
1. Introduction
Air pollution poses significant health and economic burdens worldwide (Cohen et al., 2017; World Health Organ-
ization, 2013). Both fine particulate matter (PM2.5) and nitrogen dioxide (NO2) have garnered significant research 
attention due to the adverse health outcomes associated with exposure. Exposure to PM2.5, which has a variety 
of natural and anthropogenic sources, is considered the greatest environmental risk factor for premature death 
worldwide (Cohen et al., 2017; World Health Organization, 2013). NO2, a toxic gas and component of nitrogen 
oxides (NOx), is primarily derived from combustion. Strong associations have been found between PM2.5 pollu-
tion and cardiopulmonary and neurodegenerative diseases, lung cancer, and all-cause mortality (e.g., Atkinson 
et  al.,  2018; Cohen et  al.,  2017; Faustini et  al.,  2014; Hoek et  al.,  2013; Kioumourtzoglou et  al.,  2016; Shi 
et al., 2020; World Health Organization, 2013) and between NO2 pollution and respiratory effects (EPA, 2016), 
including pediatric asthma development (Khreis et al., 2017).

Air pollution impacts people of all ages, but can be especially hazardous to children. Children are at greater 
risk of adverse health effects from air pollution exposure due to postnatal and early childhood organ devel-
opment (Brockmeyer & D’Angiulli, 2016; Gehring et al., 2013; Kulkarni & Grigg, 2008); increased pollutant 
intake to body mass ratios (Brockmeyer & D’Angiulli, 2016); and increased time spent outdoors compared to 

Abstract We investigate socioeconomic disparities in air quality at public schools in the contiguous US 
using high resolution estimates of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations. 
We find that schools with higher proportions of people of color (POC) and students eligible for the federal 
free or reduced lunch program, a proxy for poverty level, are associated with higher pollutant concentrations. 
For example, we find that the median annual NO2 concentration for White students, nationally, was 7.7 ppbv, 
compared to 9.2 ppbv for Black and African American students. Statewide and regional disparities in pollutant 
concentrations across racial, ethnic, and poverty groups are consistent with nationwide results, where elevated 
NO2 concentrations were associated with schools with higher proportions of POC and higher levels of poverty. 
Similar, though smaller, differences were found in PM2.5 across racial and ethnic groups in most states. Racial, 
ethnic, and economic segregation across the rural-urban divide is likely an important factor in pollution 
disparities at US public schools. We identify distinct regional patterns of disparities, highlighting differences 
between California, New York, and Florida. Finally, we highlight that disparities exist not only across urban and 
non-urban lines but also within urban environments.

Plain Language Summary We find that, nationally, US public schools with higher proportions of 
impoverished and racially/ethnically marginalized students are associated with higher average concentrations 
of two types of air pollutants, particulate matter and nitrogen dioxide (NO2), relative to schools with lower 
proportions of marginalized students. Disparities in pollutant concentrations are also more pronounced in some 
regions of the US where marginalized students are concentrated in urban areas and non-marginalized students 
are concentrated in rural areas, such as the state of New York. We find that larger relative disparities exist for 
NO2 compared to particulate matter, but qualitative results are similar.
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adults (Bateson & Schwartz, 2008). Exposure to high concentrations of air pollutants during childhood has been 
linked to increased risk for developing or exacerbating respiratory diseases such as asthma and chronic obstruc-
tive pulmonary disease (Chatkin et al., 2021; Han et al., 2021; Jerrett et al., 2008; Madureira et al., 2015; van 
Zoest et al., 2020), as well as reduced lung function (Gehring et al., 2013). Importantly, decreases in PM2.5 and 
NO2 concentrations are associated with improvements in children's lung function. Studies have also found links 
between children's exposure to air pollution and diminished cognitive function, lower intelligence quotient scores 
(Mohai et al., 2011; Sunyer, 2008), and mental health problems such as attention deficit/hyperactivity disorder, 
anxiety, and depression (Myhre et al., 2018; Roberts et al., 2019).

Many factors govern a child's exposure to air pollution, but the location and type of school where each child 
attends is an important factor (e.g., Mohai et al., 2011). Over 54 million children attend US public and private 
schools (National Center for Education Statistics,  2021). These children spend an average of 6.64  hr a day 
in school for 180 days a year (i.e., 1,200 hr per year) (National Center for Education Statistics, 2008). While 
at  school, students spend time in outdoor environments during activities like recess, physical education class, free 
time between class, and extracurricular activities. Outdoor air pollutants can also infiltrate indoors (e.g., Habre 
et al., 2014; Reche et al., 2015; Wichmann et al., 2010). Schools are often in proximity to heavily trafficked roads 
and commercial areas (Appatova et al., 2008; Hauptman et al., 2020; Kweon et al., 2018; Shoari et al., 2022). 
Poor air quality near schools has been linked to lower student test scores, grade point averages, and attention 
retention (Grineski et  al.,  2020; Mohai et  al.,  2011; Sunyer,  2008). Additionally, poor air quality at schools 
has been associated with chronic absenteeism (MacNaughton et al., 2017), which is linked to poorer academic 
performance from kindergarten through 12th grade (Ready, 2010). Despite evidence of high pollutant exposures 
at US schools, there are currently no mandatory federal guidelines or agencies in place that protect students from 
attending schools in polluted areas (Sampson, 2012).

