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Quality control (QC) and preprocessing are essential steps for sequencing data analysis to ensure the accuracy of results.
However, existing tools cannot provide a satisfying solution with integrated comprehensive functions, proper architectures,
and highly scalable acceleration. In this article, we demonstrate SOAPnuke as a tool with abundant functions for a
“QC-Preprocess-QC” workflow and MapReduce acceleration framework. Four modules with different preprocessing
functions are designed for processing datasets from genomic, small RNA, Digital Gene Expression, and metagenomic
experiments, respectively. As a workflow-like tool, SOAPnuke centralizes processing functions into 1 executable and
predefines their order to avoid the necessity of reformatting different files when switching tools. Furthermore, the
MapReduce framework enables large scalability to distribute all the processing works to an entire compute cluster.

We conducted a benchmarking where SOAPnuke and other tools are used to preprocess a ~30x NA12878 dataset published
by GIAB. The standalone operation of SOAPnuke struck a balance between resource occupancy and performance. When
accelerated on 16 working nodes with MapReduce, SOAPnuke achieved ~5.7 times the fastest speed of other tools.
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negative impact on downstream analyses. Thus, QC and prepro-
cessing of raw data serve as the critical steps to initiate analysis
pipelines [4, 5]. QC investigates several statistics of datasets to
ensure data quality, and preprocessing trims off undesirable ter-
minal fragments and filters out substandard reads [6]. We have

High-throughput sequencing (HTS) instruments have enabled
many large-scale studies and generated enormous amounts of
data [1-3]. However, the presence of low-quality bases, sequence
artifacts, and sequence contamination can introduce serious
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conducted a survey on 31 existing tools, and widely shared func-
tions are listed in Supplementary Material 1.

Existing tools for QC and preprocessing can be divided into
2 categories according to their structures: toolkit and work-
flow. Toolkit-like software provides multiple executables such
as statistics computer, clipper, and filtrator [7-15]. In practice,
raw data are processed by a few individual executables in se-
quence. Comparatively, workflow-like software offers an inte-
gral workflow where functions are performed in predefined
order [6, 16-37].

However, both categories have their own demerits. When us-
ing toolkit-like software, it is complex and error-prone to write
additional scripts to wrap executables. Moreover, it consumes
much time to generate and read intermediate files, which is hard
for acceleration. Besides, the same variables could possibly be
computed repetitively. For instance, the average quality score of
each read is necessary for counting quality score distribution by
reads and filtering reads based on average quality scores. It has
to be counted twice if these 2 functions are implemented by dif-
ferent toolkits.

For workflow-like tools, an optimal architecture is required
because the orders of functions are fixed. Most of the existing
tools successively perform QC and preprocessing without com-
plete statistics of preprocessed datasets. If the preprocessing op-
eration is not suitable for a given dataset, the problem can only
be revealed by downstream analyses.

Datasets sequenced from various samples may require dif-
ferent processing functions or parameters. Existing workflow-
like tools mostly support genomics data processing; only a
few of them are developed for other types of studies, such as
RNA-seq and metagenomics data. For example, RObiNA [22]
provides 4 preprocessing modules to combined for different
RNA-Seq Data. PrinSeq [6] offers a QC stat, dinucleotide odds
ratios, to show how the dataset might be related to other
viral/microbial metagenomes. However, there is still no single
tool supporting multiple data types.

Several tools have made certain progress in overcoming the
limitations mentioned above. Galaxy [37] is a web-based plat-
form incorporating various existing toolkit-like softwares. Users
can conveniently concatenate tools into a pipeline on the web
interface. NGS QC toolkit [16] offers a workflow with QC on both
raw and preprocessed datasets, though there are few prepro-
cessing functions.

In terms of software acceleration, only multithreading is
adopted by existing tools [14-16, 24-28]. This approach only
works for standalone operation and is limited by the maximum
number of processors in 1 computer server. It may be incompe-
tent when dealing with the huge present and potential volume
of sequencing datasets.

