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Chasing genetic correlation 
breakers to stimulate population 
resilience to climate change
Jaroslav Klápště*, Emily J Telfer, Heidi S Dungey & Natalie J Graham

Global climate change introduces new combinations of environmental conditions, which is expected 
to increase stress on plants. This could affect many traits in multiple ways that are as yet unknown but 
will likely require the modification of existing genetic relationships among functional traits potentially 
involved in local adaptation. Theoretical evolutionary studies have determined that it is an advantage 
to have an excess of recombination events under heterogeneous environmental conditions. Our study, 
conducted on a population of radiata pine (Pinus radiata D. Don), was able to identify individuals 
that show high genetic recombination at genomic regions, which potentially include pleiotropic 
or collocating QTLs responsible for the studied traits, reaching a prediction accuracy of 0.80 in 
random cross-validation and 0.72 when whole family was removed from the training population and 
predicted. To identify these highly recombined individuals, a training population was constructed from 
correlation breakers, created through tandem selection of parents in the previous generation and 
their consequent mating. Although the correlation breakers showed lower observed heterogeneity 
possibly due to direct selection in both studied traits, the genomic regions with statistically significant 
differences in the linkage disequilibrium pattern showed higher level of heretozygosity, which has 
the effect of decomposing unfavourable genetic correlation. We propose undertaking selection 
of correlation breakers under current environmental conditions and using genomic predictions to 
increase the frequency of these ’recombined’ individuals in future plantations, ensuring the resilience 
of planted forests to changing climates. The increased frequency of such individuals will decrease the 
strength of the population-level genetic correlations among traits, increasing the opportunity for new 
trait combinations to be developed in the future.

Global climate change will likely introduce new combinations of environmental conditions into our forest sys-
tems, increasing the physiological stress affecting plants and affecting multiple traits in multiple ways. Coping 
with these ecological changes in the long-term may require the modification of the underlying genetic correla-
tion matrix among functional traits1. Genetic correlations are pairwise trait associations based on pleiotropic 
mutations2, and linkage disequilibrium (LD) (co-segregation of quantitative trait loci (QTLs))3. Pleiotropic 
mutations can be present at the allelic level (single causal variant contributes to multiple phenotypes) or at the 
gene level (multiple causal variants within a gene contributing to multiple phenotypes)2 and appear to be the 
primary cause of the genetic correlations observed among traits in populations under random mating4,5. Link-
age disequilibrium or a shared environment can also contribute to genetic correlations in a population under 
non-random mating with the presence of inbreeding6.

Genetic correlations represent evolutionary constraints that have developed over time, and their values and 
directions can vary according to differences in micro-evolutionary processes along environmental gradients1,7. 
Alternatively, high positive genetic correlations between functional traits provide a mean for their co-evolution8. 
Sgró and Hoffmann9 found changes in environmental conditions to be the cause of changes in the value and 
direction of genetic correlations in life history traits that were observed in samples from the same population, 
stressing the need to investigate genetic correlations among different sets of environmental conditions. Previous 
studies found substantial changes in genetic parameters when estimated in favourable versus stressful environ-
mental conditions10,11. Although the presence of high recombination through migration might be counteract-
ing local adaptation to the current environmental conditions12, theoretical evolutionary genetics studies have 
found the evolution of high recombination rates when selection targeted different loci under heterogeneous 
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environmental conditions13,14. Thus, high recombination rates are crucial in adaptation under rapidly changing 
environments.

Adverse genetic correlations constraining genetic improvement progress can similarly be found in breed-
ing populations15. In these circumstances, the undesirable genetic patterns between traits can be challenged by 
specific breeding (complementary mating) and/or selection procedures in order to select ’correlation breakers’ 
(individuals from the studied population that strongly deviate from the general trend between investigated 
traits) and eliminate the unfavourable trends15. One of the most critical adverse genetic correlation in forest trees 
is the relationship between tree productivity and wood density. This correlation is often strongly negative e.g. 
∼ − 0.5116. Additionally, both traits seem to be involved in adaptive processes. While productivity in terms of 
growth speed is considered a means to deal with competition for the sun light from surrounding plants17, wood 
density is related to resistance to drought stress, through thicker cell walls which prevent cell implosion due to 
higher negative pressure in the xylem pipelines or embolism18,19, and to wood stiffness20. Breaking this strongly 
negative genetic correlation could unlock the genetic potential of trees. Therefore, finding individuals with a 
much greater recombination rate than normal is strategy to explore the potential of this approach.

Unravelling the mechanisms underlying the observed phenotypic correlations among traits is one of the great-
est challenges in quantitative genetics15. A phenotypic correlation is the product of genetic and environmental 
correlations and their interplay21. Genetic correlations represent associations among the genetic causes of the 
traits investigated, which can be affected by many factors such as sampling error, environmental heterogeneity 
and developmental stage. Genetic correlations can also vary with the expression of different genes in different 
environments or developmental phases22. While genetic correlations reflect general trends in populations, they 
can also be modified by the selection of correlation breakers to shift the association between traits in a favour-
able direction15.

Current progress in next-generation sequencing has enabled the development of genomic resources for non-
model organisms and allowed the closer investigation of correlations among genotypes and phenotypes through 
association mapping23–25. Such analyses can be used effectively to select recombinants of known quantitative 
trait nucleotides (QTNs) to break adverse genetic correlations, especially in cases where genetic correlations are 
built-up through chromosomal linkages rather than pleiotropic effects26.

