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Abstract: Identifying disease-modifying therapies for neurological diseases remains one of the
greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery
of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and
neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron
accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number
of neurological diseases. A substantial body of preclinical evidence and early clinical data has
demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in
Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage
(ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex
diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms
by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury,
other neurodegenerative diseases, and vascular dementia. Considering its known safety profile,
targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability
across many neurological diseases, the case for further development of IN DFO is considerable.

Keywords: intranasal; deferoxamine; Alzheimer’s disease; Parkinson’s disease; ischemic stroke;
intracranial hemorrhage; iron chelation; brain iron dyshomeostasis

1. Introduction

As the leading cause of global disability and 2nd leading cause of death, the burden
of neurological disease is tremendous [1]. Treatment options remain disappointingly
limited for the majority of these conditions, especially aging-related diseases such as
Alzheimer’s disease (AD) [2,3], other dementias [4], and stroke [5]. Many challenges have
contributed to this therapeutic gap including the need to deliver therapeutics in meaningful
concentrations across the blood-brain barrier (BBB) [6], elusive disease etiologies [7–9], and
complex disease mechanisms [3,8,10–12], among others. Although the past decade has
yielded incredible insight into disease pathogenesis, these discoveries have largely failed to
translate into clinical benefit [13–16]. It is of paramount importance to fill this therapeutic
gap in our aging population.

In this review, we present the evidence for intranasal (IN) delivery of deferoxamine
(DFO), a metal chelator that has shown promise in both preclinical and early clinical
studies in AD, Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage. Iron
chelation counters several disease-specific processes via disease-nonspecific mechanisms,
and brain iron accumulation represents an untapped and highly accessible therapeutic
target across many neurological diseases.
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2. The Development of Deferoxamine and Intranasal Delivery

DFO, developed over half a century ago, is the most potent and widely used of several
FDA-approved iron chelators [17,18]. These therapeutics were originally developed to
address systemic iron overload states such as transfusion-dependent thalassemia major
but have since seen significant preclinical and clinical development for use across can-
cer [19–21], imaging [22,23], and neurological disease [24–42]. DFO has a short plasma
half-life and is typically challenging to deliver systemically, with most delivery methods
involving long courses of intravenous (IV) infusion or intramuscular (IM) injection [43].
Such routes struggle to achieve meaningful therapeutic concentrations of drug in the brain
due to the blood-brain barrier (BBB) [24], a common problem in neuropharmacology [6].
Furthermore, at the higher doses required to achieve such concentrations, DFO can cause
systemic toxicity [44].

In 1989, William H. Frey II discovered the non-invasive intranasal method of bypassing
the BBB to deliver and target neurological therapeutic agents to the brain and filed the
first patent [45,46]. The IN route bypasses the BBB by rapidly delivering therapeutics
extracellularly along the olfactory and trigeminal nerve pathways to the CNS [24,47–52].
Over the past three decades, IN delivery has been shown to provide a safe and efficacious
means to overcome these challenges and has remarkably transformed the problem of
delivering therapeutics to the central nervous system (CNS) [47,48]. IN delivery has been
successfully and robustly applied to a wide array of pharmacologic agents, from small
molecules to peptides [50], oligonucleotides [53], stem cells, and immune cells [54–57].
IN delivery minimizes systemic drug exposure while resulting in comparable or higher
CNS concentrations compared to alternate methods of delivery [24,47,48,58]. IN delivery is
increasingly considered the future of CNS pharmacotherapy, and its emergence is perhaps
best attested by the use and efficacy of IN insulin in several clinical trials for AD [59–62].

The IN delivery of DFO achieves micromolar concentrations in the brain within min-
utes and offers up to 200-fold greater targeting compared to IV delivery in rodents [24,58].
In a recent review, Farr and Xiong discuss the formulation and delivery of DFO in detail,
tabulating studies performed to date across AD, PD, and intracerebral hemorrhage [28].
In this review, we cast the spotlight on IN DFO and its therapeutic mechanisms for hu-
man neurological disease. In addition to evidence of IN DFO as a treatment for AD [63],
PD [64], and stroke [65], decades of work across a number of research groups investigating
systemically administered DFO and other iron chelators support this treatment approach.