To solve these problems, we have developed a workflow-like
tool, SOAPnuke, for integrated QC and preprocessing of large
HTS datasets. Similar to NGS QC toolkit, SOAPnuke performs
2-step QC. Trimming, filtering, and other frequently used func-
tions are integrated in our program. Four modules are designed
to handle genomic, metagenomic, DGE, and sRNA datasets, re-
spectively. In addition, SOAPnuke is extended to multiple work-
ing nodes for parallel computing using Hadoop MapReduce
framework.

SOAPnuke (SOAPnuke, RRID:SCR_015025) was developed to sum-
marize statistics of both raw and preprocessed data. Basic

statistics are comprised of the number of sequences and bases,
base composition, Q20 and Q30, and filtering information. Com-
plex statistics include the distribution of quality score and base
composition distribution for each position. For the quality score
distribution, Q20 and Q30 for each position are plotted in a line
chart, and the quantiles of the quality are represented in a box-
plot. And for the base composition distribution, an overlapping
histogram is used to display base composition distribution for
each position. These calculations are conducted by C++, and the
plots are generated by R 3.3.2 [38]. An example of the 2 plots is
shown in Fig. 1. A comprehensive list of statistics available in
SOAPnuke is included in Additional file 2. Statistics of prepro-
cessed data are compared with some preset thresholds. A warn-
ing message will be issued if the median score of any position in
per-base quality distribution is lower than 25, and a failure will
be issued if it is lower than 20. For per-base base composition,
a warning will be raised if the difference between A and T, or G
and C, in any position is greater than 10%, or a failure will be
issued if it is greater than 20%.

In the step of preprocessing, those undesirable terminal frag-
ments are trimmed off, substandard reads are filtered out, and
certain transform operations are applied. On both ends of reads,
bases of assigned number or of quality lower than the threshold
will be trimmed off. Sequencing adapters can be aligned, where
mismatch is supported while no INDEL is tolerated, and cut to
the 3’ end. Filtering can be performed on reads with adapter,
short length, too many ambiguous bases, low-average quality,
or too many low-quality bases. The sequencing batches, such
as tile of Illumina sequencer [39] and fov (field of view) of BGI
sequencer [40], with unfavorable sequencing quality can be as-
signed so that the corresponding sequences will be discarded. In
addition, reads with identical nucleotides can be deduplicated
to keep only 1 copy. Transformation comprises quality system
conversion, interconversion between DNA and RNA, and com-
pression of output with gzip, etc. Additional file 3 lists the above
preprocessing functions and their parameters.

To improve processing performance of different types of data,
4 modules are specialized in SOAPnuke, including the General,
DGE, sRNA, and Meta modules. (1) The General module can han-
dle most of the DNA re-sequencing datasets, as described in the
section of QC & PROCESSING.

(2) DGE profiling generates a single-end read that has a
“CATG” segment neighboring the targeted sequences of 17 base
pairs [41]. By default, the DGE module will find the targeted seg-
ment and trim off other parts. Moreover, reads with ambiguous
bases will be filtered. (3) The sRNA module incorpates filtering
of poly-A tags as polyadenylation is a feature of mRNA data and
sRNA sequences can be contaminated by mRNA during sample
preparation [42]. (4) The Metagenomics preprocessing module
customizes a few functions from the General module for trim-
ming adapters and low-quality bases on both ends, dropping
reads with too-short length or too many ambiguous bases. De-
tailed parameter settings can be accessed in Additional file 3.

SOAPnuke is written by C++ for good scalability and perfor-
mance, and it can be run on both Linux and Windows platforms.

