmunity (Liston et al., 2003). We, therefore, analyzed the CDR3s of the

Sng cohort, which contains subjects with AIRE mutations and healthy controls (Sng et al., 2019). We found

that CDR3aa repertoires of AIRE-mutated individuals had a lower public fraction than healthy repertoires

(Figure 5A), with a lower recombination frequency (Figure 5B), a higher number of mismatches per CDR3aa

(Figure 5C) for both regulatory and conventional T cell compartments, and longer CDR3aas (Figure 5D). These

results point toward enrichment in TDT-dependent CDR3s in repertoires of AIRE-mutated individuals, which in

turn suggests that thymocytes with TDT-dependent TCRs are prime subjects of negative selection.
Effect of the TCR repertoire on graft-versus-host disease

To further evaluate the potential impact of the two types of TCRs, we reasoned that the best strategy would

be to use a model in which the readout depends exclusively on T cells. Acute graft-versus-host disease

(aGVHD) following allogeneic hematopoietic cell transplantation (AHCT) represents such a model. Indeed,

donor T cells, particularly the CD4+ subset, are necessary and sufficient for the occurrence of aGVHD (Ni
iScience 25, 104968, September 16, 2022 9
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Figure 6. CDR3aa in CD4 T cells from aGVHD+ and aGVHD- AHCT donors
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Figure 6. Continued

(A–C) Inverse Simpson diversity index of CDR3 repertoires found in aGVHD+ and aGVHD-grafts. Treemaps showing CDR3aa diversity and clone sizes for two

representative donors (B) aGVHD+ and (C) aGVHD-, colors selected at random for better visual distinction.

(D–J) CDR3aa length distribution in aGVHD+ and aGVHD-donors. Kaplan-Meier curves representing aGVHD onset for grafts split into two groups bymedian

or quantiles according to (E) CDR3 length, (F) overlap with cord blood CDR3aa, (G) recombination frequency, and (H) Simpson diversity index. CoxPHmodels

calculating hazard ratios for (I) clinical characteristics and (J) CDR3 repertoire of the donor. (*p < 0.05, **p < 0.01, ***p < 0.001).
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et al., 2017; Socié and Blazar, 2009). They initiate aGVHD via recognition of host alloantigens (Martin et al.,

2017; Vincent et al., 2011). Therefore, we analyzed TCRs in purified CD4+T cells from 73 AHCT donors. Do-

nors and recipients were HLA-matched siblings. The T cells were obtained from the peripheral blood of

donors on the day of transplantation and submitted to RNA sequencing. To extract CDR3 sequences

from RNA sequencing reads, we used the MIXCR software (Bolotin et al., 2015; Li et al., 2017). We classified

donors as aGVHD + or aGVHD–, depending on whether their recipient presented or not severe aGVHD

(see STAR Methods). Notably, aGVHD + donors had lower CDR3 diversity than aGVHD– grafts (Figure 6A).

We used a treemap to display both diversity and clone size in two representative donors. Treemaps offer a

visual representation of diversity at a glance, and we used these plots to compare two representative ex-

amples of aGVHD– and aGVHD + donor repertoires. In the aGVHD + donor, three hyperexpanded clones

occupied almost 1/3 of the repertoire (Figure 6B), while the aGVHD– donor did not have this skew (Fig-

ure 6C). The CDR3aa in aGVHD + grafts were longer (Figure 6D), had a lower recombination frequency,

and more numerous mismatches than CDR3aa in aGVHD donors (Figures S5F and S5G). We then split

the cohort by the median or quartiles and generated Kaplan-Meier curves to assess the impact of CDR3

features on the occurrence of aGVHD (Figures 6E–6H and S6). Overall, grafts containing a higher propor-

tion of CDR3 with neonatal features caused less aGVHD. These features were: CDR3 length in amino acids

(Figure 6E), percentage overlap with cord blood samples (Figure 6F), recombination frequency (Figure 6G),

and Simpson diversity index (Figure 6H).

Finally,weusedCoxproportional hazards (CoxPH)models toevaluatemoreaccurately the impactof clinical and

CDR3 features on the risk of aGVHD. For the clinical characteristics model, the sole significant correlation was a

higher rate of aGVHD in male recipients of female grafts (Figure 6I). These results are concordant with previous

reports (Kim et al., 2016). For the CDR3model, we found that a shorter CDR3 length, a high number of neonatal

CDR3, and a high averageCDR3 recombination frequency decreased the risk of aGVHD (Figure 6J).Other char-

acteristics and clinical traits such as donor age and CMV status had no significant impact (Figures 6I and 6J).