3. Iron, Chelation, and the Brain

Iron is essential to a number of physiologic processes within the brain including
oxygen transport, neurotransmission, and myelin homeostasis. Elaborate mechanisms
transport, distribute, and store iron for use by intracellular iron-binding proteins [66]. How-
ever, a fraction of cellular iron that is not protein-bound, labile iron, is highly pro-oxidant.
This intracellular labile iron pool is capable of catalyzing the production of hydroxyl radi-
cals, contributing to oxidative stress and cellular damage [42,67–69]. Furthermore, labile
iron catalyzes the cascade of lipid peroxidation that drives ferroptosis, a recently discovered
mechanism of degenerative cell death [68,69]. Brain iron homeostasis is a delicate balance
of the need for iron and its toxicity.

In its simplest mechanism, iron chelation therapy sequesters and clears the labile
iron pool, thus counteracting oxidative damage resulting from pathologic iron accumu-
lation [18,43,67,70]. As discussed in further detail below and elsewhere, this mechanism
has direct relevance to a number of neurological disorders including AD, PD, progressive
supranuclear palsy (PSP) [71], ischemic stroke, and intracranial hemorrhage, where iron
dyshomeostasis—disruption of the iron balance leading to iron accumulation and conse-
quent toxicity—is a known potential contributor to disease pathogenesis and neuronal
injury [12,41,42,68,72–74]. Although current evidence strongly suggests that iron overload
is associated with oxidative stress and injury in these states, it is unlikely that reversal of
iron accumulation alone will reverse the underlying disease processes.
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Instead, we suggest that the major mechanism of iron chelation treatment of neurologi-
cal disease is the disease-nonspecific depletion of brain iron causing engagement of several
biochemical pathways that intersect with and potentially slow disease-specific pathogenesis.
The depletion of iron activates hypoxia-inducible factor 1α (HIF-1α) by destabilizing its reg-
ulatory prolyl-hydroxylase, an iron-dependent protein [75,76]. HIF-1α activates an elaborate
transcriptional program designed as an organized cellular response to hypoxia, mediated
principally by vascular endothelial growth factor (VEGF), erythropoietin (EPO), inducible
nitric oxide synthase (iNOS), and insulin-like growth factor (IGF) [40,75,76]. By these path-
ways, iron chelators including IN DFO have been found to reverse the accumulation of
protein aggregates [28,30,33,34,77–79], suppress neuroinflammation [31,38,77,80–84], protect
against oxidative stress and neuronal injury [30–32,36,81,83,85], improve cerebrovascular
function [25,37,40,76], activate pro-survival signaling pathways [30–36,76], bolster cerebral
glucose metabolism [30,31,35], and strengthen synaptic function [35,86,87] (Figure 1). In
the following paragraphs, citing the considerable body of preclinical and early clinical
research for IN DFO and other iron chelators, we argue multipronged mechanisms by which
engagement of these pathways helps to counter pathogenesis across neurological disease.
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iron engages a number of disease-relevant pathways.

4. IN DFO for Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common dementia, afflicting a staggering
50 million individuals worldwide [2]. A seminal two-year single-blind clinical trial found
that intramuscular administration of DFO significantly reduced the rate of decline in living
skills for AD patients by approximately twofold [39]. In animal models of AD, evidence for
the therapeutic efficacy of DFO, IN DFO, and other iron chelators is very strong and has
been reviewed extensively elsewhere [28,88]. From the work of multiple research groups,
IN DFO reduces cognitive decline and pathological hallmarks in the APP/PS1, P301L, and
ICV STZ rodent models of AD [30,31,33–36,77,89]. Likewise, the preclinical evidence for
other iron and metal chelators is also strong across these models [42,70,72].