Genetic analyses investigating single-trait versus multi-trait models have found that multi-trait models were 
superior in the accuracy of estimated genetic parameters such as additive genetic variance, heritability and 
breeding values, particularly where there are significant genetic correlations between traits27,28. However, multi-
trait prediction models appear to be less advantageous when traits are uncorrelated, even proving inferior to 
single-trait models. Additionally, the multi-trait models are not useful for identifying individuals that break 
unfavourable genetic correlations27.

Our analysis investigates the genomic features of genetic correlation breakers and the ability to predict these 
types of individuals using genomics. We propose that genomics will allow us to select individuals with high level 
of recombination and that these individuals will have favourable combinations of traits that are otherwise nega-
tively correlated at the population level. We used a radiata pine (Pinus radiata D. Don) population established 
using tandem selection based on New Zealand’s nation-wide breeding values as a test case15. Using genomic data, 
we identified individuals that were correlation breakers for growth and wood density traits, and used genomic 
data to test for high levels of recombination in these individuals. We also investigated how recombination within 
the population described differs with a another reference population of the same species. With the knowledge 
that recombination and heterogeneity has been associated with genetic robustness14, we discuss the implica-
tions of our results on the potential to select for genotypes that will remain robust under future climate change.

Materials and methods
Plant material.  The New Zealand (NZ) Radiata Pine Breeding Company’s (RPBC) breeding population 
includes populations selected for either high wood density or growth and form attributes, using NZ nation-wide 
breeding values that reflect a common genetic effect across tested environments. The breeding program strategy 
proposed further developments are outlined in detail in previous studies29,30. Briefly, the program is based on 
an open nucleus breeding strategy with two independent sublines. The main population within each sublines is 
structured into different breeding goals such as growth and form, long internode, high wood density, structural 
timber, and tested as an open pollinated population. The elite population comprises genetically narrow material 
that is tested through control pollinated progenies, with or without vegetative propagation (clonal trials). Selec-
tion is usually performed on the basis of a ’growth and form’ (GF) score, which is an artificially created scale from 
7 (unimproved) to 30 (highly improved) representing weighted breeding values for growth and form attributes31.

The sample under study was composed of two populations: POP1 was used as the training population, and 
POP2GF was the population in which to predict individuals with excess recombination using a genomic predic-
tion model. All trials were clonal full-sib families and replicated among sites at Tarawera, Woodhill and Kinleith 
in the North Island of New Zealand. The POP1 population was established from parents chosen through two 
selection strategies. One was based on a tandem selection, where 19 parents were first selected for growth and 
form using GF scores followed by a second round of selection focused on high wood density (HD). This group 
(POP1HD) formed a population of 160 individuals termed ’correlation breakers’. The second selection strategy 
in POP1 was based purely on GF scores where 33 parents were selected to create POP1GF, consisting of 304 
individuals. POP1GF and POP1HD were established using a single-pair mating design which produced 33 
(POP1GF) and 19 (POP1HD) full-sib families. Both populations were planted at Tarawera using a single tree 
plot, set within replications design with six replications. Each family was represented by 10 genotypes and each 
genotype was tested in six copies.
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The POP2GF population, consisting of 523 individuals, was also selected based only on GF scores. POP2GF 
was established using a factorial mating design which produced 42 full-sib families from 24 parents. The POP2GF 
population was planted across two sites, Woodhill and Kinleith, using an incomplete block design with five 
replications and nine incomplete blocks (each representing six families) within each replication. Each family 
included 10 genotypes which were tested in five copies. There were two common parents between POP1GF and 
POP1HD, 12 common parents between POP1GF and POP2GF and one parent between POP1HD and POP2GF. 
Full trial details are reported in Li et al.32.

All 987 clonally replicated genotypes were measured for the traits branch cluster (BR9), using a 9 points scale 
from 1 (uninodal) to 9 (extreme multinodal)33, straightness (ST9), using a 9 points scale from 1 (crooked) to 
9 (very straight)34, diameter at breast height (DBH [cm]), and wood density (WD [ kg/m3 ]) measured as basic 
wood density through the maximum moisture content method35.

Genomic resources.  Genomic data were generated using a previously developed exome capture—genotyp-
ing by sequencing platform36 as described in Telfer et al.37. In brief, transcriptomic resources, that represented 
gene expression across broad range of tissues, including compression wood xylem, spring xylem, summer xylem, 
summer phloem, spring buds, autumn buds, healthy needles, needles infected by Phytophtora pluvialis, seedling 
phloem and seedling xylem37, were aligned to Pinus taeda reference genome v. 1.01e and used to develop 120 
base capture probes. Captured markers were removed if heterozygosity shown in megagametophyte tissues was 
higher than 5%, average read depth was less than 10, multiple alleles were detected, or only singletons were 
observed. Additionally, individual datapoints were classified as missing if the ratio between reference and alter-
native allele was lower than 0.1 and the number of read was less than 1038. The average read depth was 59.2 per 
marker and 59.04 per individual. Data were further filtered for minor allele frequency (MAF) > 0.01 and missing 
data were imputed with mean genotype. Total number of markers was 80,159 SNPs after filtering.

