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Abstract

An important aspect of disease gene mapping is replication, that is, a putative

finding in one group of individuals is confirmed in another set of individuals.

As it can happen by chance that individuals share an estimated disease posi-

tion, we developed a statistical approach to determine the p‐value for multiple

individuals or families to share a possibly small number of candidate sus-

ceptibility variants. Here, we focus on candidate variants for dominant traits

that have been obtained by our previously developed heterozygosity analysis,

and we are testing the sharing of candidate variants obtained for different

individuals. Our approach allows for multiple pathogenic variants in a gene to

contribute to disease, and for estimated disease variant positions to be im-

precise. Statistically, the method developed here falls into the category of

equivalence testing, where the classical null and alternative hypotheses of

homogeneity and heterogeneity are reversed. The null hypothesis situation is

created by permuting genomic locations of variants for one individual after

another. We applied our methodology to the ALSPAC data set of 1,927 whole‐
genome sequenced individuals, where some individuals carry a pathogenic

variant for the BRCA1 gene, but no two individuals carry the same variant.

Our shared genomic segment analysis found significant evidence for BRCA1

pathogenic variants within ±5 kb of a given DNA variant.
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1 | INTRODUCTION

Shared genomic segment (SGS) analysis refers to detecting
short segments of DNA shared by two or more individuals
more than expected by chance. The aim has often been to
estimate relatedness among individuals or to find genes
underlying a trait shared by these individuals. In one of the
earliest of such approaches, a rare autosomal recessive trait
was mapped to a segment on chromosome 18 on the basis

of four affected individuals (Houwen et al., 1994). More
recently, an SGS approach was developed for use in ex-
tended family pedigrees (Thomas, Camp, Farnham, Allen‐
Brady, & Cannon‐Albright, 2008). The aim was to find long
runs of loci at which affected individuals share a common
allele in the expectation that such runs harbor disease
susceptibility loci. For statistical significance, a long run in a
candidate region was compared with run lengths in the rest
of the genome. This approach was recently applied to
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multigenerational pedigrees with gastroschisis (Feldkamp
et al., 2019).

In a somewhat different approach, long runs of het-
erozygous variants (single nucleotide polymorphisms,
SNPs) were compared with expected lengths of such
runs, where distributions of expected run lengths were
obtained by computer simulation (Dimitromanolakis,
Paterson, & Sun, 2019). Analogous calculations were
carried for markers homozygous for the wild‐type allele.
The sharing of long runs of markers is then carried out
for all pairs of individuals.

Here, we focus on individuals affected by an inherited
dominant trait and use our previously developed hetero-
zygosity analysis (HA; Imai‐Okazaki et al., 2019) to generate
a relatively small number of candidate DNA variants for
each individual. Then we develop an approach to assess
statistical significance for the sharing of such candidate
variants among affected individuals as follows. The tradi-
tional approach to disease gene mapping, for example, by
linkage analysis, has been to initially assume homogeneity
among families (null hypothesis, H0: linkage with homo-
geneity) and search for high lod scores (Morton, 1955). A
subsequent analysis then tests for heterogeneity (alternative
hypothesis, H1: linkage with heterogeneity) to see whether
potential disease loci occur at different genomic locations in
different families (Morton, 1956). This concept is rather
counterintuitive for highly heterogeneous traits such as
psoriasis (Rendon & Schakel, 2019) and Charcot–Marie–
Tooth disease (Bird et al., 1983; Morena, Gupta, &
Hoyle, 2019), in which it is more natural to expect that high
lod scores would occur at multiple places in the genome,
and their occurrence in two or more families at the same
approximate genomic location is unexpected. Thus, we
propose an approach that reverses the traditional hypoth-
esis testing scenario. Assume that for each individual or
group of individuals like a family, a number of candidate
susceptibility variants have been obtained. We initially as-
sume that these variants can occur anywhere in the genome
(null hypothesis, H0: heterogeneity). Under this null hy-
pothesis, the fact that variants in multiple individuals occur
at approximately the same position is an unlikely occur-
rence; in fact, two such variants have an approximate
probability of only 5% to even occur on the same chromo-
some (Smith, 1953), and a much smaller probability to oc-
cur within, say, 50 kb of each other. This “surprise factor”
has previously been expressed in an ad hoc manner
(Rodelsperger et al., 2011; Sherman et al., 2008) but here we
develop a testing framework, where homogeneity is our
alternative hypothesis (H1).

