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We all are witnesses to the recent explosion of
applications of machine learning (ML) in many

branches of science. As a way to realize artificial intelligence
(AI), ML itself has undergone three stages of progression,
being deductive (1950s), knowledge-based (1980s), and data-
driven (2000 to now). Undoubtedly, big data, i.e., the
increasing accumulation of learnable data, has enabled
numerous recent scientific achievements through ML, high-
lighting the above progression of ML. Nowadays, ML has
achieved significant successes in many disciplines, including
mathematics, physics, materials science, environmental science,
biology and medicine, as well as chemistry. Specifically, ML has
greatly boosted the measurement and characterization of
chemical species and materials, the analysis and understanding
of chemical data and simulation results, as well as the design
and optimization of chemical reagents and reaction pathways.
How could chemistry benefit so profoundly from ML? First,

ML allows researchers to predict on top of established
knowledge, or even to foresee unseen systems, properties
and scenarios to some degree by extrapolating beyond our
existing knowledge. Second, ML removes the heavy reliance on
empirical experience, chemical intuition, as well as repetitive
manual labor and thus saves time and resources for more
creative and innovative tasks. Third, ML excels in recognizing
the intrinsic bias of an individual practitioner, which is
favorable for bridging the gaps between experimental and
theoretical studies. Finally, with ML, it is possible to learn and
extract useful information from unsuccessful efforts. All these
virtues have combined to bring forth fresh perspectives and
even paradigm changes in many subdisciplines of chemistry,
and they will likely make chemistry a more systematic,
economic, predictive, and productive branch of science in
the near future. At some point, we might see the outdated
notion of “chem-is-try” revived in the era of AI, provided that
ML enables far more intelligent and efficient ways to “try” than
ever before.
While the development of chemistry can now be increasingly

driven by ML, our ML techniques also evolve continuously,
with user demands and chemical insights incorporated into
their frameworks. The most significant limiting feature
currently is the limited number of available data in chemistry.
Unlike the scale of available data in other disciplinesbillions
or trillionsthe amount of available data in chemistry is often
only thousands or even hundreds of examples. As a result,
appropriate ML algorithms have to be carefully selected when
they are applied in chemical research. Furthermore, the
descriptors used in ML should be carefully designed as well.
This Virtual Issue consists of 15 published Articles and

Perspectives associated with ML selected from JACS Au. The

subjects of these works cover all branches of chemistry,
including organic chemistry, inorganic chemistry, analytical
chemistry, physical chemistry, and biochemistry, representing
the emergence of the breadth of understanding as well as
advanced utilization of ML for deep understanding of chemical
processes.
Unsupervised ML algorithms that focus on clustering are

suitable for categorizations of experiences. To analyze
transmission electron microscopy (TEM) images of nano-
particles, T. Head-Gordon, A. P. Alivisatos, and co-workers
developed the AutoDetect-mNP algorithm, where an unsuper-
vised K-means image segmentation is the essential algorithm
(DOI: 10.1021/jacsau.0c00030). Remarkably, AutoDetect-
mNP, with six shape descriptors, can effectively categorize
different kinds of Au nanorods and recognize spheroidal
impurities from only 20 TEM images that contain less than
1000 individual particles. In another work, H. H. Girault and
co-workers demonstrate that, for the noninvasive monitoring
of skin disorders, unsupervised hierarchical cluster analysis
(HCA) and principal component analysis (PCA) are effective
for the analysis of the matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) mass spectra (DOI:
10.1021/jacsau.0c00074). They found that HCA could
distinguish MALDI-TOF mass spectra measured for 66 skin
regions from 9 volunteers into three typical skin conditions.
Meanwhile, PCA can be used for monitoring the progression
stage of skin disorders, which facilitates early diagnosis.
Supervised algorithms that focus on regression and