Genomic data analysis.  The analysis of linkage disequilibrium (LD) was based on composite LD correla-
tion ’r’ equivalent to the Pearson’s product-moment correlation coefficient between genotypes of investigated 
loci39. To reduce bias in estimation of LD due to familial structure, we implemented LD corrected for relatedness 
as proposed by Mangin et al.40 as follows:

w h e r e  
∑G

Xi ,Xj  i s  t h e  s a m p l e  v a r i a n c e - c o v a r i a n c e  m a t r i x  d e f i n e d  a s 
([X i ,X j

] −
(1N 1

T
NG

−1)

(1TNG
−11N )

[X i ,X j
])G−1([X i ,X j

] −
(1N 1

T
NG

−1)

(1TNG
−11N )

[X i ,X j
]) , where X i and X j are the vectors of genotypes 

for ith and jth marker, N is the sample size and G is the marker-based relationship matrix41. The analysis was 
performed using ’LDcorSV’ R package42. Additionally, the genomic differences between POP1HD (correlation 
breakers) and POP1GF populations were investigated through comparison of the mean observed and expected 
heterozygosity (approximating effective population size) using t test43. The 100 individuals randomly selected 
from each population were used to estimate the sample mean observed heterozygosity, which was performed 
100 times. The trend line of decay in LD was estimated using the Hill and Weir expectation44 as follows: 
E(r2) = [

10+C
(2+C)(11+C)] [1+

(3+C)(12+12C+C2)
n(2+C)(11+C) ] where n is sample size and C is the parameter to be estimated and 

represents the product of the population recombination parameter (C = 4Nc), where N is the effective population 
size and c the recombination rate. The nonlinear least squares were used to fit the data using ’nls’ R package45. 
The statistical significance in LD pattern difference between POP1GF and POP1HD in the training population 
was investigated through a Jennrich test46, testing the null hypothesis that the two correlation matrices are not 
different from each other. Only scaffolds with at least three overlapping markers between samples were included 
in this analysis.

Statistical analysis.  Phenotypic data were standardised for each trait at each site to avoid the problems 
associated with combining breeding values with different scales into a multi-trait selection index. The ’ASReml-
R’ package47 was used to estimate genetic parameters such as variance components, heritability, and genetic 
correlations. The multivariate linear mixed model was implemented in the POP1 populations (POP1HD and 
POP1GF) as follows:

where Y  is the matrix of measurements, β is the vector of fixed effects (intercept), a is the vector of genomic 
estimated breeding values following var(a)∼N(0,G1) where G1 is the variance-covariance structure for genomic 
estimated breeding values following
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product. The marker-based analysis was performed by substituting the pedigree-based relationship matrix A 
with the marker-based relationship matrix G , estimated following41:

where Z = M − P , where M is a matrix of genotypes coded 0, 1 and 2, indicating the number of alternative 
alleles in the genotype (relative to the loblolly pine (Pinus taeda) reference genome v. 1.01e49) , P is twice the 
alternative allele, g  is the vector of random non-additive genetic effects following var(g)∼N(0,G2), where G2 is 
the variance-covariance structure for non-additive genetic effects following

where σ 2
g1

 and σ 2
gn

 are non-additive genetic variances for the 1st and the nth trait, σg1gn and σgng1 are non-additive 
genetic covariances among the 1st and nth trait, I is the identity matrix, r is the vector of random replication 
effects following var(r)∼N(0,G3), where G3 is the variance-covariance structure for replication effects following

where σ 2
r1

 and σ 2
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 are replication variances for the 1st and the nth trait, σr1rn and σrnr1 are replication covariances 
between the 1st and the nth trait, s is the vector of random set effects nested within replicate effects following 
var(s)∼N(0,G4), where G4 is the variance-covariance structure for set nested within replication effects following

where σ 2
s1

 and σ 2
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 are set nested within replication variances for the 1st and the nth trait, σs1sn and σsns1 are set 
nested within replication covariances between the 1st and the nth trait, e is the vector of random residuals fol-
lowing var(e)∼N(0,R), where R is the variance-covariance structure for residual effects following

where σ 2
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 are residual variances for the 1st and the nth trait, σe1en and σene1 are residual covariances 
between the 1st and the nth trait, and X and Z are incidence matrices assigning fixed and random effects to 
measurements.

The multivariate linear mixed model was implemented in the POP2GF population as follows:

where b is the vector of random incomplete block effect following var(b)∼N(0,G5), where G5 is the variance-
covariance structure for incomplete block effects following

where σ 2
b1

 and σ 2
bn

 are incomplete block variances for the 1st and the nth trait, and σb1bn and σbnb1 are incomplete 
block covariances between the 1st and the nth trait.

Trait narrow-sense heritability was estimated as follows:
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where σaxay is the additive genetic covariance between trait x and y explained by genetic markers, and σ 2
ax

 and 
σ 2
ay

 are the additive genetic variances for trait x and y explained by markers. The standard errors of all genetic 
parameters were estimated through ’delta method’ based on Taylor expansion50. The similarity of correlation 
matrices between samples was compared using the Krzanowski test51 measuring the similarity between first 
principal components by using ’KrzCor’ function implemented in ’evolQG’ R package52 as follows:

where k is the number of principal components derived from eigendecomposition of the additive genetic vari-
ance-covariance matrix and considered in test k =

n
2 − 1 where n is the number of traits used in the multivariate 

analysis, and �A
i  is the ith principal component of the additive genetic variance-covariance matrix of the Ath 

sample. The phenotypes in the multivariate analysis used to construct additive genetic variance-covariance 
matrix were standardized in this case.

Selection response decomposition53 was performed to investigate similarity/dissimilarity between pairs of 
variance/covariance matrices obtained for each tested population and identify traits which cause differences in 
these matrices. The method implements the decomposition of evolutionary responses inferred from selection 
gradient vectors simulated through random skewers54. The similarity in response to selection between two 
investigated genetic variance/covariance matrices is estimated as the average correlation between vectors of 
evolutionary responses inferred from the same simulated vectors of selection gradients. The multivariate response 
to selection is estimated as follows:

where �z is the vector of response to selection, G is the additive genetic variance/covariance matrix, β is the 
simulated vector of directional selection gradients. The identification of statistically different traits between 
the investigated populations is then performed through the decomposition of the above-mentioned product of 
the variance/covariance matrix G and the vector of directional selection gradients β to trait specific vectors of 
response as follows:

The correlations of trait-specific vectors are estimated across tested populations for all simulated scenarios, 
and their average is called the SRD score. If G matrices are different, the traits will show a different response to 
direct or indirect selection and result in low SRD score and large variance in correlations. The opposite trends 
will be observed in case when G matrices are similar.