Collectively, these results strongly suggest that donors with a higher proportion of neonatal TCRs cause less

aGVHD and that aGVHD is initiated primarily by TDT-dependent TCRs.
A stratified model of the TCR repertoire

Our final goal was to evaluate the importance of discrete features in defining neonatal and TDT-dependent

TCRs. Our reasoning was based on two assumptions. First, we assumed that cord blood samples contained

exclusively neonatal TCRs while all other age groups contained a mix of neonatal and TDT-dependent

TCRs. Second, since thymic output and TDT activity reach their zenith during childhood, we postulated

that children would generate the greatest diversity of TDT-dependent TCRs. Therefore, to get a pure

and diversified population of TDT-dependent CDR3s, we selected CDR3s present in children but not in

cord blood. We then confirmed that, compared to neonatal CDR3s, the TDT-dependent CDR3s were

longer (Figure 7A), had more mismatches, and a lower recombination probability (Figures 7B and 7C).

Notably, they also displayed a different V and J gene usage (Figures 7D and 7E).

On this dataset, we trained a logistic regression model and random forest to verify if the nonlinearity of the

model could have an impact on the performance. Using all the five features (recombination frequency, #

mismatches, CDR3 length, V gene, and J gene), we performed an ablation study by obtaining all possible

combinations of presence/absence, totaling 31 combinations of features (Figure 7F). We trained the two

models on the dataset for each combination and evaluated their performance on a held-out CDR3 reper-

toire of each type (the entire individual’s repertoire). The performance of each model on the held-out data

is represented as a single column, where black squares symbolize the absence and white squares the pres-

ence of a feature, and the performance squares are colored by the percentage of accuracy of classification

(Figure 7F). The CDR3 length was crucial to the model; without the CDR3 length, the model’s performance

was close to the baseline of 60%, which is the proportion of neonatal CDR3s in the dataset. Adding the

length improves classification accuracy by about 10% for all conditions. Numbers of mismatches and V/J
iScience 25, 104968, September 16, 2022 11



Figure 7. Features of neonatal vs. TDT-dependent TCRs

(A–C) Boxplots depict (A) the CDR3aa length, (B) the median number of mismatches to the germline, and (C) the median log10 recombination frequency of

the TDT-dependent and neonatal strata.

(D and E) J gene and (E) V gene usage frequencies for CDR3aa in TDT-dependent and neonatal strata.

(F) Feature ablation study showing classification accuracy on held-out data for each feature combination. Black/white squares signal exclusion/inclusion of

features in the dataset, and the color scheme shows classification performance.

(G) Coefficients of the linear model fitted on feature ablation study (see STAR Methods). (*p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney-Wilcoxon).
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gene usage had a more modest effect on the performance, with an accuracy gain of about 5% each. More-

over, V and J gene usage was non-redundant and having both yielded better performance than only having

one or the other for both models. The inclusion of the recombination frequency did not impact the perfor-

mance, most likely because it is largely redundant with CDR3 length (Figure S7A).

Finally, to validate the order of importance of the features, we fit a linear regressionmodel on the presence/

absence of features (see STAR Methods). This allowed for the direct comparison of the relative importance
12 iScience 25, 104968, September 16, 2022
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of the features based on the coefficients assigned to each feature (Figure 7G). We found the following

importance hierarchy: length > (# mismatches, V/J gene usage) > probability of recombination (Figure 7G).

Consistency between the logistic regression and the random forest models suggests that these features

robustly discriminate between neonatal and TDT-dependent TCRs. We then used the trained model to

classify each CDR3 in the cohort and found that, as expected, there is a considerable dip in the proportion

of neonatal TCRs after birth (Figure S7B). Then, from infancy to adulthood, there is a progressive increase in

the proportion of neonatal clonotypes (Figure S7B), possibly because of their reactivity to common path-

ogens (Figure 4). Afterward, the proportion of neonatal CDR3 remains relatively stable with a slight trend

downward with advancing age (Figure S7B).
DISCUSSION

This report analyzed the amino acid sequence of over 100 million TCR CDR3 beta chains from over 1,000

subjects. Since both TCR chains contribute to antigen specificity, we would have wished to extend our an-

alyses to CDR3aa alpha/beta pairs obtained through single-cell studies (Pauken et al., 2022). However,

there is no available dataset that contains paired CDR3 alpha and beta chains from large human cohorts.