classification are particularly useful for identification, decision
making, and high precision prediction. In a Perspective, N.
Boehnke and P. T. Hammond demonstrated that ML tools can
gain mechanistic insight into drug delivery and thus benefit
nanomedicine (DOI: 10.1021/jacsau.1c00313). R. Goḿez-
Bombarelli, B. L. Pentelute, and co-workers used a convolu-
tional neural network (CNN) model for the rational design of
short cell-penetrating peptides (CPPs) that can covalently
attach antisense oligonucleotides while having a limited
number of toxic arginine residues (DOI: 10.1021/jac-
sau.1c00327). They revealed that with rational augmentation
of the antisense-peptide database, the CNN model predicts a
CPP with 18 total residues and only one arginine residue.
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Subsequent in vivo testing confirmed the predicted CPP’s
efficiency for drug delivery with no kidney toxicity. T. M.
Reineke and co-workers used SHapley Additive exPlanations
(SHAP), as well as a linear causality model, to unveil the
structure−function relationships between nine polyplex
descriptors and the average treatment effect of different
polymer delivery vehicles for plasmids (pDNA) and
ribonucleoproteins (RNP) (DOI: 10.1021/jacsau.1c00467).
They aimed for not only a predictive model but also an
interpretive model, establishing useful design guidelines for
efficient pNDA delivery and RNP delivery, respectively. S. Park
and co-workers showed that the graph convolutional network
(GCN) with chemical space vectors that take chromophore-
solvent interactions into account can predict experimental
optical spectra of dyes in different solvents and in the solid
state (DOI: 10.1021/jacsau.1c00035). With the ML-trained
model, a blue emitter was rationally designed and its optical
and photophysical properties were confirmed experimentally.
S. Chen and Y. Jung demonstrated that the message passing
neural network algorithm can be adopted for the retrosynthesis
of organic compounds (DOI: 10.1021/jacsau.1c00246). They
emphasized that an extra global reactivity attention layer with
descriptors including molecule graphs, atom features, and bond
features can improve prediction accuracy, especially for the
reactions including multiple products.
Z.-J. Zhao, J. Gong, and co-workers as well as J. Patrick

Zobel and L. Gonzaĺez summarized the recent processes of
ML-boosted molecular simulations for reactions in operando
conditions (DOI: 10.1021/jacsau.1c00355) and excited states
(DOI: 10.1021/jacsau.1c00252), respectively, which help the
understanding of underlying mechanisms of chemical
processes. ML can also help to identify collective variables
for reactions of macromolecules and their surrounding
environments, such as functional conformational changes of
proteins, as highlighted by X. Huang and co-workers (DOI:
10.1021/jacsau.1c00254). J. C. Grossman and co-workers used
GCN and random forest algorithms to understand lithium
adsorption behaviors on metallic two-dimensional materials
(DOI: 10.1021/jacsau.1c00260). They found that, by consid-
ering the linear relationship between the lithium adsorption
energy and the work function of substrates, the high accuracy
and transferability of ML predictions aid the screening of high-
voltage materials. Z. Li and co-workers adopted a Gaussian
approximation potential in an iterative way to accelerate
molecular dynamic simulations for chemical reactions on
metallic surfaces (DOI: 10.1021/jacsau.1c00483). They found
that, at high temperatures, i.e., those near the melting point of
the substrate, the reactions are quite different from those
predicted by the temperature-dependent partition function
with the optimized structures at zero Kelvin, which should be
attributed to the changes of the local chemical environment,
atom mobility, and thermal expansion of the surface at high
temperature.
The descriptors have to reflect the characteristics of the

systems under study. With internal molecular coordinates as
the descriptors, B. Jiang, R. J. Maurer, and co-workers showed
that the embedded atom neural network (EANN) can
accurately predict the potential energy surfaces (PESs) of
adsorbed systems. Using these highly accurate ML-based PESs,
the memory effects on electronic friction for the scattering of
high vibrational state NO on Au(111) have been identified
(DOI: 10.1021/jacsau.0c00066). With embedded density
descriptors, B. Jiang, J. Jiang, and co-workers also showed

that EANN can precisely predict the transition electronic and
magnetic dipole moments of a peptide moiety, which can
generate accurate protein circular dichroism spectra of
different configurations and thus allow monitoring of
molecular details during the evolution of the secondary
structures of proteins (DOI: 10.1021/jacsau.1c00449).
Overall, this Virtual Issue reflects only a small fraction for

the surge of ML applications in all of chemistry. Despite the
major advances already achieved, new developments of ML in
chemistry remain essential. A standard process for searching
for proper ML algorithms for different kinds of chemical
problems is highly desirable. Unveiling the underlying physics
of complex problems requires ever more sophisticated
descriptors associated with molecular structures and proper-
ties. Last but not the least, standardization, digitization, and
automation of chemistry is essential for enabling the rapid
collection of high-quality data for ML in chemistry (DOI:
10.1021/jacsau.1c00303). It can be anticipated that, with
further advancing of the methods and applications of ML,
chemistry will be thrust into an unprecedented and fruitful
adventure in the coming years.
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