The prediction of correlation breakers was performed through logistic regression, where the aim was to pre-
dict the binary status of the correlation breakers through the genetic markers. The individuals originating from 
the correlation breakers (POP1HD) population were marked as 1 while individuals from POP1GF population 
were marked as 0. The POP2GF population was then used as an independent population to identify correla-
tion breakers through the genomic prediction model. The logistic regression was performed in the ‘ASReml-R’ 
statistical package47 as follows:

where y is the vector of binary responses defining correlation breaker status, β is the vector of fixed effects, and 
u is the vector of pedigree or marker-based breeding values following var(u)∼N(0,Aσ 2

u ), where A is the average 
numerator relationship matrix which is substituted by the marker-based relationship matrix G when genomic 
estimated breeding values are predicted. The leave-one-out strategy was selected to perform an independent 
evaluation due to the restricted number of individuals. The prediction accuracy was estimated as follows:

where EBV  is a vector of pedigree-based estimated breeding values, and GEBV  is a vector of predicted genomic 
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tion accuracy was estimated in terms of area under the ROC (Receiver operating characteristic) curve (AUC). 
The AUC is the measure of the ability of a classifier to distinguish between classes (correlation breaker versus 
common individual status) and is used as a summary of the ROC curve. The higher the AUC, the better the 
performance of the model at distinguishing between the statuses of correlation breaker or common individual.
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Ethics approval and consent to participate.  The study complies with Scion internal rules and guide-
lines for field operations and sampling of genetic material. All permissions required for data collection and 
sampling of plant tissues for DNA extraction were obtained. There is no permission required for the research on 
radiata pine in New Zealand.

Results
Linkage disequilibrium.  Linkage disequilibrium (LD) decay was investigated within scaffolds which con-
tained at least three Single Nucleotide Polymorphisms (SNPs), and that mapped to the loblolly pine (Pinus 
taeda) reference genome v. 1.01e. We found intensive LD decay in the correlation breaker population (POP1HD) 
where a composite estimate of linkage disequilibrium r2 of 0.2 (considered as the threshold beyond which LD 
has been completely eroded55) was reached at 1 kb. By comparison, this same level of r2 was reached at ∼2.5 kb 
in the POP1GF population and ∼ 2.1 kb in the POP2GF population. Therefore, the population of correlation 
breakers appeared to capture a higher amount of recombination events compared with the other two samples 
(Fig. 1). When LD was corrected for bias produced by familial relatedness, the observed linkage disequilibrium 
followed a similar patterns as before (i.e., including bias) but showed even faster decay along the scaffolds: the 
threshold of 0.2 was reached within ∼ 0.3 kb in correlation breakers (POP1HD) and within ∼ 0.6 kb in POP1GF 
population, while POP2GF reached r2 of 0.2 within ∼ 0.3 kb (Fig. 1). Investigation of differences in LD patterns 
between the populations included in the training set (i.e., POP1GF and POP1HD) found that around 57% (LD 
including familial structure) and 48% (LD corrected for familial relatedness) of scaffolds had statistically signifi-
cant differences in LD patterns. Therefore, familial relatedness contributed about 9% of statistically significant 
differences in LD patterns between populations. The correspondence in statistical significance between LD esti-
mated (biased versus unbiased by familial relatedness) was relatively stable at the most significant and the most 
non-significant case with large changes in the middle of the distribution (Fig. 2). Spectral decomposition of the 
marker-based relationship matrix estimated across all samples showed that the POP1HD population created 
a compact cluster of related individuals when compared with populations selected for only growth and form. 
These correlation breakers are positioned at the centre of the investigated space (Fig. 3).

The statistical significance of the difference in effective population sizes between POP1GF and POP1HD was 
investigated using the resulting vectors of observed and/or expected heterozygosity in a t test. This analysis found 
statistically significant differences in both the mean observed as well as the expected heterozygosity between 
POP1GF and POP1HD. Although the mean expected heterozygosity was similar between both populations 
(POP1HD versus POP1GF) and reached values from 0.236 to 0.243, the average observed heterozygosity was 
lower in POP1HD (0.203) compared with POP1GF (0.226). Additionally, we investigated observed heterozygosity 

Figure 1.   Linkage disequilibrium decay in: (a) POP1GF population; (b) POP1HD population; (c) POP2GF 
population and linkage disequilibrium decay corrected for bias due to familial relatedness in: (d) POP1GF 
population; (e) POP1HD population; (f) POP2GF population.
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Figure 2.   Correspondence in p-values from Jennrich test (test for difference in LD pattern between POP1GF 
and POP1HD) using original LD (including familial relatedness effect) and LD corrected for bias caused by 
familial relatedness. The thick line represents cumulative distribution of p-values for differences in LD pattern 
between scaffolds from POP1GF and POP1HD using unbiased LD estimate while thin line is cumulative 
distribution of p values for the same test using original LD (including effect of familial relatedness) Dashed line 
represents the threshold for statistically significant test.