The burden of air pollution disproportionately affects marginalized communities, both in terms of wealth and 
race/ethnicity. Past analyses have shown disparities between race, ethnicity, and socioeconomic groups in 
modeled or measured ambient concentrations (Colmer et  al., 2020; Gray et  al., 2013; Hajat et  al., 2015; Liu 
et al., 2021; Mohai, Pellow, et al., 2009) or disparities in proximity to heavy pollution sources such as roadways 
and industrial sources (Brender et al., 2011; Mohai, Lantz, et al., 2009; Mohai, Pellow, et al., 2009). Estimates of 
PM2.5 disparities across racial, ethic, and poverty groups have shown that, in the US, PM2.5 pollution is dispropor-
tionately generated from the majority population but disproportionately breathed in by the minority population 
(Tessum et al., 2019). Furthermore, the sources of these PM2.5 disparities are likely widespread across all emis-
sion sectors including industrial emissions, light and heavy-duty vehicles, and construction; and they exist across 
many spatial/governmental scales (e.g., local, state, and federal) (Tessum et al., 2021).

School children in the US are also impacted by the racial, ethnic, and economic disparities in air pollutants. Although 
few studies have investigated pollution disparities at schools across the US nationally, previous studies of specific 
school districts have found that modeled average pollutant concentrations are higher at schools that have higher 
percentages of Black or African American, Hispanic, and multi-ethnic students (Morello-Frosch et al., 2002). 
Additionally, these schools are in closer proximity to pollution sources (Chakraborty & Zandbergen, 2007; Green 
et  al.,  2004; Maantay,  2002). Schools with a higher percentage of students eligible for the federal Free and 
Reduced Price Lunch program, which is often used as a proxy for poverty in schools, have also been found to be 
located nearer to PM2.5 emission sources such as heavy road traffic (Gaffron & Niemeier, 2015). Recently, the 
first nationwide study on air pollution disparities between schools, specifically on airborne neurotoxins (not PM2.5 
or NO2), found that students who identified as Hispanic, Black or African American, Asian or Asian/Pacific 
Islander, and those eligible for free or reduced meals were more likely to attend schools with higher average 
concentrations of airborne neurotoxins (Grineski & Collins, 2018).

A nationwide analysis of disparities in US public schools has not been conducted for either PM2.5 or NO2, two 
criteria pollutants. Since the mental and physical impacts of exposure to these pollutants at schools can have 
lifelong effects on children's success and well-being, understanding where disparities exist can help inform air 
pollution mitigation strategies that benefit children. To investigate air pollution disparities across racial, ethnic, 
poverty, and locale (e.g., urban and rural) groups at US public schools, we use gridded, high-resolution concentra-
tion data sets for PM2.5 (Hammer et al., 2020; van Donkelaar et al., 2019, 2021) and NO2 (Anenberg et al., 2022; 
Cooper et al., 2020) along with data on students at public schools.
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2. Materials and Methods
2.1. National Center for Education Statistics Data

We retrieved general information, demographics, and financial informa-
tion for 98,537 public schools (pre-kindergarten through 12th grade) for the 
contiguous United States (CONUS) from the National Center for Education 
Statistics (NCES) for 2019. The NCES data set can be found and indexed 
using the Elementary/Secondary Information System table generator tool 
(https://nces.ed.gov/ccd/elsi/tableGenerator.aspx). We retrieved enrollment 
details from the NCES data set such as student counts of various racial and 
ethnic demographics (White, Hispanic, Black or African American, Amer-
ican Indian/Alaska Native, Native Hawaiian or other Pacific Islander, and 
two or more races). We use the terminology used in the NCES data set for 
consistency. We use the term people of color (POC) in our results to describe 
all students who did not identify as White. We are not able to distinguish 
between students who identified as White and non-Hispanic versus White 
and Hispanic, so we include all people who identify as Hispanic in the POC 
category. We calculate the fraction of POC students in each school by finding 
the complement of the fraction of students who identified as White.

We use the fraction of students eligible for free or reduced lunch as a proxy 
for poverty levels in schools since student families must be at or below 185% 
of the federal poverty line to qualify. This proxy has been used in previous 
research (e.g., Grineski & Collins, 2018; Mohai et al., 2011; Morello-Frosch 
et  al.,  2002; Pastor et  al.,  2006). However, it is not a perfect measure of 
poverty (National Center for Education Statistics, 2015), because eligibility 
in the US is based on poverty levels set at the federal level, without consid-
eration of regional living costs. The NCES also categorizes school locales as 

city (defined here as urban), suburban, town, or rural. A detailed description of how we filter schools based on 
school size, data availability, and data quality can be found in Text S1 in Supporting Information S1. The number 
of students that belong to each racial, ethnic, poverty, and locale category, using the enrollment details reported 
in the NCES data set, are shown in Table 1. Heat density maps of student counts for various racial/ethnic demo-
graphics are also shown in Figures S1–S5 in Supporting Information S1.