Indeed, because of methodological constraints inherent to single-cell approaches, paired CDR3 alpha and

beta chain sequencing has been limited to small numbers of subjects, typically 1 to 15 (Fischer et al., 2020;

Pauken et al., 2022; Tanno et al., 2020). Focusing on CDR3 amino acid sequences instead of nucleotides and

V/J gene usage allowed us to uncover more numerous public and superpublic CDR3aa than anticipated,

since this analysis considers synonymous codons. In a way, our analysis examines the functional features

of TCRs, which are determined by their amino acid sequence. Of note, some unconventional T cell subsets

such as NK T, MAIT, and CD1-restricted cells have invariant TCRs (Godfrey et al., 2010, 2019), which are

probably included in the public and superpublic CDR3aa subsets. However, TCRs from CD4+ and

CD8+T cells certainly comprise the bulk of our analyzed TCRs. Indeed, unconventional T cell subsets typi-

cally have very low frequencies in peripheral blood (e.g., 0.01%–1.18% PBMC for NK T cells, compared to

26%–48% for CD4+T cells (Autissier et al., 2010; Bernin et al., 2016)).

We found stark differences between male and female repertoires, as well as age-specific and disease-spe-

cific repertoire features. Age and sex are associated with important differences in immune responses to

pathogens and self-antigens (Brodin and Davis, 2017; Liston et al., 2016). Thymic involution is instrumental

in decreasing immunocompetence with age and represents amajor public health issue, as illustrated by the

COVID pandemic (Mittelbrunn and Kroemer, 2021; Palmer et al., 2018; Yousefzadeh et al., 2021). Aside

from age, male sex is the factor with the most negative impact on thymic output (Palmer et al., 2018).

We report that both aging and male sex are associated with decreased TCR diversity and hyperexpansion

of public clonotypes. Female TCR repertoires are more diverse, and males compensate for their lower

repertoire diversity via hyperexpansion of selected TCR clonotypes. These data argue for a strong mech-

anistic link between thymic output and TCR diversity.

Analyses of cord blood samples were particularly instructive. In the absence of TDT, TCRs produced before

birth have short CDR3s, few mismatches (relative to germline sequences), and a biased V/J gene usage.

These neonatal TCRs persist (or are continuously replenished) throughout life, are highly shared among

subjects, and are likely polyreactive to self and microbial HLA-associated peptides. Three factors likely

contribute to the large clone size and extensive sharing of neonatal TCRs over a lifetime. First, they have

a high recombination frequency; in other words, they are easy to assemble during V(D)J recombination.

Second, their reactivity to self-antigens should theoretically favor their positive selection in the thymus

and their homeostatic proliferation in the periphery (Ernst et al., 1999; Hogquist and Jameson, 2014). Third,

our analyses of subjects with AIRE mutations revealed that neonatal TCRs were less affected by negative

selection in the thymus than TDT-dependent TCRs. Thus, neonatal TCRs may integrate all the‘‘Goldilocks’’

conditions for intrathymic selection and survival in the periphery. Notably, polyreactivity to self-antigens

could also favor the commitment of thymocytes bearing neonatal TCRs toward either the regulatory or

alternative T cell lineages (Sood et al., 2021; Vrisekoop et al., 2014). This possibility should be explored

in future studies.

While both TCR chains as well as the MHC molecule contribute to antigen specificity, in practice, most an-

alyses of the T cell repertoire have focused on CDR3 beta, mainly for two reasons. Firstly, the sequencing of

CDR3 beta is more robust than that of CDR3 alpha (Barennes et al., 2020). Secondly, CDR3 beta is the main

contributor to TCR antigen specificity (Springer et al., 2020,2021). Accordingly, though the prediction of
iScience 25, 104968, September 16, 2022 13
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antigen specificity is improved by paired CDR3 alpha/beta sequencing, predictions based only on CDR3

beta perform well (Fischer et al., 2020).Furthermore, analyses of CDR3 alpha and beta chain pairing in close

to 1 million clonotypes from 15 individuals (Tanno et al., 2020) support our main conclusions: shared

CDR3aa are relatively short with few TDT-dependent additions (Tanno et al., 2020).