Figure 3.   Population structure represented by the first and second components of the marker-based 
relationship matrix spectral decomposition: (a) across all population; (b) POP1HD population; (c) POP1GF 
population and (d) POP2GF population.
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in markers from genomic regions with distinct LD pattern between POP1HD and POP1GF (based on results 
from the Jennrich test) and found higher observed heterozygosity of 0.23 compared to whole-genome observed 
heterozygosity of 0.203 in POP1HD compared to 0.22 which is similar to the whole-genome observed heterozy-
gosity of 0.226 in POP1GF. Moreover, identity by state (IBS) coefficients were estimated to look at genetic similar-
ity, unbiased by allelic frequencies. We found only subtle differences between the distributions of IBS within each 
investigated population as well as between them. While the average IBS coefficient within populations ranged 
from 0.766 (POP2GF) to 0.775 (POP1HD), slightly lower average IBS coefficients were found between popula-
tions ranging from 0.764 (POP1HD–POP2GF) to 0.767 (POP1GF–POP1HD and POP1GF–POP2GF) (Fig. 4).

Genetic parameters.  Both pedigree and marker-based analyses were able to recover statistically significant 
variance components and heritability estimates across all traits and populations/sites. The lowest heritability 
was observed for straightness (ST9), estimated to be 0.093 (POP2GF in Woodhill) − 0.212 (POP1HD) in the 
pedigree-based analysis. The highest heritability was observed for wood density (WD), reaching 0.350 (POP2GF 
in Kinleith) − 0.585 (POP1HD) when estimated from the pedigree across all samples. The marker-based analy-
sis showed a similar pattern with the lowest heritability estimated for ST9, ranging from 0.087 (POP2GF in 

Figure 4.   Distribution of identity by state (IBS) coefficients: (a) within POP1GF population; (b) between 
POP1GF and POP1HD population; (c) within POP1HD population; (d) between POP1GF and POP2GF 
population; (e) between POP1HD and POP2GF population and (f) within POP2GF population.
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Kinleith) − 0.225 (POP1GF), and highest heritability estimated for WD, ranging from 0.518 (POP1GF) − 0.608 
(POP2GF in Kinleith) (Table S1).

Genetic correlations were estimated within each population at each site separately using both pedigree and 
marker-based analyses. These correlations serve as input parameters to compare differences in the multivariate 
response to selection between populations and environments. The genetic correlations generally corresponded 
across the methods. However, the 95% confidence limits were larger in pedigree-based estimates compared to 
marker-based equivalents, especially in the middle part of the distribution (Tables 1, 2; Fig. 5). The weakest 
genetic correlations were found between BR9 and DBH in POP2GF in Kinleith (0.061) and between DBH and 
WD in POP1HD (0.026), while the strongest genetic correlations were found between BR9 and ST9 in POP1HD 
(0.829) and in POP1GF (0.635) in pedigree-based analysis. It is worth noting that moderate negative correla-
tions were observed between DBH and WD in all populations except for the above mentioned POP1HD, which 
reached values from − 0.318 to − 0.441 (Table 1). When marker-based analysis was implemented, the weakest 
genetic correlations were found between ST9 and WD in POP1GF (− 0.001) and between DBH and WD in 
POP1HD (0.004), while the strongest genetic correlations were found between BR9 and ST9 in POP1HD (0.774) 
and POP1GF (0.509) (Table 2). Substantial differences were observed in the estimation of genetic correlations at 
the sample level. The Krzanowski test (Table 3) found large differences between correlation matrices obtained in 
the correlation breaker population (POP1HD) compared with both other populations (POP1GF and POP2GF) 
across all sites. The correlation between correlation matrices obtained in POP1HD and POP1GF reached only 
0.090, compared to 0.107 and 0.315 obtained between POP1HD and POP2GF. As expected, the highest cor-
relations have been achieved between POP1GF and POP2GF, reaching from 0.770 to 0.913, since these two 
populations have undergone a similar selection history (Table 3).

Selection response decomposition53 based on simulated vectors of selection responses was generally in an 
agreement between genetic variance-covariance matrices and differences appeared to be caused by environmen-
tal rather than genetic heterogeneity. For example, POP1GF and POP2GF, which are both tested in Woodhill 
and share the highest number of parents, also showed the highest correspondence among the estimates. On the 
other hand, the lowest correspondence among estimates was obtained between POP2GF tested in two different 
environments, which indicates the high impact of GxE on the genetic correlation matrix. The lowest correspond-
ence of estimates between the identical genetic material planted at two different environments indicates strong 
influence or environmental conditions, especially on traits related to growth and stem form. Surprisingly, at 
high correspondence among estimates was also found between POP1GF and POP1HD, populations with dif-
ferent selection histories but planted in the same environment. A low correspondence was estimated among 

Table 1.   Pedigree-based genetic correlation estimates and their standard errors (in parentheses).

Site Population BR9-DBH BR9-ST9 BR9-WD DBH-ST9 DBH-WD ST9-WD

Tarawera POP1GF 0.356 (0.115) 0.635 (0.131) 0.121 (0.131) 0.109 (0.132) − 0.388 (0.103) 0.039 (0.132)

Tarawera POP1HD 0.141 (0.139) 0.829 (0.087) 0.154 (0.166) 0.130 (0.168) 0.026 (0.136) 0.220 (0.143)

Woodhill POP2GF 0.075 (0.128) 0.188 (0.150) − 0.216 (0.159) 0.188 (0.150) − 0.466 (0.175) 0.332 (0.186)

Kinleith POP2GF 0.460 (0.146) 0.354 (0.163) 0.101 (0.092) 0.134 (0.221) − 0.343 (0.130) − 0.145 (0.130)

Figure 5.   Correspondence pedigree-based and marker-based genetic correlations estimates.
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the POP1HD and POP2GF populations compared with the correspondence among the POP1GF and POP2GF 
populations, which could be attributable to the difference in selection history (Fig. 6).