This reversal of null and alternative hypotheses is
known as equivalence testing, where the name refers to
the fact that in testing the efficacy of a new drug it is
often desired to show that it is equal (equivalent) to an

existing drug. In human genetics, equivalence testing has
rarely been applied (Lin, 2002; Lin, Rogers, & Hsu, 2001;
Wellek & Schumann, 2004), but it has recently seen a
resurgence of interest (Lakens, 2017; Lakens, McLatchie,
Isager, Scheel, & Dienes, 2020). In our approach, we as-
sume a number of individuals affected with a genetic
trait, each being genotyped for a large number of DNA
variants. For each given individual, a suitable test statistic
generally identifies multiple candidate disease variants
and we are interested in finding disease variants that are
significantly shared by several individuals.

2 | ESTIMATING POSITIONS OF
CANDIDATE DOMINANT DISEASE
VARIANTS

In our approach, we focus on dominantly inherited dis-
ease variants and estimate their positions with a recently
developed method, HA (Imai‐Okazaki et al., 2019), but
the approach developed here is rather general. Briefly,
DNA variants in the vicinity of a rare dominant trait
variant tend to show a heterozygote excess (Klein
et al., 1998). In fact, if f is the minor population allele
frequency of a variant in the immediate vicinity of an
inherited dominant trait variant (population hetero-
zygosity = 2 f[1 – f]), then variants in the immediate vi-
cinity of the dominant trait variant tend to be
heterozygous with probability P(H) > 1 – f (Imai‐Okazaki
et al., 2019). Thus, the discrepancy in heterozygosity for
variants far from versus close to a dominant trait variant
is particularly striking for small f.

To accommodate variants with varying hetero-
zygosity, we work with a “window” of (2m+ 1) adjacent
variants, that is, we consider a given DNA variant and the
m variants on either side of it. Average heterozygosity, H,
is then computed as h/(g+ h), where g and h are numbers
of homozygous and heterozygous genotypes at the
(2m+ 1) variants, respectively. A suitable value ism= 50,
but our implementation of HA dynamically determines
optimal values of m (Imai‐Okazaki et al., 2019; PH pro-
gram, http://lab.rockefeller.edu/ott/programs). We slide
such a window of variants, one variant at a time, from
one end to the other of each chromosome. Thus, except
for m variants at chromosome ends, there are as many H
values as DNA variants.

As inherited dominant disease variants tend to be
surrounded by DNA variants with increased hetero-
zygosity, the next step is to determine, for each in-
dividual, runs of increasing heterozygosity up to a
maximum, Hmax, followed by variants with decreasing
heterozygosity. While the number of H values can be
several million, only a few dozen of such runs and
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associated Hmax values tend to emerge and known dis-
ease variants are generally found close to one of the Hmax

positions. Details are provided in our previous publica-
tion (Imai‐Okazaki et al., 2019). As outlined in the next
section, here we only work with Hmax values (however
many occur for an individual) and consider their posi-
tions as candidate disease variant locations for that
individual.

3 | SHARING GENOMIC
SEGMENTS

Consider a number N of individuals affected with a
dominantly inherited trait. We are interested in finding
candidate susceptibility variants for this trait. Specifically,
we want to find susceptibility variants that are shared
among a number Nf <N of individuals, where the ran-
dom probability of such sharing is small, p< .05. We start
out by creating, for each of the N individuals, a set of
positions, k, of Hmax values, which will be done with our
PH program implementing the HA algorithm. In our
experience, the number k of Hmax values per individual
tends to vary between 10 and 200, depending on the data
analyzed.