For many years, the amyloid hypothesis has dominated research on and understand-
ing of AD pathoetiology [90], but the repeated failure of therapeutics targeting amyloid-β
(Aβ) has undermined testimony of its accuracy [7,91]. Rather, converging lines of evi-
dence suggest an alternative paradigm defining AD as a spectrum of decline caused by
the interaction of aging-driven Aβ and tau neuropathology (Figure 2). In this frame-
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work, aging drives abnormal tau processing driving neurodegeneration [92–94] with Aβ

pathology accelerating [91,93–95] and contributing to [90,91,95,96] this process, reconciling
spatiotemporal pathological data across the aging population [8,94,97] with the causes of
familial forms of AD [90]. The process of consequent cognitive decline appears to involve
a dynamic interplay of progressive synaptic dysfunction, neurodegeneration [69,91,95],
neuroinflammation [92,98], neurovascular breakdown [99], and the collapse of large-scale
brain networks [100]. IN DFO can act on multiple processes in this cascade to slow disease
progression. DFO has been shown to reduce Aβ aggregation [31,33,35,77] and hyper-
phosphorylation of tau [34,101], and involvement of transition metals including iron is
thought to contribute to the toxicity of these pathological hallmarks [70,73]. DFO is a
robust inhibitor of glycogen synthase kinase-3β (GSK-3β) [30–32,34], a well-established
therapeutic target in tauopathy, and DFO was found to reverse tau-mediated neurode-
generation in rabbits treated with aluminum [101]. GSK-3β is also hypothesized as a
major link between accumulation of Aβ and consequent hyperphosphorylation of tau in
AD [91,93,96], placing DFO in position to suppress this acceleratory process. Additionally,
iron accumulation and iron-mediated neuronal ferroptosis have been increasingly impli-
cated as contributing to AD neurodegeneration [69,72,73], and IN DFO directly suppresses
this process including iron-associated oxidative stress [42,78]. DFO likewise ameliorates
neuroinflammation [30,38,81–83] which is hypothesized to contribute to Aβ toxicity and
damage in AD.

Acting by its disease-nonspecific mechanism of HIF-1α activation, DFO appears to
operate at a number of further levels countering the AD process. In two clinical trials,
systemic administration of DFO strongly improved cerebral vasoreactivity and autoregula-
tion especially in older individuals [37,40]. Decline in neurovascular function is thought
to contribute to and be a part of AD pathogenesis [99]. DFO also activates glucose trans-
porters including glucose transporter 1 (GLUT1) via HIF-1α [35,75,76], countering cerebral
hypometabolism that is an early hallmark of AD. Furthermore, DFO has been robustly
associated with activation of the insulin signaling pathway [30–32,34,38]. Activation of this
pathway is known to act on astrocytes, microglia, and neurons to suppress neuroinflamma-
tion and promote neuroplasticity [102], and indeed, intranasal administration of insulin
has shown benefit in several Phase 2 AD trials [60–62]. Finally, there is also precedent for
DFO to improve memory in the absence of disease with IN DFO improving memory in
healthy mice [32], possibly via GSK-3β mediated neuroplasticity [102].

Additionally, accumulating free iron may inactivate the human brain muscarinic
cholinergic receptor (mAChR), contributing to impaired memory in AD [103]. Further,
free heme, which contains iron, increases in the brains of AD patients, and like free iron
inactivates the mAChR. A 2.5-fold increase in heme was also reported in the temporal
lobe of deceased individuals with AD [104]. Consistent with this finding, the level of
ferrochelatase in AD temporal lobe was 4.2 times that in nondemented controls, suggesting
up-regulated heme synthesis [104]. In vitro, DFO protects the mAChR from inactivation
by both iron and heme [Frey WH 2nd, Bordayo EZ and Hanson LR unpublished results].
Relatively little attention has been paid to the fact that Aβ binds both iron and heme.
Heme binding to Aβ prevents Aβ aggregation by forming an Aβ–heme complex, and
this Aβ–heme complex has peroxidase activity [105]. Phylogenic variations in the amino
acid sequence of Aβ explain tight heme-binding to human Aβ and have been proposed to
contribute to the increased human susceptibility to AD [106].

Thus, the positive early systemic clinical trial [39], the overwhelming body of preclini-
cal evidence, and multimodal mechanisms of action strengthen the argument for further
development of IN DFO for AD.