Two paralleled strategies are implemented for acceleration.
Multithreading is developed for standalone operation. Data are
cut into blocks of fixed size, and each block is processed by 1
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(B) Q20 Q30 base percentage along reads

(C) Base percentage composition along reads
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Figure 1: An example of QC complex statistics. (A) Per-base quality distribution of raw paired-end reads. (B) Per-base Q20 and Q30 of raw and preprocessed paired-end

reads. (C) Per-base base composition distribution of raw paired-end reads.

thread. This design utilizes multiple cores in a working node. In
SOAPnuke, the creation and allocation of threads are managed
by a threadpool library, which decreases the overhead of creating
and destroying threads. More importantly, Hadoop MapReduce
is applied to achieve rapid processing in multinode clusters for
ultra-large-scale data. In the mapping phase, each read is kept
as a key-value pair, where key is the readID and value denotes
the sequence and quality scores. In shuffle phase, the key-value
pairs are sorted, and each pair of paired-end reads is gathered.
During the reducing phase, blocks of fixed size are processed by
various threads of multiple nodes, and each block generates an
individual result. After that, it is optional to merge the results
into integrated fastq files.

To prove the effectiveness of the acceleration design, we have
conducted a performance test on SOAPnuke and other alterna-
tive tools. A ~30x human genome dataset published by GIAB
[43] was extracted as testing data (see Additional file 4). In terms
of the computing environment, up to 16 nodes were used, each
of which has 24 cores of Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10 GHz and RAM of 128 G. SOAPnuke operations for testing
were set as described in published manuscripts (see the refer-
ence list in Additional file 5). Trimming adapters and filtering on
length and quality were selected for their universality. We chose
other workflow-like tools capable of performing these functions,

which are Trimmomatic (Trimmomatic, RRID:SCR-011848) [27],
AfterQC [30], BBDuk [31], and AlignTrimmer [36]. The parameter
setting is also available in Additional file 4.

In the performance test, we chose 3 indexes for evaluation:
elapsed time, CPU usage, and maximum RAM usage. As shown
in Table 1, AfterQC is the tool occupying the fewest resources.
However, its processing time is too long for practical usage, es-
pecially considering that we ran the program with pypy, which
is announced to be 3 times as fast as standard Python. Among
the remaining tools, SOAPnuke struck an appropriate balance
between resource occupancy and performance. Furthermore,
users can choose to run SOAPnuke on multiple nodes with
MapReduce framework if high-throughput performance is de-
manded. In our testing, 16 nodes can achieve ~32 times acceler-
ation compared with standalone operation, which is 5.37 times
faster than the highest speed of 4 tested tools.

After the preprocessing, downstream analyses were per-
formed with the GATK (GATK, RRID:SCR_001876) best practice
pipeline (see the description of GATK best practices) [44]. Data
were processed by the alignment, rmDup, baseRecal, bamSort,
and haplotypeCaller modules in order. For the haplotypeCaller,
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Table 1: Evaluation of the data processing performance across SOAPnuke and 4 other tools

Index\ tools Time, min
SOAPnuke (1 node, 1 thread) 302.7
SOAPnuke (16 nodes) 9.4
Trimmomatic (1 thread) 84.7
Trimmomatic (24 threads) 50.5
BBDuk 57.2
AlienTrimmer 530.2
AfterQC (pypy) 2482.7

Throughput, reads/s CPU, % Max RAM, GB

33 947.8 250 0.62

1 093 191.1 640 50.10
121 380.1 75 2.98

203 582.1 239 10.28

162 230.2 259 11.40

19 076.1 99 0.54

4319.1 99 0.21

Time, throughput, CPU, and maximum memory occupation are presented. For CPU usage, 100% means full load of a single CPU core. Maximum RAM usage means the

highest occupancy of RAM during the whole processing.

GIAB high-confidence small variant and reference calls v3.3.2
[45] were used as gold standard. Details of this testing are
available in Additional file 4.

As seen in Table 2, AfterQC achieves the best variant calling
result. The F-measures of SOAPnuke and Trimmomatic are the
same, which are slightly lower than those of AfterQC. AlienTrim-
mer performs slightly worse, and BBDuk has the worst result,
whose INDEL calling result differs greatly from that of other
tools. In summary, though the variant calling result of AfterQC is
optimal, it is not worth considering for its long processing time.
Among the remaining tools, SOAPnuke and Trimmomatic tie for
first place.