2.2. Estimates of Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2)

To study disparities in particulate matter across US public schools, we used the annual average of a PM2.5 concen-
tration data set that combines satellite retrievals, chemical transport modeling and ground-based observations (V5.
GL.02; van Donkelaar et al., 2021; made available by the Washington University in St. Louis (WUSTL, 2022b)). 
This data set combines multiple National Aeronautics and Space Administration aerosol optical depth products 
(Sea-viewing Wide Field-of-view Sensor/MODerate Resolution Imaging Spectrometer [MODIS] Deep Blue, 
MODIS Dark Target, MODIS Multi-Angle Implementation of Atmospheric Correction, and Multi-angle Imaging 
SpectroRadiometer) with the Goddard Earth Observing System chemical transport model to produce geophysical 
estimates of surface PM2.5 concentrations (Figure S6 in Supporting Information S1) which are then calibrated to 
ground-based observations using a geographically weighted regression. Data are provided at the resolution of the 
finest included data sources (0.01° × 0.01°; ∼1.1 km) to preserve information, although PM2.5 gradients at this 
resolution are not expected to be fully resolved due to the influence of coarser resolution inputs (van Donkelaar 
et al., 2021). We averaged 3 years (2017–2019) of PM2.5 estimates over CONUS for this study. School location 
concentrations were assigned based on the nearest grid cell center.

We used two annual average NO2 data sets over CONUS for our analysis including those developed by Anenberg 
et  al.  (2022) and Cooper et  al.  (2020). The Anenberg et  al.  (2022) NO2 data set (available at Mohegh and 
Anenberg (2021)) contains annually averaged NO2 estimates at a 1-km resolution from 1990 to 2019 (Figure 
S7 in Supporting Information S1). The NO2 estimates were created using a combination of land-use regression 
(LUR) model predictions and column density NO2 observations from the Ozone Monitoring Instrument satellite 

Category Number of students

Total number in CONUS 49,528,556

Racial/ethnic demographics

 White 23,010,769 (46.5%)

 Hispanic 13,766,440 (27.8%)

 Black or African American 7,472,589 (15.1%)

 Asian or Asian/Pacific Islander 2,611,033 (5.3%)

 American Indian/Alaska Native 429,722 (0.9%)

 Native Hawaiian/Other Pacific Islander 129,881 (0.3%)

 Two or more races 2,106,522 (4.3%)

Poverty indicators

 Eligible for free or reduced lunch program 23,880,131 (48.2%)

Locale categorization

 Urban 15,198,470 (30.7%)

 Suburban 19,486,154 (39.3%)

 Town 5,325,761 (10.8%)

 Rural 9,518,171 (19.2%)

Note. The percentages of students in each demographic relative to the total 
number of students are in parentheses.

Table 1 
Counts of Students Belonging to Different Racial, Ethnic, Poverty, and 
Urbanicity From the NCES Data Set

https://nces.ed.gov/ccd/elsi/tableGenerator.aspx
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sensor. The Cooper et  al.  (2020) data set (available at WUSTL  (2022a)) used a chemical transport model in 
combination with satellite observations from the TROPOspheric Monitoring Instrument satellite (Figure S8 in 
Supporting Information S1). We show results from the Anenberg et al. (2022) data set in Section 3 since this data 
set was at a higher resolution (1 km) than Cooper et al. (2020) (∼2.8 km). Also, the use of a LUR model allowed 
Anenberg et al. (2022) to explicitly incorporate traffic data for the NO2 estimates. The reliance on traffic data is 
important in our analysis since previous studies have shown that schools with higher poverty levels also tended 
to be closer to major roadways (Amram et al., 2011; Green et al., 2004). We present results using the Cooper 
et al. (2020) data set as a sensitivity analysis in Supporting Information S1. We averaged 3 years (2017–2019) 
of NO2 estimates from the Anenberg et al. (2022) data set but only used 2019 (the only year available) from the 
Cooper et al. (2020) data set. We co-located each school to the nearest gridcell center in each data set.

2.3. Analysis and Statistical Approach

In Section 3.1, we calculated the complementary cumulative distribution functions of NO2 and PM2.5 exposure 
at schools for various demographics by weighting the ambient concentrations at each school by the number of 
students in each demographic. To do this, we assigned NO2 and PM2.5 values to every student in CONUS based on 
the concentration at the school they attended. We then grouped the students by racial, ethnic, and poverty demo-
graphics, and calculated the percentage of students in each demographic who attended schools above a given 
pollutant concentration. In Sections 3.2 and 3.3, we compared the distributions of NO2 and PM2.5 concentrations 
assigned to schools that have been grouped by the percentages of various racial, ethnic, and poverty demograph-
ics (e.g., schools with greater than 60% of students that identify as White), as well as various locale categories 
(e.g., urban and rural). Note that some states such as Oklahoma and West Virginia are not present in our analysis 
of disparities across poverty groups because the counts of students eligible for free or reduced meals were not 
available in the NCES data set.