For each DNA variant in the genome, we determine
for each individual whether any of their k estimated
disease variant positions fall within a distance ±d kb
from the position of the DNA variant. If this happens for
two or more individuals, then these individuals are said
to share that segment of width 2d surrounding the given
DNA variant. We carry out such a determination for each
DNA variant, which results in a number Nf of individuals
sharing a given variant, where Nf is our test statistic. To
determine the random probability of sharing, we assume
as the null hypothesis that a given variant position for a
given individual can be anywhere in the genome. Thus,
for each individual separately, we randomly permute
positions of DNA variants and carry out the above pro-
cedure for these pseudo‐positions of DNA variants, with
each permutation resulting in a pseudo‐Nf value. The
p‐value associated with an observed number Nf is then
estimated by the proportion of pseudo‐Nf values greater
than or equal to the observed Nf value.

4 | PROOF OF CONCEPT:
POPULATION DATA

As a proof of concept, we applied our procedure to a
collection of individuals, the ALSPAC data set (Boyd
et al., 2013; Fraser et al., 2013) of 1,927 population in-
dividuals who had been whole‐genome sequenced

(ascertainment and study numbers are provided in Sup-
porting Information). The ALSPAC study website con-
tains details of all the data that are available through a
fully searchable data dictionary and variable search tool
(http://www.bristol.ac.uk/alspac/researchers/our-data/).

To keep the total number of variants (SNPs) to a
manageable level we focused on the 1,180,279 variants on
chromosome 17 and, specifically, on the BRCA1 gene on
this chromosome, but this number of variants is still
comparable to that obtained in whole‐exome sequencing
analysis. We removed monomorphic variants, which left
890,546 of the 1,180,278 variants. Then we removed
common variants with minor allele frequencies >0.05, a
common filtering practice (Rauch et al., 2015), which left
668,060 variants. The Clinvar database (https://www.
ncbi.nlm.nih.gov/clinvar/?term=BRCA1[gene]) listed
2,563 pathogenic variants in the BRCA1 gene, of which
2,563 variants had a known dbSNP identifier. Of these
variants, 14 occurred in the 1,927 ALSPAC individuals
and, of the 14, 11 were polymorphic. One of these pa-
thogenic variants had been removed owing to a high al-
lele frequency so that 10 rare pathogenic BRCA1 variants
remained (Table S1). No individual was homozygous for
the minor allele at any of these 10 rare variants, and
61 individuals were heterozygous at one of these variants
but never at more than one of these variants.

Initially, we carried out a standard case‐control asso-
ciation analysis assuming dominance of the minor allele for
each variant. The 61 carriers of rare pathogenic variants
were taken to be affected while the remaining 1,866 in-
dividuals were considered unaffected. This analysis was
carried out with the plink program version 1.9 (Chang
et al., 2015). Results (Tables S1 and S2) demonstrate that
only two of the 10 rare variants were significantly detected
by plink. This relatively low success rate reflects the extreme
heterogeneity of the pathogenic variants.

For our SGS analysis, we worked only with the
61 ALSPAC carriers of pathogenic BRCA1 variants while
the case‐control analysis referred to above also con-
sidered 1,866 control individuals. We removed the two
variants easily detected by plink and proceeded with the
remaining 668,058 chromosomes 17 variants and their
genotypes in the 61 individuals. The first step was to run
the PH program for each of the 61 carriers, that is, to
generate segments of increasing and decreasing H values
throughout chromosome 17, with each segment con-
taining a maximum H value, Hmax. Each individual
furnished from 9 to 17 Hmax values and associated
genomic positions for a total of 687 (average of 11.3)
segments and Hmax values in all 61 individuals. We de-
signated a variant in the middle of the BRCA1 gene to
represent the gene. It turned out that one of the segments
in each of the 61 carriers contained this BRCA1 variant.
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The segments of variants surrounding Hmax values
tended to be rather wide. The average width overall of
687 segments were 6.8 MB. Considering only those
61 segments containing that BRCA1 variant, the
average segment width was 8.0 MB. Also, there was
considerable overlap among segments. When the 687
segments were ordered by their start positions, any two
consecutive segments exhibited some degree of overlap.
That is, the segments appeared to be “smeared” over the
length of the whole chromosome. Thus, we did not
make further use of these segments and focused on the
687 Hmax values and their positions and considered
these as candidate disease variant positions.