The effect of the HLA genotype on the repertoire of CDR3 beta sequences is detectable (Khosravi-Maharlooei

et al., 2019; Tanno et al., 2020) but remains relatively small (Emerson et al., 2017; Heikkilä et al., 2021; Pogorelyy

et al., 2018; Springer et al., 2021). This is explained at least in part by the fact that most MHC-associated pep-

tides can bind tomultiple HLA alleles. Consistent with our results, studies inmice revealed that themost highly

shared TCRs among mice with different MHC genotypes have shorter CDR3 sequences (Lu et al., 2019). In

contrast, a single TCR has been shown to be capable to bind with as many as million different antigens (Bent-

zen et al., 2018; Natarajan and Krogsgaard, 2018; Wooldridge et al., 2012; Zhang et al., 2018). Therefore, while

our analysis only includes beta chains and therefore overestimates polyreactivity, we found it remarkable that

10%–30% of most frequent CDR3s in cord blood samples were associated with known pathogens or autoan-

tigens (Figure 4E). This means that humans are born with a TCR repertoire that can have a lifelong influence on

their response to pathogens and the risk of autoimmunity. From an evolutionary perspective, the size of human

populations has been limited by the rate of infant mortality. Hence, it would seem convenient to be born with a

polyreactive T cell repertoire responsive to common pathogens.

In contrast to neonatal TCRs, TDT-dependent TCRs are longer, less shared, contain more mismatches, and

display a different V/J gene profile. Their production is maximal during infancy, when thymic output and

TDT activity reach a summit, and slowly decreases after that. We found that TDT-dependent TCRs were

more abundant in subjects with AIRE mutations. This suggests that negative selection preferentially elim-

inates TDT-dependent TCRs. The ultimate role of TDT remains unclear. By ultimate role, we mean the

evolutionary selected biological advantage conferred by TDT. In mice, deletion of TDT does not increase

susceptibility to pathogens or the incidence of autoimmunity but decreases the breadth of antiviral re-

sponses (Haeryfar et al., 2008; Kedzierska et al., 2008). However, for the immune system, evolutionary

convergence toward a higher diversity is thought to be a protection mechanism to get ahead of the

arms race with pathogens (Liston et al., 2021). Therefore, a plausible hypothesis is that the presence of

TDT-dependent TCRs confers an additional, more ‘‘private’’ layer of security against the emergence of an-

tigen-loss variants.

aGVHD is a harbinger of chronic GVHD and has remained the nemesis of patients and physicians during the

entire history of AHCT, partly because its occurrence is unpredictable. Our aGVHD cohort was composed

of HLA-matched siblings. In this situation, aGVHD is caused by donor T cells that react against host minor

histocompatibility antigens (Vincent et al., 2011; Warren et al., 2012). On the other hand, histoincompati-

bility does not always elicit fatal GVHD. Indeed, in patients that received AHCT from donors presenting

multiple disparities for minor histocompatibility antigens, only 73% developed aGVHD (Martin, 1991). It

has been hypothesized that some AHCT donors might be stronger alloresponders than others (Baron

et al., 2007). In our cohort of 73 donor-recipient pairs, the occurrence of severe aGVHD was strongly asso-

ciated with a low proportion of neonatal TCRs in the donor repertoire. Such a protective effect of neonatal

TCRs would explain reports that AHCT with cord blood rather than adult hematopoietic cells may be asso-

ciated with a lower risk of GVHD (Cohen et al., 2020). Moreover, while some studies report no relationship

between post-transplant diversity and GVHD occurrence (Buhler et al., 2020), our results on the diversity in

grafts (pre-transplant) are consistent with those of Yew and colleagues, who report that a lower TCR diver-

sity was correlated with GVHD occurrence and relapse, while a higher percentage of cord blood cells was

correlated with a higher repertoire diversity (Yew et al., 2015). If our observation is validated in further

studies, it will justify the preferential selection of AHCT donors with a high proportion of neonatal TCRs

in their peripheral blood.