To assess the statistical significance of the differences in these distributions, we employed a two-sided 
Mann-Whitney U test (Mann & Whitney,  1947) that estimates the probability that two sample groups were 
randomly selected from the same parent distribution without assuming a distribution shape. We reported the 
p-values for each comparison in Supporting Information S1 and assumed two distributions were significantly 
different if the p-value was less than 0.05.

3. Results
3.1. National Results

Figure 1a contains the complementary cumulative distribution functions of NO2 for students in CONUS public 
schools from each NCES racial/ethnic demographic category (except those who identify as Native Hawaiian/
Other Pacific Islander or 2 or more races). The exposure disparity, using White students as the reference group, 
can be expressed as the horizontal distance between two complementary cumulative distribution curves, evalu-
ated at a given quantile (parentage of student demographic in Figure 1). We calculate disparities at the median 
and 90th percentile, representing typical and high-exposure scenarios, respectively. We find that, nationally, using 
the Anenberg et al. (2022) NO2 data set and comparing concentrations weighted by the number of students in 
each demographic at each school, White students attend schools with the lowest concentrations of NO2 (median: 
7.7 ppbv; 90th percentile: 11.6 ppbv), followed closely by American Indian/Alaska Native students (median: 
8.1 ppbv; 90th percentile: 12.6 ppbv). Conversely, students from other marginalized groups–including Black or 
African Americans (median: 9.2 ppbv; 90th percentile: 14.9 ppbv), Asian or Asian/Pacific Islanders (median: 9.7 
ppbv; 90th percentile: 14.7 ppbv), and Hispanics (median: 9.9 ppbv; 90th percentile: 15.0 ppbv)—attend schools 
with relatively higher concentrations of NO2. When repeating the analysis using the Cooper et al. (2020) data set, 
we also find that White and American Indian/Alaska Native students attend schools with lower concentrations, on 
average, relative to the other racial/ethnic groups (Figure S9 in Supporting Information S1). However, the overall 
concentrations using the Cooper et al. (2020) data set are lower for all demographic categories (i.e., less than 40% 
of students of any racial/ethnic group attended schools above 5 ppbv).

Figure 1b contains the complementary cumulative distribution functions of PM2.5 for students in CONUS public 
schools. The PM2.5 curve is steeper than NO2, indicating a narrower exposure distribution: ∼36% of CONUS 
students from all racial/ethnic groups attend schools above 8 μg m −3, whereas only ∼7% attend schools above 
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10 μg m −3. The disparities in PM2.5 exposure are similar to NO2, though the relative magnitudes are smaller. For 
example, the distribution of PM2.5 concentrations are lowest for White (median: 7.3 μg m −3; 90th percentile: 
8.8 μg m −3) and American Indian/Alaska Native students (median: 7.0 μg m −3; 90th percentile: 8.9 μg m −3). 
Students from ethnically and racially marginalized groups such as Black or African American (median: 
7.7 μg m −3; 90th percentile: 9.0 μg m −3), Asian or Asian/Pacific Islander (median: 7.8 μg m −3; 90th percentile: 
10.5 μg m −3), and Hispanic students (median: 7.9 μg m −3; 90th percentile: 11.6 μg m −3) attend schools with 
higher distributions of ambient PM2.5 concentrations.

A higher proportion (∼40%) of Black or African American students attend schools with PM2.5 above 8 μg m −3, 
relative to White or American Indian/Alaska Native students (23%–27%). However, these demographics all have 
similarly low proportions of students attending schools with concentrations above 10 μg m −3 (2%–4%), compared 
to Asian/Pacific Islander or Hispanic students (12%–17%). The steep drop-off in concentrations for Black and 
African American students occurs because there are more Black and African American students in the rural and 
suburban South, and less in the central valley of California (Figure S2 in Supporting Information S1), which is the 
region with the highest concentrations of annually averaged PM2.5 in CONUS from the V5.GL.02 data set (Figure 
S6 in Supporting Information S1). Thus, relative to Hispanic and Asian or Asian/Pacific Islander students, who 
are heavily concentrated in the central valley of California (Figures S3 and S4 in Supporting Information S1), 
a small proportion of Black or African American students attend schools with concentrations above 10 μg m −3.

We also compared the NO2 and PM2.5 concentrations at schools based on indicators for poverty level. We calculate 
the complementary cumulative distribution functions of NO2 (Figure 1c) and PM2.5 (Figure 1d) concentrations 
for students, where students are grouped by the fraction of students eligible for subsidized meals at the schools 
that each student attends. We find that students attending schools with low-to-moderate poverty levels (fraction 
of students eligible for subsidized meals <0.6) have similar distributions of NO2 (medians: 8.0–8.3 ppbv; 90th 
percentiles: 11.9–12.1 ppbv) and PM2.5 (medians: 7.4–7.5 μg m −3; 90th percentiles: 9.0 μg m −3). Higher poverty 
levels in schools are associated with increased concentration levels. The highest concentrations of NO2 (median: 
10.5 ppbv; 90th percentile: 16.2 ppbv) and PM2.5 (median: 8.0 μg m −3; 90th percentiles: 11.7 μg m −3) are at 
schools with greater than 80% of students eligible for subsidized meals. We find similar results when we repeat 
this analysis using the Cooper et al. (2020) data set (Figure S9 in Supporting Information S1), though the distribu-
tions of NO2 for low and high poverty groups are more similar at low-to-moderate concentrations, likely because 
both groups are concentrated around urban areas such as Chicago, New York, and Los Angeles.