Data quality is critical to downstream analysis, which makes it
important to use reliable tools for preprocessing. To omit unnec-
essary input/output and computation, workflow-like structure
is adopted in SOAPnuke, where QC and preprocessing functions
are integrated within an executable program. Compared with
most of workflow-like tools, such as PrinSeq [6] and RObiNA [26],
SOAPnuke adds statistics of preprocessed data for better under-
standing of data. To cope with datasets generated from different
experiments, 4 modules are predefined with tailored functions
and parameters. In terms of acceleration approach, multithread-
ing is the sole method adopted by existing tools [14-16, 24-28],
butitis only applicable to single-node operations. SOAPnuke uti-
lizes MapReduce to realize concurrent execution on multinode
operations, where CPU cores of multiple nodes can be involved
in a single task. It improves the scalability of parallel execution
and the applicability to mass data. SOAPnuke also includes mul-
tithreading for standalone computing. Our test results indicate
that SOAPnuke can achieve a speed ~5.37 times faster than the
maximum speed of other tools with multithreading. It is worth
mentioning that processing speed is not directly proportional
to the number of working nodes, because some procedures like
initialization of MapReduce cannot be accelerated as nodes in-
crease, and the burden of communication between nodes aggra-
vates as well.

For the future works, we will continue adding functions
to feature modules. For example, in the preprocessing of DGE
datasets, filtering out singleton reads is frequently included
[46-48]. For the sRNA module, screening out reads based on
alignment with noncoding RNA databases (such as tRNA, rRNA,
and snoRNA) [49, 50] is under development. Adding statistics
such as per-read quality distribution and length distribution is
also worth consideration. To users without a computing cluster,
SOAPnuke might not be an optimal tool in terms of overall per-
formance. Thus, we are performing refactoring to increase the
standalone processing speed.

However, we have found 2 problems worth exploring regard-
ing QC and preprocessing. First, in terms of preprocessing, it
is difficult to choose optimal parameters for a specific dataset.
Datasets from the same experiments and sequencers tend to
share features, so users always select the same parameters for
those similar data. The parameters are initially defined based
on experiments on a specific dataset or just experience, which
may already introduce some error and bias. Moreover, even if
the parameters are optimal for the tested dataset, they are pos-
sibly inappropriate for other data because of random factors.
Thus, the current method is a compromise. However, it might
be a considerable solution that preprocessing settings are auto-
matically adjusted during the processing. Second, some of the
QC statistics are of limited help to judge the availability of data.
For example, as the threshold of filtering out low-quality reads is
increased from O to 40, the mean quality of all reads or each posi-
tion will rise accordingly, and the result of variant calling will be
improved at the very beginning but then gets worse. This is be-
cause preprocessing is a procedure required to strike a balance
between removing noise and keeping useful information, while
single QC statistics cannot reflect the global balance. A com-
prehensive list of QC statistics in SOAPnuke can help solve the
problem as raising the threshold of mean quality after the bal-
ance alone might make other irrelevant statistics worse. Thus,
it is worthwhile to explore ways to comprehensively analyze all
statistics to evaluate the effect of preprocessing. Currently, this
procedure is performed empirically by users. In our future work,
these 2 problems will be considered for the development of up-
dated versions.

Project name: SOAPnuke

Project home page: https://github.com/BGI-flexlab/SOAPnuke
RRID:SCR_015025

Operating system(s): Linux, Windows

Programming language: C++

Requirements: libraries: boost, zlib, log4cplus, and openssl; R

License: GPL

Snapshots of the code and test data are also stored in the Giga-
Science repository, GigaDB [51].

DGE: digital gene expression; HTS: high-throughput sequencing;
QC: quality control; sSRNA: small RNA.
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Table 2: Variant calling result of SOAPnuke and other 4 tools

Indexes Tools SNPs precision SNPs sensitivity

SOAPnuke 0.9967 0.9811 0.9888
Trimmomatic 0.9966 0.9811 0.9888
BBDuk 0.9966 0.9797 0.9881
AlienTrimmer 0.9954 0.9810 0.9882
AfterQC 0.9968 0.9811 0.9889

SNPs F-measure

INDELSs precision INDELSs sensitivity INDELSs F-measure
0.9806 0.9575 0.9689
0.9806 0.9575 0.9689
0.9698 0.9184 0.9434
0.9792 0.9540 0.9665
0.9811 0.9586 0.9697

F-measure is a measure considering both the precision and recall of the variant calling result. SNP and INDEL are 2 main categories of variants.