Together, our data support an emergingmodel in which the T cell repertoire is composed of two strata with

differential reactivity to self and non-self antigens: public neonatal TCRs and private TDT-dependent TCRs.

This model is remarkably coherent with insightful theoretical predictions by Vrisekoop and colleagues who

labeled the two strata the ‘‘somatic’’ repertoire and the ‘‘ur’’-repertoire (Vrisekoop et al., 2014). Our model

is also consistent with functional studies demonstrating that neonatal T cells can no longer be considered

immature versions of adult cells. On the contrary, they are highly functional and respond rapidly to anti-

genic challenges (Davenport et al., 2020; Rudd, 2020).
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Limitations of the study

The main limitation of this study is that it was done using CDR3 beta chains only. While paired sequencing

technologies exist, they are still in their infancy and paired TCR cohorts of the sizes we analyzed are unfor-

tunately not accessible at this time. Another limitation of our study is that we only analyzed TCRs from circu-

lating T cells. We suspect that tissue-specific T cells will likely have a different CDR3 sharing across cohorts.

Finally, we included in our analysis curated sets of disease-associated CDR3s. Since both the CDR3 alpha

and beta chains as well asMHCmolecule play a role in the peptide recognition, our finding of disease-asso-

ciated TCRs is likely an overestimation, since in our study we do not have access to the individual’s HLA

haplotype or the alpha chain for each TCR.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CD4+ T cells: RNAseq data This study NCBI SRA: PRJNA832136

TCRseq from Emerson et al., (2017) AdaptiveBiotech https://clients.adaptivebiotech.com/pub/

emerson-2017-natgen

TCRseq from Thome et al., (2016) AdaptiveBiotech https://adaptivebiotech.com/pub/Farber-2016-SciImmunol

TCRSeq from Sng et al., (2019) AdaptiveBiotech https://clients.adaptivebiotech.com/

pub/sng-2019-sciimmunol

TCRSeq from (Britanova et al., 2016) Zenodo https://doi.org/10.5281/zenodo.826447

Pathology-associated TCR database Tickotsky et al., (2017) http://friedmanlab.weizmann.ac.il/McPAS-TCR/

Software and algorithms

MIXCR Bolotin et al., (2015) https://github.com/milaboratory/mixcr

OLGA Sethna et al., (2019) https://github.com/statbiophys/OLGA

IgBLAST (Ye et al., 2013) https://github.com/ncbi/igblast

Scipy.stats Scipy python package https://docs.scipy.org/doc/scipy/index.html

Scikit Learn Scikit learn python package https://scikit-learn.org/stable/

Squarify Squarify python package https://github.com/laserson/squarify

Survival Survival R package https://cran.r-project.org/web/packages/

survival/index.html

Lifelines Lifelines python package https://lifelines.readthedocs.io/en/latest/

Analysis code This study https://github.com/TrofimovAssya/

TCR_populationX_publication
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Claude Perreault (claude.perreault@umontreal.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

RNA-Seq data from the GVHD cohort has been deposited in the Sequence Read Archive and are publicly

available at BioSample accession PRJNA832136. DOIs are listed in the key resources table.

All original codes generated during this study are available in the form of python jupyter notebooks on Gi-

thub, at the address listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

GVHD cohort individuals

The Comité d’Éthique de la Recherche de l’Hôpital Maisonneuve-Rosemont approved the experiments

using human materials which are reported in the present study. The GVHD cohort included 73 healthy
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sibling-matched donors. Written informed consent was obtained from all patients or their legal guardians

before sample collection or hematopoietic stem cell transplantation. For each sample, peripheral blood

mononuclear cells (PBMC) were collected, and CD4 T cells were isolated by immunomagnetic positive se-

lection (EasySep Human CD4 positive selection kit; Stemcell Technologies). Sex and age for these individ-

uals can be found in the metadata corresponding to the RNA-Seq data available from the Sequence Read

Archive under accession number PRJNA832136.

METHOD DETAILS

TCR sequencing datasets

We downloaded TCR sequences and additional data from four non-overlapping cohorts: (Britanova et al.,

2016; Emerson et al., 2017; Sng et al., 2019; Thome et al., 2016). A total of 980 human subjects were included

in these cohorts, with 401 females and 517 males; the sex of 47 subjects was unknown. For further details on

numbers of sequences, see Figures S3A and S3B.