In Figure 2, we investigate the intersection of race, ethnicity, poverty, and pollutant concentrations for NO2 and 
PM2.5 around CONUS public schools for different locale categories. When interpreting the results in Figure 2, 

Figure 1. Complementary cumulative distribution functions of annually averaged NO2 (a) and PM2.5 (b) at schools for 
students that belong to specific racial/ethnic demographics. Complementary cumulative distribution functions of annually 
averaged NO2 (c) and PM2.5 (d) at schools of differing poverty levels, measured by the fraction of students eligible for free 
or reduced meals at each school. Each plot shows the percentage of the students that attend schools where the co-located 
annually averaged mean of each pollutant is above a given concentration.
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it is important to note that the demographics, poverty levels, and locale categories of each school are often 
inter-related. For example, schools with more than 61% POC students (hereafter referred to as “high POC 
schools”; based on the 60th percentile nationwide) also tend to have higher levels of poverty and be located in 
urban areas across the US (the number of schools in each category is depicted by box widths), as well as in subur-
ban, town, and rural areas in the southeastern US, Texas, and California (Figure 2c). In contrast, schools with less 
than 35% POC students (hereafter referred to as “low POC schools”; based on the 40th percentile nationwide) 
tend to have lower levels of poverty and be located in suburban, town, and rural areas, especially in the northeast-
ern and midwestern US (Figure 2c).

We find in Figure 2a that, nationally, high POC schools tend to have higher 25th, 50th, and 75th percentiles of 
NO2 concentrations compared to low POC schools. For example, at the urban schools with the highest poverty 
levels, the median ambient NO2 at high POC schools was approximately 1.6 ppbv higher than low POC schools. 
Similarly, at suburban, town, and rural schools, the median NO2 concentrations were approximately 2.3 ppbv 
higher at high POC schools compared to low POC schools. We also see in Figure 2a, that urban schools were 
associated with higher NO2 concentrations compared to suburban, town, and rural schools in the US, which is 
unsurprising given the sources of NO2 pollution.

We find disparities in ambient NO2 concentrations across poverty levels nationally, but the relationship also 
depends on the locale category. For example, results in Figure 2a suggest that urban schools with higher poverty 
levels have higher NO2 concentrations compared to urban schools with lower poverty levels. For suburban, town, 
and rural schools, however, there is little distinction or perhaps even small decreases in NO2 concentration based 
on poverty level (again, as indicated by fraction of students eligible for free or reduced lunch). When we separate 
suburban schools from those in town and rural areas, we find that NO2 concentrations at suburban schools also 
increase with increasing poverty levels for high POC schools but stay the same for low POC schools (Figure 
S10a in Supporting Information S1). Additionally, NO2 concentrations around schools in town and rural areas 
generally decrease with increasing poverty level (Figure S10a in Supporting Information S1). Thus, generally, the 

Figure 2. Boxplots of annually averaged (a) NO2 and (b) PM2.5 surface mixing ratios split into categories of poverty level, 
which is defined by the fraction of students eligible for free or reduced lunch. A greater fraction of free or reduced lunch 
indicates a higher level of poverty. Within each poverty-level bin, separate boxplots are shown for schools in urban and 
combined suburban, town, and rural locations for low people of color (POC) schools (<35% POC students) and high POC 
schools (>61% POC students). The thresholds for high and low POC schools are based on the 60th and 40th percentile of the 
percentage of POC students in all public schools across the contiguous US. The width of each boxplot is scaled for visual aid 
to three size categories corresponding to the number of schools in each distribution, which are listed near each distribution in 
corresponding colors. (c) A map of schools that belong in each race and locale category.
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poorest urban schools had the highest distribution of NO2 concentrations, while the poorest rural schools had the 
lowest distribution of NO2 concentrations. The low NO2 concentrations in these rural areas with higher poverty 
levels could be indicative of a lack of industry and development.

As NO2 concentrations are higher in urban areas, using these locale categories can further highlight disparities 
in ambient NO2 concentrations across poverty levels and racial/ethnic groups. For example, when we compare 
the median NO2 concentration of high POC, urban, high-poverty schools against low POC, suburban, town, and 
rural, moderate-poverty schools, we find a disparity of approximately 4.3 ppbv (urban high-poverty schools 
∼50% higher) and even larger disparities in the tails of the distributions.

When we compare the medians of each distribution in Figure 2a using two-sided Mann-Whitney U tests, we find 
that almost all of the distributions are different to an acceptable statistical significance (p < 0.05) (Figure S11a in 
Supporting Information S1). The only distributions that are not significantly different from each other are when 
low POC urban schools are compared to high POC suburban schools in low and medium poverty-level categories 
(Figure S11a in Supporting Information S1).