L.F. and Q.C. conceived the project. Yuxin C. and C.S. conducted
the survey on existing tools for QC and preprocessing. Yuxin
C., Yongsheng C., C.S,, ZH,, Y.Z,, SL,, J.Y, Z.L, X.Z,, JW, HY,,
L.F, and Q.C., provided feedback on features and functionality.
YongSheng C., Z.H., and S.L. wrote the standalone version of
SOAPnuke. Yuxin C. wrote the MapReduce version of SOAPnuke.
Yuxin C. and Z.H. performed the above-mentioned test. Yuxin
C, Y.L, CY, and L.F. wrote the manuscript. All authors read and
approved the final manuscript.

Supplementary Material 1: Comparison of features and func-
tions of various tools for QC and preprocessing (XLSX 41 kb).
Supplementary Material 2: Details of QC in SOAPnuke (PDF 304
kb).

Supplementary Material 3: Details of preprocessing in SOAPnuke
(PDF 1.6 mb).

Supplementary Material 4: Details of preprocessing perfor-
mance test and downstream analyses (DOCX 38 kb).
Supplementary Material 5: Details of research involving SOAP-
nuke (XLSX 12 kb).

The authors declare that they have no competing interests.

This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits un-
restricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original au-
thor(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to
the data made available in this article, unless otherwise stated.

This research was supported by Collaborative Innovation
Center of High Performance Computing, the Critical Patented
Project of the Science and Technology Bureau of Fujian Province,
China (Grant No. 2013YZ0002-2), and the Joint Project of the Nat-
ural Science and Health Foundation of Fujian Province, China
(Grant No. 2015J01397).

10.

11.

12.

13.

14.

15.

16.

17.

18.

Fox S, Filichkin S, Mockler TC. Applications of ultra-high-
throughput sequencing. Methods Mol Biol 2009;553:79-108.
Soon WW, Hariharan M, Snyder MP. High-throughput
sequencing for biology and medicine. Mol Syst Biol
2014;9(1):640-.

Stephens ZD, Lee SY, Faghri F et al. Big data: astronomical or
genomical? PLoS Biol 2015;13(7):e1002195.

Guo Y, Ye F, Sheng Q et al. Three-stage quality control
strategies for DNA re-sequencing data. Brief Bioinformatics
2014;15(6):879-89.

Zhou X, Rokas A. Prevention, diagnosis and treatment
of high-throughput sequencing data pathologies. Mol Ecol
2014;23(7):1679-700.

Schmieder R, Edwards R. Quality control and preprocessing
of metagenomic datasets. Bioinformatics 2011;27(6):863-4.
Moxon S, Schwach F, Dalmay T et al. A toolkit
for analysing large-scale plant small RNA datasets.
Bioinformatics 2008;24(19):2252-3.

Gordon A, Hannon GJ. Fastx-toolkit. FASTQ/A short-reads
preprocessing tools. http://hannonlab.cshl.edu/fastx_toolkit.
Accessed 1 November 2017.

Cox MP, Peterson DA, Biggs PJ. SolexaQA: At-a-glance quality
assessment of Illumina second-generation sequencing data.
BMC Bioinformatics 2010;11(1):485.

Zhang T, Luo Y, Liu K et al. BIGpre: a quality assessment
package for next-generation sequencing data. Genomics
Proteomics Bioinformatics 2011;9(6):238-44.

Aronesty E. ea-utils: Command-Line Tools for Processing
Biological Sequencing Data. Durham, NC: Expression Anal-
ysis; 2011.

Yang X, Liu D, Liu F et al. HTQC: a fast quality control
toolkit for Illumina sequencing data. BMC Bioinformatics
2013;14(1):33.