We devised a shared genomic segment analysis as
follows. For each variant, we determined whether any of
the 687candidate disease variant positions were within
±d kb of the given variant position. We tried values of
d= 2, 5, 10, 20, 50, 100, 200, and 500 kb. For each d value,
we determined the empirical significance level that Nf or
more individuals shared the given variant (i.e., were
within d kb of the variant position). Under our null hy-
pothesis, variant positions can be anywhere in the gen-
ome, so for each variant separately, we randomly
permuted their genomic positions (Manly, 2007), which
was performed on the basis of 10,000 permutation sam-
ples, including the observed data, so that the smallest
possible significance level of 0.0001 should be interpreted
as <0.0001. This step was carried out with our shared
SNP program (http://lab.rockefeller.edu/ott/programs).
As Table 1 shows, significance levels depend much on the
distance d from a given DNA variant, within which Hmax

positions are captured. For example, for d= 100 kb, the
occurrence of Hmax positions in Nf = 5 or more in-
dividuals is significant with p= .0338 while fewer than
five Hmax positions occurring within ±100 kb may well
happen by chance (p> .0995). Clearly, there is a tradeoff
—more individuals can be captured with increasing d,
but there is also an increased number Nf of individuals
necessary for significance.

Of the total of 668,058 variants on chromosome 17,
only some of them were shared by two or more in-
dividuals within a distance d of the variants’ positions.
Clearly, the number of such “successful” variants very
much depends on the value of d (right‐most column of
Table 2).

An important question was now, which variants are
shared by a significant number Nf of individuals? For
example, for d= 100 kb, we found that 37,327 variants
are shared by 5 or more individuals (Table 2, right‐most
column), which represents a considerable reduction from
the total of 668,058 variants we started out with. As many
variants were within a short distance of each other, we
compiled the number of runs of variants shared by

significant numbers of individuals. For example, for
d= 50, we found 46 runs of variants shared by four or
more individuals (Table 2). This result is graphically
shown in Figure 1, where we defined a BRCA1 area as

TABLE 1 Significance levels associated with numbers Nf of
individuals within a distance d from a given variant

Significance level for values of d

N f 5 10 20 50 100 200 500

1 0.0907 0.1695 0.3093 0.5956 0.8296 0.9709 0.9999

2 0.0049 0.0152 0.0516 0.2279 0.5209 0.8604 0.9987

3 0.0001 0.0009 0.0049 0.0606 0.2548 0.6679 0.9924

4 0.0001 0.0001 0.0006 0.0128 0.0995 0.4484 0.9735

5 0.0001 0.0001 0.0001 0.0024 0.0338 0.2583 0.9296

6 0.0001 0.0001 0.0001 0.0004 0.0099 0.1333 0.8475

7 0.0001 0.0001 0.0001 0.0001 0.0031 0.0568 0.7308

8 0.0001 0.0001 0.0001 0.0001 0.0006 0.0238 0.5897

9 0.0001 0.0001 0.0001 0.0001 0.0002 0.0088 0.4360

10 0.0001 0.0001 0.0001 0.0001 0.0001 0.0021 0.2990

11 0.0001 0.0001 0.0001 0.0001 0.0001 0.0007 0.1903

12 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.1101

13 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0624

14 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0310

15 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0155

16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0064

Note: The bold values are the largest value of p < .05 for each value of d.