To note, we repeat this analysis using various percentiles of POC students in schools nationwide as a sensitiv-
ity test, and find that qualitative results remained consistent (Figures S12–S15 in Supporting Information S1). 
Furthermore, we conduct this analysis using NO2 estimates from Cooper et al. (2020) and find similar patterns 
of disparities across racial/ethnic groups, though the distributions of NO2 are smaller (Figure S16 in Supporting 
Information S1). For example, the medians in NO2 at low POC schools in suburban, town, and rural areas were 
between 0.8 and 2.0 ppbv, depending on the poverty level, while high POC urban schools were only 3.2–4.0 ppbv. 
Despite the smaller differences using the Cooper et al. (2020) data set, the disparities across racial and ethnic 
groups are still statistically significant (Figure S17 in Supporting Information S1).

Relative to NO2, there is less difference in PM2.5 concentrations across poverty levels and between schools in 
urban and suburban, town, and rural areas (Figure 2b). This is unsurprising since the chemical lifetime of NO2 
is much shorter than for PM2.5, which allows PM2.5 to be more regionally uniform (additionally, the resolution of 
the satellite products used to develop the PM2.5 product may not capture the scale of variability in surface PM2.5). 
The distributions of PM2.5 are similar across poverty levels. The 90th percentiles, however, are generally higher 
in the group with both greater fractions of students eligible for free or reduced lunch and high POC (Figure 2b). 
Relatively larger disparities are found across racial/ethnic groups for PM2.5, since high POC schools have higher 
distributions of PM2.5 than low POC schools within each poverty category and locale category with high statisti-
cal significance (Figure S11b in Supporting Information S1). Furthermore, similar to NO2, the largest disparities 
are the result of low POC schools being concentrated in wealthier and more suburban, town, and rural areas, 
while high POC schools are concentrated in mostly urban and suburban areas and have higher levels of poverty 
(Figure 2c). Thus, the median annually averaged PM2.5 concentration for low POC schools in moderately impov-
erished suburban, town, and rural areas is ∼1 μg m −3 lower than high POC, urban schools.

3.2. Regional Results

Although we show in Figure 2 that nationwide disparities exist, these disparities are, in part, due to regional 
differences in the location of different racial/ethnic and poverty groups. Thus, we also examine disparities in 
each state across the CONUS and find distinct patterns (Figure 3). To investigate how the disparities across race/
ethnicity and poverty compare within states, we calculated the differences in mean NO2 and PM2.5 concentrations 
between (a) low POC and high POC schools in each state (Figures 3a and 3b) and (b) schools with the highest 
level of poverty and schools with the lowest level of poverty in each state (Figures 3c and 3d). For this analysis, 
we combine schools from urban, suburban, town, and rural locations. We define the “low POC” and “high POC” 
schools as those with less than 35% POC students and more than 61% POC students, based on the 40th and 60th 
percentiles for the percentage of POC students at schools nationwide. States in the Northeast and the Midwest 
show the largest disparities in NO2 across racial/ethnic lines (Figures 3a and 3b). For example, there are large 
disparities in ambient NO2 concentrations between high and low POC schools in New York (8.7 ppbv), Illinois 
(5.3 ppbv), and Michigan (4.5 ppbv). Figure 3c displays the differences in mean NO2 between “high-poverty” and 
“low-poverty” schools in each state. These categories are defined as schools that have a percentage of students 
eligible for subsidized meals above 75% or below 25%, respectively. We find in Figure 3b that Northeastern 
and Midwestern states such as New York (7.8 ppbv), Illinois (4.1 ppbv), and Michigan (2.9 ppbv) have strong 
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disparities between high and low-poverty schools. Using the Cooper et al. (2020) data set, we find that fewer 
states have disparities of the same magnitude as in Figure 3, but the qualitative results are similar (Figure S18 in 
Supporting Information S1). For example, strong disparities were still found in New York and California across 
both racial/ethnic and poverty groups. On average, racial/ethnic disparities appear to be larger than just poverty 
disparities for most states, though these school category distinctions are not independent of each other. Much of 
the disparities in NO2 appear to be associated with racial divides across urban, suburban, town, and rural areas. 
We investigate regional disparities in NO2 in more detail in Section 3.2.

We find different patterns of disparities for PM2.5 across race/ethnicity and poverty categories (Figures  3b 
and 3d), but most states still show increased PM2.5 at schools with higher poverty levels and with more POC 
students. California has the largest difference in annually averaged PM2.5 between high and low POC schools 
(2.4 μg m −3) and between the poverty levels (2.1 μg m −3). New York shows disparities between high and low 
POC schools (1.3 μg m −3) but a smaller difference between poverty levels (1.0 μg m −3). To note, the magnitudes 
of these disparities may be dependent based on the thresholds used to divide racial/ethnic categories and poverty 
levels, but the patterns of disparity remain consistent.