GVHD cohort individuals

RNA was extracted from purified CD4 T cells by Trizol-Column (PureLink RNA Mini kit; Thermo Fisher Sci-

entific). RNA was quantified by U.V. spectrophotometry (Tecan Infinite M1000), and quality was verified by

Bioanalyzer (Nano RNA Chip; Agilent). Whole transcriptome libraries were prepared with the Ion Torrent

Total RNA-Seq Kit v2 (Thermo Fisher Scientific) from 200 ng total poly-A enriched RNA (Dynabead

mRNA direct MicroKit; Ambion). Sequencing was done on an Ion P1 chip using the Thermo Fisher Ion Pro-

ton System to a minimum of 30M reads.

Isolating public and superpublic CDR3s

For each cohort, CDR3 beta amino acid sequences were pooled together and occurences in the cohort of

each individual sequence was counted. Public CDR3aa are defined as seen in at least two individuals in the

cohort, while superpublic CDR3aa are defined as seen in at least half of the individuals in the cohort.

Calculating public fraction by frequency and by sequence

For each individual, the public fraction (Figure 2I) is calculated as the fraction of the CDR3aa that overlaps

with the cohort’s public CDR3aa pool. The summed clonality (Figure 2J) is calculated by summing the clon-

ality (relative CDR3 frequency in the sample) of the CDR3aa overlapping with the cohort’s public CDR3aa

pool.

Disease-specific CDR3 sets

From the McPAS CDR3 datasets, we downloaded the McPAS database on 2021-08-12 (Tickotsky et al.,

2017). We included in our study CDR3beta amino acid sequences of human origin found in the two top cat-

egories of diseases: Pathogens and Autoimmune.

Isolating CDR3 from bulk RNA-Seq in silico

From each RNA-Seq donor sample from the GVHD cohort, we isolated CDR3 contigs using the MIXCR

software (Bolotin et al., 2015). Since the Ion Proton sequencing system generates variable-length reads,

we allowed for partial alignments and performed two passes of contig assembly. To rescue as many

CDR3s as possible, for incomplete TCR CDR3s, we allowed for extension via the V/J genes, since it has

been shown to introduce limited errors, because of the very conserved nature of TCRs on both ends

(pattern CASS—————EF) (Bolotin et al., 2015).

CDR3 sharing and repertoire overlaps

We calculated sharing of individual CDR3 sequences based solely on the amino acid sequence without

matching V/J genes and nucleotide sequences. This approach was selected to assess sharing of the final

protein product of CDR3s found in the body rather than to look at specific mRNA features.

Thus, for public fraction calculations based on unique CDR3aa sequences, we calculated the number of

public sequences in an individual’s repertoire and divided it by the total number of sequences in the reper-

toire (results of Figure 2I). To assess the clonality of public CDR3aa, we summed the clonal frequencies

attributed to individual public sequences (results of Figure 2J).
20 iScience 25, 104968, September 16, 2022



ll
OPEN ACCESS

iScience
Article
We use the Jaccard distance dJ(A,B) as a measure of dissimilarity between two CDR3 sets A and B:

dJðA;BÞ =
jAWBj � jAXBj

jAWBj
Here a value of 0 means exact overlap of the CDR3 sets, and 1 means no overlap.
Diversity measurements

We used the inverse Simpson clonality and Shannon entropy as diversity measurements. Inverse Simpson

diversity index is calculated by weighted arithmetic mean of each squared clone abundance (Simpson,

1949), and we implemented this as a function in python. Shannon entropy (Shannon, 1948) is calculated us-

ing the scipy.stats python package.
Recombination probability prediction

CDR3aa recombination probability was predicted using the OLGA software (Sethna et al., 2019). We down-

loaded the command-line tool commit version 4e0bc36 from the repository (https://github.com/

statbiophys/OLGA) and selected humanTRB as the alignment database for the predictions.
Number of mismatches

We used IgBLAST (Ye et al., 2013) to align each nucleotide sequence to the annotated germline V, D, and J

sequences to calculate the number of mismatches. We downloaded the package from the repository

(https://github.com/ncbi/igblast) commit version dfb98f8. We used the human database and specified