TABLE 2 Number of runs, Nr, of variants capturing a
significant (p< .05) number, N>Ncrit, of individuals, where Hmax

positions within ±d kb of a given variant are considered

d N r N crit L avg L 1 L 2 N var

2 7 3 0.076 – – 217

5 14 3 0.043 0.005 – 940

10 24 3 0.033 0.015 – 2,845

20 50 3 0.022 0.035 – 10,443

50 46 4 0.044 0.021 – 19,075

100 59 5 0.067 0.017 0.039 37,327

200 58 8 0.120 – – 34,236

500 17 14 0.275 – – 44,447

Note: L avg, average length of runs in kb. L1 and L2 are length(s) of runs
overlapping the BRCA1 area (there was usually only one such run). Nvar,
number of variants capturing a number of individuals, N>Ncrit, Ncrit is the
smallest number of families captured with p < .05, but we set a minimum,
Ncrit > 3.
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the DNA region comprising the BRCA1 gene with an
additional 1 MB extending at either end of the gene. For
d< 5 kb, no variants shared by three or more individuals
were in the BRCA1 region.

To summarize results for BRCA1, we started out with
668,058 variants on chromosome 17. Focusing on those
variants shared by a significant number of individuals, this
number was considerably reduced, for example, to 19,075 for
a segment of width 2d=100 kb surrounding variants shared
by four or more individuals (Table 2). A further reduction
was possible by focusing on runs of variants shared by 4 or
more individuals; for d=50 kb, there are only 46 such runs,
with one of them in the BRCA1 region (Figure 1). Thus, a
suitable strategy appears to be as follows: (a) For each in-
dividual or family, obtain a number of candidate variant
positions (Hmax values) with the PH program, possibly after
deleting variants that are monomorphic or too common, but
any approaches may be used at this step as long as they
provide candidate variants for individuals. (b) Run the shared
SNP program to identify variants shared by a significant
number of individuals, where the relevant d value is not too
large but large enough so that two or more individuals will
share multiple variants (Table 2). The exact d value does not
seem to be crucial but smaller d values will furnish fewer
candidate runs of Nf. (c) Run the sigruns program to find
runs of variants shared by significant numbers of individuals.
These programs have been written in Pascal and are avail-
able at http://lab.rockefeller.edu/ott/programs for Windows
and Linux.

At Step 1 above, one might consider using only the
highest‐ranked test statistics (here, Hmax values). In our ex-
perience with the BRCA1 data, the candidate variants closest
to the BRCA1 gene were never ranked highest and often
were in the bottom half of ranks within one individual. Thus,
using only top‐ranked candidate variants in each individual
will often miss the most important variants.

5 | DISCUSSION

As noted above, null hypothesis situations are created by
permuting variant genotypes over genomic locations for
one variant after another. Clearly, this destroys any
linkage disequilibrium (LD) structure. However, our ap-
proach does not appeal to LD and is designed to work
with one variant at a time. In this sense, the effects of LD
are not relevant to our approach.

A particular advantage of SGS analysis is that test
statistics (like Hmax values) do not need to be “strong” in
the sense that we are not using the values but only their
locations. It is the sharing of a segment of positions that
drives this analysis, whatever the individual shared va-
lues are. Conceivably, sizes of test statistics could some-
how be incorporated as weights in SGS analysis, but we
have not pursued this further as our current approach
appears highly promising.

The method developed here provides a list of candi-
date genomic regions that are expected to harbor disease
susceptibility variants. In this sense, it may be used as an
aid to support other analyses, for example, linkage ana-
lyses of family data. Here, we applied a specific approach
to find candidate variants for a dominant disease, but any
method that generates candidate disease variants would
be suitable for our SGS methodology. However, the de-
gree, extent, and pattern of sharing may depend on pe-
netrances and allele frequencies, so the performance of
our SGS approach may vary depending on these factors.

6 | SOFTWARE

Software (sharedSNP program, sigruns program) devel-
oped for our SGS analysis is freely available at http://lab.
rockefeller.edu/ott/programs. Here, these programs have

FIGURE 1 The graph shows the 46
runs of variants shared by N= 4 or more
individuals (y‐axis) within d= 50 kb of a
variant (see Table 2). Runs are numbered
consecutively, nr (x axis), with N= number
of individuals (y‐axis) in a given run. The
red bar (run 25) represents a run
containing a variant within the
BRCA1 area
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used output from the PH program, which is available
from the same website.

Software package PLINK version 1.9; authors: Shaun
Purcell, Christopher Chang. URL: www.cog-genomics.
org/plink/1.9/.
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