Concentrations of NO2 are higher in cities, especially near sources such as major roadways and industrial areas 
(e.g., Anenberg et al., 2022). Thus, unsurprisingly, there are clear disparities in NO2 concentrations at public 
schools across CONUS based on whether schools are in urban, suburban, town, or rural areas (Figure  2a). 
However, in certain regions, this urban/rural divide strongly intersects with poverty and race divisions (Figure 4 
for Anenberg data; Figure S19 in Supporting Information  S1 for Cooper data). For example, in New York 
(Figure 4a), wealthier, low POC public school students tend to be more dispersed across the state in suburban, 
town, and rural areas; while racial/ethnic minorities with higher levels of poverty are heavily concentrated in 
urban areas. This difference in locale leads to disparities of up to ∼11 ppbv NO2 between high and low POC 
schools (with high statistical significance; Figure S20 in Supporting Information S1). Note that in Figure 4, we 
define “low POC” and “high POC” based on statewide percentiles of the proportion of POC students in each 

Figure 3. Difference in mean (a) NO2 and (b) PM2.5 between high people of color (POC) schools (>61% POC students based 
on the 60th percentile nationwide) and low POC schools (<35% POC students based on the 40th percentile nationwide). 
Difference in mean (c) NO2 and (d) PM2.5 between high-poverty (greater than 75% students eligible for free or reduced lunch) 
and low-poverty schools (fewer than 25% students eligible for free or reduced lunch). The colors are gray if there is no data 
for that state, there are fewer than 10 schools in either poverty or racial/ethnic categories, or if the difference was not found to 
be statistically significant using an independent t-test (Yuen, 1974).
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school, instead of the nationwide percentiles used in Figures 2 and 3. In other regions, the locale category does 
not coincide with economic status.

In California, most schools are classified as urban or suburban, but NO2 and PM2.5 distributions still increase with 
poverty levels (Figures 3c and 3d), especially for urban high POC schools (Figure 4b). Additionally, concentra-
tions are generally higher for high POC schools regardless of locale category. Thus, in California, we see some 
disparities across poverty levels that are not captured by differences in locale category (Figure 4b), though differ-
ences in medians were only statistically significant across poverty levels for high POC urban schools (Figure S21 
in Supporting Information S1).

Finally, in some states, such as Florida (Figure 4c), there are disparities based on locale category and race/ethnic-
ity, but not on school poverty-level. In Florida, there is a mix of schools with White and POC students in urban 
areas around the state, especially in Tampa and Jacksonville; and yet, there are still clear disparities between 
schools with high POC and low POC to high statistical significance (Figure S22 in Supporting Information S1).

Thus, we find that there are three major types of disparities that appear to exist in NO2 concentrations at US 
public schools in different regions: (a) disparities between high POC/high-poverty and low POC/low-poverty 
schools based on locale category such that low-poverty schools with more White students are located in subur-
ban, town, and rural areas with lower pollutant concentrations compared to high-poverty schools with more 
POC students concentrated in urban areas with higher pollutant concentrations; (b) within many suburban/urban 
areas, low-poverty schools with more White students have lower concentrations than corresponding high-poverty 
schools with more POC students; or (c) high POC schools have higher concentrations than low POC schools 
regardless of poverty level. We further investigated these second and third points, by repeating our analysis 

Figure 4. Boxplots of annually averaged NO2 surface mixing ratios split into categories of poverty level in New York (a), 
California (b), and Florida (c). A greater fraction of free or reduced lunch indicates a higher level of poverty. Within each 
poverty-level bin, separate boxplots are shown for schools in urban and combined suburban, town, and rural locations for low 
people of color (POC) schools and high POC schools. The thresholds for high and low POC schools are based on the 60th 
and 40th percentile of the percentage of POC students in public schools within each state. The width of each boxplot is scaled 
for visual aid to three size categories corresponding to the number of schools in each distribution, which are listed near each 
distribution in corresponding colors.
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only looking at schools within specific urban regions (Figures S23 and S24 in Supporting Information S1). For 
example, in the Bay Area of California, we found higher concentrations of NO2 at high POC schools located in 
Chinatown, the Mission District, and Oakland, while low POC schools had lower NO2 in the Richmond district, 
which is near the greenspace of Golden Gate Park, and other surrounding areas (Figure S24 in Supporting Infor-
mation S1). We find similar qualitative results but smaller relative differences in PM2.5 over New York, Califor-
nia, and Florida (Text S2 and Figure S25 in Supporting Information S1). The rural/urban divide is associated with 
the largest disparities in PM2.5 concentrations over New York (Figure S25a in Supporting Information S1) and 
California (Figure S25b in Supporting Information S1). The analyses of each state separately show that dispari-
ties across racial/ethnic and poverty lines are complex, but generally ubiquitous in the US.

3.3. Limitations

There are several caveats to consider for our study. We are using ambient, annual average concentrations of 
pollutants at public schools. However, ambient concentrations of pollutants are different from personal expo-
sure estimates, especially when children do not spend all of their time at schools and traditionally spend more 
time indoors than outdoors while at school. Hence, the results here represent nearby outdoor air as a proxy 
for exposure only during school times. Furthermore, as 80% of students live greater than 1.5 km from schools 
(McDonald, 2008), these concentrations may not be representative of their home exposure. Also, by using annu-
ally averaged pollutant concentrations, we are including summer months when students do not attend school, but 
a sensitivity analysis of PM2.5 with summer months excluded resulted in the same qualitative conclusions (Figure 
S26 in Supporting Information S1).