Li H. seqtk: toolkit for processing sequences in FASTA/Q for-
mats. https://github.com/lh3/seqtk. Accessed 1 March 2017.
Zhou Q, Su X, Wang A et al. QC-Chain: fast and holistic
quality control method for next-generation sequencing data.
PLoS One 2013;8(4):e60234.

Zhou Q, Su X, Jing G et al. Meta-QC-Chain: comprehen-
sive and fast quality control method for metagenomic data.
Genomics Proteomics Bioinformatics 2014;12(1):52-56.

Patel RK, Jain M. NGS QC Toolkit: a toolkit for qual-
ity control of next generation sequencing data. PLoS One
2012;7(2):e30619.

Simon A. FastQC: a quality control tool for high
throughput sequence data. http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ Accessed 1 November
2017.

Schmieder R, Lim YW, Rohwer F et al. TagCleaner: identi-
fication and removal of tag sequences from genomic and
metagenomic datasets. BMC Bioinformatics 2010;11(1):341.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://hannonlab.cshl.edu/fastx_toolkit
https://github.com/lh3/seqtk
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Falgueras J, Lara AJ, Fernandez-Pozo N et al. SeqTrim: a high-
throughput pipeline for preprocessing any type of sequence
reads. BMC Bioinformatics 2010;11(1):38.

St John ]. SeqPrep: tool for stripping adaptors and/or
merging paired reads with overlap into single reads.
https://github.com/jstjohn/SeqPrep Accessed 1 November
2017.

Kong Y. Btrim: a fast, lightweight adapter and quality trim-
ming program for next-generation sequencing technologies.
Genomics 2011;98(2):152-3.

Lohse M, Bolger AM, Nagel A et al. RobiNA: a user-friendly,
integrated software solution for RNA-seq-based transcrip-
tomics. Nucleic Acids Res 2012;40(W1):W622-7.

Martin M. Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet ] 2011;17(1):
pp-10.

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2:
rapid adapter trimming, identification, and read merging.
BMC Res Notes 2016;9(1):88.

Dodt M, Roehr JT, Ahmed R et al. FLEXBAR-flexible barcode
and adapter processing for next-generation sequencing plat-
forms. Biology (Basel) 2012;1(3):895-905.

Li YL, Weng JC, Hsiao CC et al. PEAT: an intelligent and ef-
ficient paired-end sequencing adapter trimming algorithm.
BMC Bioinformatics 2015;16(Suppl 1):S2.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexi-
ble trimmer for Illumina sequence data. Bioinformatics
2014;30(15):2114-20.

Sturm M, Schroeder C, Bauer P. SeqPurge: highly-sensitive
adapter trimming for paired-end NGS data. BMC Bioinfor-
matics 2016;17(1):208.

Jiang H, Lei R, Ding SW et al. Skewer: a fast and accurate
adapter trimmer for next-generation sequencing paired-end
reads. BMC Bioinformatics 2014;15(1):182.

Chen S, Huang T, Zhou Y et al. AfterQC: automatic filtering,
trimming, error removing and quality control for fastq data.
BMC Bioinformatics 2017;18(S3):80.

BUSHNELL Brian. BBMap: A Fast, Accurate, Splice-Aware
Aligner. Berkeley, CA: Ernest Orlando Lawrence Berkeley
National Laboratory; 2014.

Joshi NA, Fass JN. Sickle: A sliding-window, adaptive,
quality-based trimming tool for FastQ files. https://
github.com/najoshi/sickle. Accessed 1 November 2017.
Pertea G. fqtrim: trimming&filtering of next-gen reads.
https://ccb.jhu.edu/software/fqtrim/. Access 1 November
2017.

Vince B. Scythe: a Bayesian adapter trimmer. https:/
github.com/vsbuffalo/scythe Access 1 March 2017.

Leggett RM, Clavijo BJ, Clissold L et al. NextClip: an anal-
ysis and read preparation tool for Nextera long mate pair
libraries. Bioinformatics 2014;30(4):566-8.