Pharmaceuticals 2021, 14, 95 5 of 14Pharmaceuticals 2021, 14, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Putative mechanisms of IN DFO in Alzheimer’s disease. IN DFO engages Alzheimer’s 
pathogenesis at multiple levels, including a number of contributory aging-related processes, amy-
loid misprocessing, tau misprocessing, amyloid-tau interaction, neuroinflammation, neurovascu-
lar dysfunction, and neurodegeneration. 

Acting by its disease-nonspecific mechanism of HIF-1α activation, DFO appears to 
operate at a number of further levels countering the AD process. In two clinical trials, 
systemic administration of DFO strongly improved cerebral vasoreactivity and autoregu-
lation especially in older individuals [37,40]. Decline in neurovascular function is thought 
to contribute to and be a part of AD pathogenesis [99]. DFO also activates glucose trans-
porters including glucose transporter 1 (GLUT1) via HIF-1α [35,75,76], countering cere-
bral hypometabolism that is an early hallmark of AD. Furthermore, DFO has been ro-
bustly associated with activation of the insulin signaling pathway [30–32,34,38]. Activa-
tion of this pathway is known to act on astrocytes, microglia, and neurons to suppress 
neuroinflammation and promote neuroplasticity [102], and indeed, intranasal administra-
tion of insulin has shown benefit in several Phase 2 AD trials [60–62]. Finally, there is also 
precedent for DFO to improve memory in the absence of disease with IN DFO improving 
memory in healthy mice [32], possibly via GSK-3β mediated neuroplasticity [102]. 

Additionally, accumulating free iron may inactivate the human brain muscarinic 
cholinergic receptor (mAChR), contributing to impaired memory in AD [103]. Further, 

Figure 2. Putative mechanisms of IN DFO in Alzheimer’s disease. IN DFO engages Alzheimer’s
pathogenesis at multiple levels, including a number of contributory aging-related processes, amy-
loid misprocessing, tau misprocessing, amyloid-tau interaction, neuroinflammation, neurovascular
dysfunction, and neurodegeneration.

5. IN DFO for Parkinson’s Disease

Parkinson’s disease (PD), one of the most common movement disorders, continues
to challenge those developing disease-modifying therapies. DFO has been shown to be
strongly neuroprotective in several induced rodent models of PD [28], reversing motor
deficits and improving survival of dopaminergic neurons following administration of
6-hydroxydopmaine (6-OHDA) [107–109], rotenone, methyl-phenyl-tetrahydropyridine
(MPTP) [110], and α-synuclein [29]. Other iron chelators have extensively paralleled these
findings [70,108,111]. Notably, the iron chelator deferiprone has shown promise in early
clinical trials [111], although systemic administration and lower affinity for iron potentially
limit this therapy’s efficacy compared to IN DFO.

DFO may act by multiple mechanisms to slow the progression of PD, many over-
lapping with its role in AD (Figure 3). Although complete detail remains elusive, PD is
thought to be driven by the age-related pathological accumulation of α-synuclein aggre-
gates into Lewy bodies [10]. This process results in progressive oxidative stress, lysosomal
and mitochondrial dysfunction, and neurodegeneration, with possible roles for prion-like
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pathological spread and autoimmunity. Dopaminergic neurons within the substantia nigra
pars compacta (SNpc) are particularly susceptible to this process [10,13], causing motor
deficits in PD. DFO has been shown to directly reduce the expression and aggregation of
α-synuclein [29,110]. Furthermore, it is well established that iron selectively accumulates
within the SNpc and is associated with its exquisite vulnerability to oxidative stress and
ferroptosis [42,69,72,73], and administration of DFO reverses this process [72,78]. DFO
administration activates insulin signaling and glucose metabolism [32,34,89,107], and other
modulators of these processes, including IN insulin, have similarly shown substantial
preclinical efficacy in PD [112]. Finally, via its activation of the HIF-1 response and neu-
rotrophic growth factors [35,86,87], DFO strongly promotes neuronal survival, mechanisms
which may in themselves check the progression of degenerative processes in the PD brain.
Thus, there is overwhelming evidence and rationale for further development of IN DFO
and other iron chelators in PD.
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6. IN DFO for Ischemic Stroke