Our analysis here focused on public schools and did not include private schools. It is unclear if including private 
schools would reinforce or change the patterns we have seen here. Furthermore, the fraction of students eligible 
for subsidized meals is an imperfect proxy for poverty and should not be confused with a direct measure for soci-
oeconomic status, which requires knowledge of several financial and personal factors for each student.

Our quantitative results are also dependent on the data sets that we use in our analysis, and each data set has 
its own limitations and uncertainties. For example, the fine scale gradients of PM2.5 used in this study may 
not be fully resolved because the model inputs were coarser than the output PM2.5 resolution (van Donkelaar 
et al., 2021), which may cause us to underestimate disparities if schools are incorrectly grouped. This spatial 
resolution likely has little impact on our annually averaged national and state comparisons, but may be of greater 
concern if this analysis was replicated for specific urban regions. However, recent studies have shown that, while 
intra-urban gradients in primary pollutants were associated with racial/ethnic disparities at hyper-local scales 
(<100 m) (e.g., Chambliss et al., 2021), PM2.5 and NO2 disparities were driven by regional-scale differences, 
which implies that our results would be robust even with higher resolution data. The PM2.5 and NO2 data sets 
used may have larger uncertainties in remote areas, which have less dense ground-based monitors used for cali-
bration (Anenberg et al., 2022; van Donkelaar et al., 2021). For NO2, however, the scale of disparities across the 
urban-rural divide in our analysis was often around 10 ppb, while the root mean squared errors for the NO2 data 
set against rural monitors was 2.26 ppb (Anenberg et al., 2022). Thus, even though concentrations at rural schools 
are less certain in our analysis than at urban schools, we remain confident in the qualitative results of our anal-
ysis. Finally, choosing a different data set altogether changes the quantitative results in our study. For example, 
our sensitivity analysis using the Cooper et al. (2020) data set shows lower concentrations of NO2 on average 
(compared to Anenberg et al. (2022)) across most of the US. However, the qualitative results are similar, giving 
credence to the conclusions that we draw.

4. Conclusions
Our results contribute to a larger body of work documenting air pollution disparities that persist across local to 
federal scales in the US (Colmer et al., 2020; Gray et al., 2013; Hajat et al., 2015; Liu et al., 2021; Mohai, Lantz, 
et al., 2009; Tessum et al., 2019). We find that in most regions of the US, students who attend schools with higher 
percentages of racial-ethnic minority students and higher levels of poverty (as indicated by fraction of students 
eligible for free or reduced lunch) are associated with higher concentrations of both PM2.5 and NO2 compared 
to schools with lower percentages of racial-ethnic minority students and lower levels of poverty. Our results are 
consistent with past analyses that show disproportionate burdens of air pollution impacting Hispanic and Black or 
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African American children (Grineski & Collins, 2018; Morello-Frosch et al., 2002). This is not surprising as Black 
families in the US generally experience the highest levels of residential segregation (Massey & Denton, 1993) and 
tend to live in areas with increased health hazards in general (e.g., higher poverty levels, institutional disenfran-
chisement) (Bécares et al., 2012). We also add to a growing body of evidence that Asian or Asian/Pacific Islander 
children are disproportionately impacted by environmental hazards (e.g., Clark et al., 2014; Cushing et al., 2015; 
Grineski & Collins,  2018; Grineski et  al.,  2017; Liévanos,  2015; McKelvey et  al.,  2007; Morello-Frosch & 
Jesdale, 2006). Much of these disparities, but not all, appear to be connected to the rural-urban divide. However, 
we also find that even within urban environments, disparities exist across racial, ethnic, and poverty groups.

Disparities in air pollutants at schools will likely only exacerbate already existing disparities in the US because 
more impoverished and POC students will also suffer disproportionate, lifelong impacts from air pollution expo-
sure on school and future job performance, as well as mental and physical health. Thus, it is crucial that air 
pollution is decreased around schools, with special attention being paid to those in high POC communities. 
Continuing to improve emission standards in automobiles and industrial sources will be key to improving air 
quality at schools for everyone, but especially high POC schools since they are often more likely to exist near 
major pollution sites such as heavily trafficked roads (e.g., Chakraborty & Zandbergen, 2007; Green et al., 2004; 
Maantay, 2002).

Finally, future investigations of disparities in air pollution at US schools should develop new knowledge on: (a) 
estimates of indoor air pollution and personal exposure estimates for students, (b) how building design and soci-
oeconomic factors impact the infiltration of outdoor air into schools, (c) estimates of air pollutant concentrations 
and exposure during school commutes, (d) emissions sources and other pollutants (besides NO2 and PM2.5) that 
may impact air quality at schools, and (e) how social, environmental, geographical, and financial factors lead to 
disparities in schools. In addition to working to reduce air pollution in general, this knowledge should be used to 
develop specific policies that can be effective in reducing disparities.
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