Genomic prediction accuracy.  A genomic prediction model using correlation breaker status as a binary 
trait was implemented in two scenarios: (1) testing prediction accuracy of correlation breaker status within a 
training population that combined POP1HD and POP1GF, and (2) identifying correlation breakers in POP2GF. 
The ability to predict the status of correlation breakers in term of prediction accuracy was high and reached 
0.80 when leave-one-out scenario was implemented and 0.72 when whole family was removed the from train-
ing population and their status predicted. Analysis of the POP2GF population resulted in the identification of 
19 individuals with a predicted GEBV higher than 0.75, based on their genomic profile and after back trans-
formation. When these individuals are plotted against their breeding values for DBH and WD, the predicted 
correlation breakers are in the centre of the distribution, with some cases that are superior for both traits and 
some that are inferior for both traits (Fig. 7). This might be caused by GxE interaction. The identification of cor-
relation breaker status was performed on the GEBV identified at the 95 percentile of cumulative distribution of 
genomic breeding values. Since there was 35% of correlation breakers in training population, the 95 percentile 
represents very conservative approach to detect individuals with excess of heterozygosity within the genomic 
regions involving pleiotropic or collocating QTLs for investigated traits. In our case, the threshold GEBV value 
corresponding to 95 percentile was 0.75.

Figure 6.   Selection response decomposition (SRD) score for the combination of each population sample 
under study: (a) POP1GF and POP1HD; (b) POP1GF and POP2GF at Kinleith; (c) POP1GF and POP2GF at 
Woodhill; (d) POP1HD and POP2GF at Kinleith; (e) POP1HD and POP2GF at Woodhill and (f) POP2GF at 
Kinleith and POP2GF at Woodhill. Mean is shown as a dotted line.

Table 2.   Marker-based genetic correlation estimates and their standard errors (in parentheses).

Site Population BR9-DBH BR9-ST9 BR9-WD DBH-ST9 DBH-WD ST9-WD

Tarawera POP1GF 0.360 (0.113) 0.509 (0.109) 0.069 (0.108) 0.127 (0.124) − 0.390 (0.105) − 0.001 (0.111)

Tarawera POP1HD 0.115 (0.131) 0.744 (0.104) 0.102 (0.109) 0.114 (0.155) 0.004 (0.132) 0.169 (0.132)

Woodhill POP2GF 0.066 (0.105) 0.193 (0.136) − 0.071 (0.097) 0.176 (0.151) − 0.234 (0.116) 0.308 (0.151)

Kinleith POP2GF 0.321 (0.111) 0.275 (0.112) 0.089 (0.082) − 0.020 (0.127) − 0.245 (0.090) − 0.008 (0.087)
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Discussion
Evolutionary advantages of correlation breakers.  Our study investigated the potential of genomic 
selection to identify individuals with high levels of recombination once the proper training population is estab-
lished. These individuals are called “correlation breakers” and usually represent individuals that deviate strongly 
from general trends in genetic correlation between traits (traits that usually have unfavourable genetic rela-
tionships). We proposed that the identification of such individuals will lead to improvements in the response 
to selection in both traits, when traits are adversely correlated, due to decayed genetic correlation. We also 
postulated that high recombination might also improve population resilience to climate change. Under random 
mating, the cause of genetic correlations is proposed to be the result of mainly pleiotropic mutations4. In popula-
tions under non-random mating, genetic correlations are the results of LD between loci affecting the correlated 
traits, causing inbreeding6. However, the process of adaptation to local environmental conditions may result in 
the development of genomic rearrangements, such as inversions56, that produce clusters of tightly linked adap-
tive loci and are referred as super-genes57. Such genomic rearrangements can potentially reshape the network of 
genetic correlations between adaptive traits. Genetic correlations represent evolutionary constraints, and their 
unfavourable combination can compromise progress in evolutionary changes. This can be detrimental under 
intensive environmental changes that require a fast genetic response. Theoretical studies58 have shown the evo-
lutionary advantages of recombination due to the ability of linked loci to interfere with each other’s response to 
selection.

Additionally, an excess of recombination events has been shown to be favourable under heterogeneous envi-
ronmental conditions14. Correlation breakers represent individuals that have accumulated an excess of recom-
bination events, and propose their infusion into breeding program/forest plantations to support population 
resilience under changing environmental conditions. This is especially important in forest trees, as they are long-
living organisms facing temporal variability in environmental conditions along their ontogenetical development, 
exacerbated by climate change. Mathematical modelling found an advantage of recombination at the early stage 
of adaptation, while selection against recombination was pronounced at later stages to eliminate maladaptive 
gene flow12,59. Additionally, the empirical study in lodgepole pine did not find any higher recombination rates 
between genes associated to different aspects of current climate patterns60. However, if we assume continu-
ously changing environmental conditions with a higher frequency of extreme weather and climate events61,62, 

Figure 7.   Distribution of individuals regarding their breeding values for DBH and WD; grey points indicate 
individuals predicted as correlation breakers in population POP2GF.

Table 3.   Krzanowski correlations of marker-based (below diagonal) and pedigree-based (above diagonal) 
additive genetic variance-covariance matrices between samples.

Site Tarawera Tarawera Woodhill Kinleith

Sample POP1GF POP1HD POP2GF POP2GF

Tarawera POP1GF 0 0.090 0.913 0.770

Tarawera POP1HD 0.024 0 0.107 0.315

Woodhill POP2GF 0.816 0.179 0 0.795

Kinleith POP2GF 0.823 0.227 0.968 0
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evolutionary processes might change direction which would shift back to the early stage of adaptation, and an 
excess of recombination would be advantageous. The decomposition of contemporary genetic correlations will 
not only release new genetic variation but also increase progress in evolutionary responses to new environmental 
conditions. Nevertheless, such a putative positive effect is restricted only to the genetic correlations caused by 
LD, while those caused by pleiotropic mutations should remain unaffected by recombination rates. However, 
pleiotropy-related genetic correlations could still be influenced by new environmental conditions through other 
mechanisms9.