Ischemic stroke is one of the leading causes of mortality and disability. Therapeutic
use of DFO has shown considerable preclinical efficacy in animal models of stroke. IN DFO
was found to significantly reduce infarct volume with middle cerebral artery occlusion
(MCAO) in rats with either pre- or post-treatment [24]. These results are supported by
efficacy of systemically administered DFO in the same model [113], as well as in rat
ischemia induced by carotid ligation [114]. Furthermore, systemic DFO has been shown
to cause robust ischemic preconditioning in the rodent brain, a strategy which is thought
to ameliorate further damage due to multiple occlusive events, a common complication
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of stroke [76,115–117]. These results are similarly supported by a considerable body of
similarly positive results from other iron chelators [70], supporting a real therapeutic role
for this strategy in stroke treatment.

Occlusive stroke causes a complex pathophysiologic cascade of ischemic injury. Neu-
rons are exquisitely sensitive to hypoxia, which causes cell death by a number of inter-
secting mechanisms [11]. By depleting cellular iron, DFO acts as a hypoxia-mimetic [115],
bolstering the HIF-1α pathway and thus multiple aspects of the brain’s inherent neuropro-
tective defense against ischemia [37,40,75]. Additionally, by preconditioning the hypoxic
response, DFO may ameliorate damage due to further ischemic events [113,116]. It is
increasingly established that cerebral edema and hemorrhagic conversion also participate
in damage following ischemic stroke [11], and DFO strongly reduces toxicity associated
with these processes due to chelation of redox-active iron. Thus, as in AD and PD, DFO
holds considerable promise to modify multiple aspects of the pathogenesis of ischemic
stroke (Figure 4) to rescue functional impairment, a feature lacking in many putative strate-
gies developed to date [41]. The speed, CNS targeting, and safety of IN delivery further
strengthens this approach.
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hypoxic response, contributing to immediate neuroprotection, improved cerebrovascular function,
and ischemic preconditioning to minimize the impact of future occlusive events.

7. IN DFO for Intracranial Hemorrhage

DFO has been perhaps best studied in the context of intracranial hemorrhage (ICH),
hemorrhagic events constituting around 15% of all strokes. Its substantial preclinical
evidence in intracerebral hemorrhage and subarachnoid hemorrhage as well as mechanisms
have been extensively reviewed elsewhere [27,85,118]. Succinctly, DFO is thought to
chelate redox-active iron released from hemoglobin and myoglobin following ICH [12],
minimizing secondary brain damage (Figure 5). Notably, the i-DEF trial evaluating IV
DFO after intracerebral hemorrhage did not suggest therapeutic benefit [118]. However,
this study was limited by systemic toxicity associated with higher doses of IV DFO, and
the low doses studied may not have been sufficient to generate adequate CNS coverage
following ICH [119]. IN administration may overcome this hurdle by targeting DFO to
the CNS (up to 200-fold) as compared to systemic modes of delivery [24]. Another trial
found that administration of DFO positively impacted several endpoints following ICH,
although the investigators concluded more conclusive trials were required [120]. Given its
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substantial preclinical efficacy and the advantages of IN delivery, further investigation of
IN DFO in ICH is still warranted.
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Figure 5. Putative mechanisms of IN DFO in intracranial hemorrhage. IN DFO minimizes the impact
of heme- and iron-mediated neurotoxicity following hematoma.