TCRs. We obtained the aligned sequence for each result and counted the number of mismatches between

the aligned sequence and the germline.
Gaussian mixture model

We used the Gaussian mixture model from the python GaussianMixture function from the sklearn library

to fit each Gaussian Mixture Model. We selected a 2 component Gaussian Mixture Model with a diag-

onal covariance type. We grouped individuals of the Britanova cohort by age group. For each age

group, we fitted a separate Gaussian Mixture Model on the recombination frequency and clonality quan-

tifications. Then, we evaluated the fit of this model in other age groups. This fit was calculated as a lo-

glikelihood of fit for the data to the pre-trained model. We then reported the average loglikelihood for

each age-group - model pair in the heatmap in Figure 2.
Hierarchical clustering

We used hierarchical clustering with an unweighted pair group method with arithmetic mean agglomera-

tive function for all hierarchical clustering experiments in this study. Visual assessment was used to split

each dendrogram into clusters manually. We used the clustermap function from the seaborn python library

to plot heatmaps and associated dendrograms.
Expected cumulative frequency

For each CDR3aa sequence, we calculated the sharing percentage and grouped sequences according to

the CDR3aa sharing bins. Then, we calculated for each CDR3aa the cumulative repertoire frequency by

summing frequencies of all CDR3aa in each bin across all individual repertoires. The average repertoire fre-

quency for each bin was 4.12 3 10�6G 1.2 3 10�6. To draw the expected cumulative frequency line, we

multiplied this overall frequency by the median number of individuals of each sharing bin. We reported

this value as the mean expected cumulative frequency (red dotted line on the plot).
Overlaps by top N most frequent CDR3

We ranked CDR3 in descending order of clonal frequency, and for a growingN, we selected the topNmost

frequent CDR3 in each repertoire. Then, we calculated the percentage overlap with the disease-specific

CDR3 set. Individual percentages were grouped by age group, and for each age group, the SD within

the age group is shown on each line plot.
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Treemap

We used the treemap function from the squarify python library. The package was given the CDR3 clonal

frequencies and a random color palette.
Survival model

We used the survival package in R for plotting the Kaplan-Meier plots and the lifelines packages in python

for the CoxPH model. For each Kaplan-Meier plot, we split the group by median as well as 25 and 75%

quantiles to attempt to find the best group separation for each CDR3 characteristic. All plots can be

seen in Figure S6 with associated statistical testing.

For theCoxPHmodels, we used the lifelines python library with the option for right-censored data. On each

plot, we reported the log (hazard ratios) as well as the bottom and top 95% confidence intervals.
Classification and regression models

The logistic regression and random forest models from the sklearn python library were used to classify

neonatal and TDT-dependent CDR3s in Figure 7. We used the default parameters for each model: respec-

tively, an L2 penalty with a regularization strength of 1 and the L-BFGS solver for the logistic regression and

100 estimators, a Gini impurity criterion, no max depth, and a minimum number of samples of 2 for the split

for the random forest classifier.

For the ablation study, each model received the selected combination of features and learned to classify

CDR3 into two classes: neonatal or TDT-dependent. During the dataset preparation, two repertories of

each type (cord blood and child) were held out. These repertoires comprised the test set of new data.

The performance of each iteration of the model given the combination of input features was reported in

Figure 7, with performances color-coded for visual comparison.

A linear regression model was trained to determine the relative importance of the features. We used the

LinearRegression function from the sklearn python library with the following default features: intercept

fitting was allowed, and negative coefficients were allowed. This model received as input a binary vector

of the presence/absence of the features and learned to predict the performance of either of the twomodels

(logistic regression or random forest) obtained previously for each feature combination. The coefficients

attributed to each binary feature presence/absence were used to compare relative importance. Coeffi-

cients close to zero meant there was little weight attributed to the model and vice versa. The ranking of

features was obtained by ordering the absolute values of the coefficients in descending order.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using Python v3.7.6 or R v4.0.4. All statistical tests used are

mentioned in the figure legends. Significance level (p < 0.05) results are marked with (*) in the figures.

Mann-Whitney U and One-way ANOVA tests were performed using the mannwhitneyu and ANOVA func-

tions respectively from scipy.stats python module and R. All boxes in boxplots show the first (25th percen-

tile) and third quartiles (75th percentile) and the median while the whiskers designate the minimum (first

quartile value – 1.5*interquartile range) and maximum (third quartile value +1.5*interquartile range).
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