The identification of individuals with an excess of recombination events is not straightforward since LD decay 
is a population-specific parameter which depends on breeding and selection history63. Therefore, the establish-
ment of a specific population containing correlation breakers is required. Such populations can be created 
through tandem selection as implemented in this study, or by complementary mating where the best performing 
individuals for each unfavourably correlated trait are mated15. Therefore, being a correlation breaker is more a 
relative concept than heritable feature. However, our analysis of observed heterogeneity discovered that, while 
the population of correlation breakers showed lower levels of heterozygosity across the whole genome, possibly 
due to directional selection for both traits (DBH and WD), they also showed increased level of observed het-
erozygosity in regions with statistically different patterns in LD. These regions might contain groups of pleiotropic 
or collocating QTLs for selected traits. Our multivariate analysis discovered that the tandem selection strategy 
disrupted most of the commonly expected correlations in the population apart from the correlation among BR9 
and ST9 (Tables 1, 2). Such results are probably the product of the pleiotropic architecture of the traits rather 
than a function of the genetic correlations themselves64. The clear distinction in networks of genetic correlation 
was confirmed in the results from the Krzanowski test51. However, a more obvious pattern was observed in the 
marker-based compared with pedigree-based analysis. This shows the strong ability of markers generated through 
exome capture genotyping by sequencing to track differences in selection and breeding history compared with 
the expected genealogy captured by pedigrees. While the information included in pedigrees is limited by the 
definition of the base population (pedigree founders) as having with no relatedness and inbreeding, the markers 
can trace both the relatedness created recently within breeding program and also relatedness and population 
structure that existed prior to the formation of the base population65. Additionally, genomic markers enable 
tracing of the Mendelian sampling term and linkage disequilibrium between QTLs and markers as oppose to 
the expected identity by descent derived from pedigree information66. On the other hand, such a clear pattern 
was not observed in the selection response decomposition, where the differences between correlation patterns 
appeared to be caused by environmental rather than genetic heterogeneity (Fig. 5). However, the sample tested 
in field experiments had passed several cycles of selection, and thus the genetic diversity needed for robust esti-
mates of genetic correlation was limited, in addition to the contribution of the small sample size to the unclear 
pattern in genetic correlation comparisons67.

The establishment of a robust training population is crucial to be able to predict individuals with a high levels 
of recombination events (correlation breakers). Our training population was established from sets of progenies 
derived from parents selected with a tandem selection strategy, and progeny of parents from a directional selec-
tion strategy. The ability to distinguish LD decay pattern developed from exome capture markers (Fig. 1) was 
crucial to clearly identify the individuals belonging to the correlations breakers set when population structure 
was investigated (Fig. 2). The accuracy of predictions for correlation breaker status was high, reaching 0.80, which 
provides strong evidence to support the selection of individuals with an excess of recombination events. Such 
individuals are preferred under heterogeneous environmental conditions14, and their infusion into populations 
should help erode unfavourable genetic correlations and initiate faster evolutionary processes, in response to 
climate change. The genomic selection prediction model was also able to identify 19 individuals as having cor-
relation breaker status in an independent population (POP2GF). These individuals are centred in the middle 
of the distribution with regard to breeding values for DBH and WD, with some having breeding values above 
average in both traits to some having breeding values below average in both traits (Fig. 6). However, since the LD 
pattern is population specific, the status of correlation breakers has to be considered in the context of the train-
ing population and corresponds to the level of genetic diversity present. Therefore, genetically broader samples 
should be used in training and in the definition of correlation breakers.

Mitigation of climate change through genomics.  Forest trees are mostly widespread species occupy-
ing geographically large and environmentally highly heterogeneous areas which, accompanied with intensive 
long-distance gene flow, should support the rapid adaptation of populations to new environmental conditions68. 
However, there are concerns that such natural mechanisms are not fast enough to cope with the current speed of 
climate change without human intervention, and a more active approach needs to be applied. An assisted gene 
flow approach69 was proposed as a mechanism to shift current populations towards their future optimal condi-
tions as predicted by climate models70–73. The current development of genomic resources in forest trees enables 
a deeper insight into adaptation processes through the detection of selection signals at the genome level23,74,75. 
However, adaptive traits are rather complex, and capturing selection signals through association mapping can 
be challenging76. Therefore, genomic selection77 or genome-wide selection scans78,79 based on the deployment of 
genetic markers to predict phenotype through multivariate regression models seems to be a more feasible solu-
tion to predict adaptive traits. Arenas et al.80 proposed genomic prediction of putative adaptive traits in small 
natural population of relict species to optimize conservation management.

Genomic selection has been successfully implemented in animals81,82, agriculture crops83,84 and forest 
trees85–91. Compared to animals and plants, however, forest trees have high genetic diversity, extreme genome 
lengths (e.g., ∼ 25 Gb in radiata pine), rapid LD decay23,92, and breeding programs are generally only in their 
early stages due to late expression of sexual maturity and long breeding cycles. All these factors pose challenges to 
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the implementation of genomic prediction in forest trees. Grattapaglia and Resende93 performed a deterministic 
simulation of scenarios relevant to forest trees and found that a sufficient density of markers is a crucial require-
ment to perform genomic prediction successfully.