Criscuolo A, Brisse S. AlienTrimmer: a tool to quickly
and accurately trim off multiple short contaminant

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

sequences from high-throughput sequencing reads. Ge-
nomics 2013;102(5-6):500-6.

Goecks ], Nekrutenko A, Taylor J et al. Galaxy: a compre-
hensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences.
Genome Biol 2010;11(8):R86.

Team RC. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing; 2013.

Mlumina. NextSeq 500 system overview. https://support.
illumina.com/content/dam/illumina-support/courses/
nextseq-system-overview/story_content/external files/
NextSeq500_System_Overview_narration.pdf Accessed 1
November 2017.

Huang J, Liang X, Xuan Y et al. A reference human
genome dataset of the BGISEQ-500 sequencer. Gigascience
2017;6(5):1-9.

Zhang X, Hao L, Meng L et al. Digital gene expression tag
profiling analysis of the gene expression patterns regulat-
ing the early stage of mouse spermatogenesis. PLoS One
2013;8(3):€58680.

Tam S, Tsao MS, McPherson JD. Optimization of miRNA-seq
data preprocessing. Brief Bioinformatics 2015;16(6):950-63.
Zook JM, Catoe D, McDaniel J et al. Extensive sequencing of
seven human genomes to characterize benchmark reference
materials. Sci Data 2016;3:160025.

GATK best practices. http://www.broadinstitute.org/gatk/
guide/best-practices. Access 1 November 2017.

NISTv3.3.2, NA12878 high-confidence variant calls as a gold
standard. GIAB. 2017. ftp:/ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/release/NA12878_HG0O01/NISTv3.3.2/. Access 1 November
2017.

Zhang X, Hao L, Meng L et al. Digital gene expression tag
profiling analysis of the gene expression patterns regulat-
ing the early stage of mouse spermatogenesis. PLoS One
2013;8(3):€58680.

Zhou L, Chen J, Li Z et al. Integrated profiling of microRNAs
and mRNAs: microRNAs located on Xq27.3 associate with
clear cell renal cell carcinoma. PLoS One 2010;5(12):e15224.
Han Y, Zhang X, Wang W et al. The suppression of WRKY44
by GIGANTEA-miR172 pathway is involved in drought re-
sponse of Arabidopsis thaliana. PLoS One 2013;8(11):e73541.
Hall AE, Lu WT, Godfrey JD et al. The cytoskeleton adaptor
protein ankyrin-1 is upregulated by p53 following DNA dam-
age and alters cell migration. Cell Death Dis 2016;7(4):e2184.
Surbanovski N, Brilli M, Moser M et al. A highly specific
microRNA-mediated mechanism silences LTR retrotrans-
posons of strawberry. Plant ] 2016;85(1):70-82.

Chen Y, Chen Y, Shi C et al. Supporting data for “SOAP-
nuke: a MapReduce acceleration-supported software for
integrated quality control and preprocessing of high-
throughput sequencing data.” GigaScience Database 2017.
http://dx.doi.org/10.5524/100373.


https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
https://ccb.jhu.edu/software/fqtrim/
https://github.com/vsbuffalo/scythe
https://github.com/vsbuffalo/scythe
https://support.illumina.com/content/dam/illumina-support/courses/nextseq-system-overview/story_content/external_files/NextSeq500_System_Overview_narration.pdf
https://support.illumina.com/content/dam/illumina-support/courses/nextseq-system-overview/story_content/external_files/NextSeq500_System_Overview_narration.pdf
https://support.illumina.com/content/dam/illumina-support/courses/nextseq-system-overview/story_content/external_files/NextSeq500_System_Overview_narration.pdf
https://support.illumina.com/content/dam/illumina-support/courses/nextseq-system-overview/story_content/external_files/NextSeq500_System_Overview_narration.pdf
http://www.broadinstitute.org/gatk/guide/best-practices
http://www.broadinstitute.org/gatk/guide/best-practices
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/
http://dx.doi.org/10.5524/100373