8. IN DFO for Other Neurological Diseases

The wide-ranging efficacy of IN DFO in neurologic disease largely stems from its
disease-nonspecific mechanism intersecting disease processes at multiple pathogenic nodes.
Targeting multiple pathologies is an advantage for the treatment complex disorders such
as in AD and expands the applicability of IN DFO to other neurological disorders. For
example, DFO shows promise as an agent to improve memory in aging and other demen-
tias. DFO was shown to reduce cognitive decline with aging [121], and IN DFO improves
baseline performance on a memory task in young, healthy mice [32]. In these settings,
it is possible that DFO may simply promote neuronal functioning through chelation of
age-associated redox-active iron. Alternatively, its mechanisms promoting synaptic func-
tion, glucose metabolism, or cerebrovascular function may play a role and merit further
investigation. In multiple sclerosis, brain iron is found to accumulate independently of
inflammation and is increasingly thought to contribute to pathogenesis [74]. DFO was
found to suppress inflammatory damage in animal models [80,122] and was tolerated in
early clinical studies of this disease [123,124]. Insomnia-associated cognitive decline is
associated iron accumulation, oxidative stress, and inflammation [73], and may likewise be
ameliorated with IN DFO treatment. Furthermore, accumulation of iron is thought to be
one of the many pathophysiological sequelae of traumatic brain injury (TBI) [125]. DFO
has been shown to suppress this post-TBI iron overload as well as reverse hydrocephalus
and cognitive deficits following TBI in animal models [79,126–128]. The sequelae of TBI
combine neurodegenerative, neuroinflammatory, and both ischemic and hemorrhagic neu-
rovascular components [125], a perfect model wherein DFO may uniquely enact beneficial
impact through its multiple intersecting disease-modifying mechanisms.

Finally, there is evidence for the development of IN DFO in vascular dementia, the
second leading cause of dementia worldwide. DFO has been shown to reverse cognitive
deficits following hemorrhagic and ischemic vascular events in animal models, including
events induced by diabetes [25]. Vascular dementia is a highly heterogenous entity involv-
ing generally stepwise cognitive decline secondary to progressive ischemic brain injury,
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and is at the crossroads of neurovascular dysfunction, neurodegeneration, and metabolic
syndrome [129]. As in TBI, DFO may uniquely operate at the center of this pathologi-
cal process modifying each of its components. DFO may prevent cognitive dysfunction
secondary to ischemia via activation of the HIF-1α response, providing neuroprotection
following occlusive events akin to its role following ischemic stroke [24,76]. Furthermore,
DFO may provide ischemic preconditioning within the brain, preventing further decline
caused by progressive neurovascular dysfunction [86,113,115–117]. Moreover, by improv-
ing cerebrovascular function, DFO may prevent much of this neurovascular decline with
aging [37,40]. Additionally, neurodegenerative changes are often associated with vascular
dementia [129], and thus DFO’s pro-survival mechanisms in PD and AD are relevant to
progression in this condition. Lastly, metabolic syndrome and brain insulin resistance have
been increasingly associated with the spectrum of neurodegeneration and neurovascular
decline [102,129]. DFO activates insulin signaling and may improve memory, glucose
metabolism, and cognitive functioning by this mechanism as well [30,35,89,112]. As a
major cause of dementia and disability with relatively few therapeutic options on the
horizon, IN DFO represents a promising yet relatively underdeveloped treatment for vas-
cular dementia. Likewise, iron chelation has emerged as a neuroprotective strategy in a
number of other neurological diseases including amyotrophic lateral sclerosis (ALS) [42]
and PSP [71].

9. Conclusions

The complex and often progressive nature of neurological disease has undoubtedly
contributed to the repeated failure of potential therapeutics. It is increasingly recognized
that “silver bullets”—therapies that operate on one target within a cascade—are unlikely
to be of major benefit when multiple mechanisms contribute to pathogenesis, as is the case
in neurodegenerative and neurovascular disease. In the absence of measures for complete
prevention or regeneration of lost brain function, so-called “dirty drugs” that operate on
multiple events in these pathogenic cascades may be the only realistic future for meaningful
benefit in these diseases, such as Alzheimer’s disease [88]. Herein, the evidence has been
presented for IN DFO as one such therapy. Brain iron chelation may act as a general disease-
nonspecific mechanism that engages multiple pathways, including downstream effectors
of HIF-1α and insulin signaling, to intersect with and possibly slow the progression of
multiple human neurological diseases including AD, PD, ischemic stroke, and ICH. Citing
preclinical and early clinical work across decades, multiple research groups, alternative
delivery mechanisms, and other iron chelators, we have argued that these putative mecha-
nisms represent significant promise for translational efficacy. Intranasal delivery is poised
to transform and mitigate the challenge of delivering pharmaceuticals to the CNS including
DFO. By exerting its effects on multiple pathways including neurodegeneration, neuroin-
flammation, neurovascular dysfunction, and metabolic syndrome, IN DFO is positioned to
have widespread benefit across neurodegenerative and neurovascular disease.
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