The extreme length of the genome of forest trees prohibits easily capturing the whole genome through whole 
genome re-sequencing, and genotyping platforms based on reduced representation approaches have to be 
deployed36,94. Since prediction models can get overwhelmed with the exhaustive amount of genomic data66, the 
effort invested into the reduction of genome complexity should not be seen not as a handicap, but rather as a 
challenge to identify relevant genomic fragments. Our study is based on genomic resources that were developed 
from the sequencing of transcriptomes from a range of different tissues, including buds, needles, xylem, and 
phloem38. These genomic resources generated ∼ 800 K SNPs representing ∼ 40 K genes. However, most SNPs 
were rare variants, likely due to the fact that the exome is a highly conserved region, and only ∼ 80 K SNPs were 
used to generate genotypes for each individual.

The radiata pine genomic resources generated within our project were assembled against the loblolly pine 
draft reference genome95, which allowed us to look at LD decay with physical distance. The population of cor-
relation breakers (POP1HD) showed much more rapid LD decay compared with the other samples (POP1GF 
and POP2GF; Fig. 1). However, all samples appeared to aggregate in a cloud around r2 of 0.6 in the correlation 
breakers (POP1HD) and POP2GF, and around 0.7 in POP1GF across the investigated range of physical distances 
(Fig. 1). This is likely due to differences in synteny between the loblolly pine and radiata pine genomes. The 
estimates of 1 kb, 2.1 kb and 2.5 kb around an r2 of 0.2 in the correlation breakers and the other two populations 
(Fig. 1) are probably upwardly biased due to low sample sizes96 and the actual decay in linkage disequilibrium 
is most likely more intensive (especially in the correlation breakers population where the sample size was even 
lower). Chao et al.63 found differences in the long-range level of LD between different wheat populations and 
attributed it to differences in breeding and selection history. However, they did not find any differences in LD 
decay, and each population captured a comparable amount of recombinant events.

In contrast, our samples do show a difference in LD decay, with the fastest decay apparent in the correlation 
breakers population, which provides evidence that a higher amount of recombination events is being captured in 
this sample compared with others. This pattern is expected, as the correlation breakers population was selected 
to break the adverse pattern in genetic correlations between two highly complex traits, which would require a 
higher level of recombination between a large number of QTLs associated with the different traits. Additionally, 
the increased recombination rate in this population could stimulate an increased response to selection and a 
decreased loss of additive genetic variance over time82.

Since the expectation for r2 is E(r2) = 1
1+4Nc where N is effective population size and c is recombination rate, 

the difference in the effective population size investigated through the mean observed heterozygosity was statis-
tically significant among populations and thus N is likely to contribute to the LD estimate. This was especially 
observed when LD was corrected for bias due to familial relatedness, resulting in much faster decrease in LD 
decay in POP1GF compared to POP1HD. However, even after correcting for LD bias due to familial relatedness, 
POP1HD showed LD that decayed twice as fast as POP1GF. Additionally, correction of LD for familial relatedness 
resulted in only 9% decrease in the number of scaffolds showing statistically significant difference in LD patterns 
between POP1GF and POP1HD (Fig. 2), and thus difference in recombination rates is likely the driver of differ-
ences in LD patterns. The lower mean observed heterozygosity in correlation breakers population can be seen as 
contradictory to the notion that the higher level of heterozygosity is favourable in heterogeneous environmental 
conditions97. The reduced level of heterozygosity can be connected to accumulation of favourable alleles for QTLs 
involved in genetic architecture of both traits under selection (DBH and WD). Additionally, despite the relatively 
high conservedness of exome regions, as evidenced by similar IBS within and between populations—Fig. 7, we 
were able to track differences in both general LD decay patterns and differences in local LD patterns between 
investigated populations to identify individuals with high levels of recombination (Figs. 1, 2).

The key advantage of the genomics-based approach in breeding is the recovery of both temporal and histori-
cal relatedness in studied populations65 through the construction of a marker-based relationship matrix41,98. The 
implementation of this type of relationship matrix in genetic evaluations involves the simple substitution of the 
pedigree-based alternative and does not require any additional data treatment. The spectral decomposition of 
the marker-based relationship matrix found a strong difference in population structure between the correlation 
breakers that were selected for HD and other samples selected for GF. While samples selected for GF show high 
dispersion across the investigated space, the correlation breakers population was concentrated in the middle 
(Fig. 2). Therefore, it is likely that stronger selection in the trait with a higher heritability (HD) is reflected in the 
reduced genetic diversity of POP1HD sample. As reported in this study, genetic correlation networks change 
with changes in environmental conditions. This might be the consequence of gene x environment interactions 
and the resulting impact on multivariate responses. Although the QTL effects might fluctuate with changes 
in environmental conditions, we assume the underlying genetic architecture will remain the same. Thus, the 
selection for increased heterozygosity in genomic regions accumulating pleiotropic or collocating QTLs for 
traits under selection might be an effective way to decompose unfavourable genetic correlations. The tandem 
selection implemented in the radiata pine breeding program proved to be a successful approach to decompose 
unfavourable genetic correlations and stimulate multivariate response to selection. However, we expect that the 
efficiency of this approach will depend on the genetic architecture involved in genetic correlations. In cases, where 
pleiotropic effects are the primary driver of genetic correlations, the tandem selection might be less efficient 
compared to cases where genetic correlation is caused by collocating QTLs.
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Conclusions
We propose that environment-specific (representing the average New Zealand environment) selection be under-
taken using genomic predictions by increasing the frequency of ’recombined’ individuals. We propose that 
high levels of recombination will also confer long-term resilience in planted forests, vital to the success of these 
populations under a changing climate. The increased frequency of such individuals may decrease the strength 
of the population-level genetic correlations among traits, which will, in turn, increase the opportunity for new 
trait combinations to be developed in the future.
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