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Size-dependent bending modulus 
of nanotubes induced by the 
imperfect boundary conditions
Jin Zhang

The size-dependent bending modulus of nanotubes, which was widely observed in most existing three-
point bending experiments [e.g., J. Phys. Chem. B 117, 4618–4625 (2013)], has been tacitly assumed to 
originate from the shear effect. In this paper, taking boron nitride nanotubes as an example, we directly 
measured the shear effect by molecular dynamics (MD) simulations and found that the shear effect is 
not the major factor responsible for the observed size-dependent bending modulus of nanotubes. To 
further explain the size-dependence phenomenon, we abandoned the assumption of perfect boundary 
conditions (BCs) utilized in the aforementioned experiments and studied the influence of the BCs on the 
bending modulus of nanotubes based on MD simulations. The results show that the imperfect BCs also 
make the bending modulus of nanotubes size-dependent. Moreover, the size-dependence phenomenon 
induced by the imperfect BCs is much more significant than that induced by the shear effect, which 
suggests that the imperfect BC is a possible physical origin that leads to the strong size-dependence of 
the bending modulus found in the aforementioned experiments. To capture the physics behind the MD 
simulation results, a beam model with the general BCs is proposed and found to fit the experimental 
data very well.

In the past decades, the discovery of the superior mechanical and other physical properties in quasi-one-dimensional  
tubular nanomaterials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) have triggered 
great interest in their possible engineering applications. For example, owing to their high stiffness and strength, 
low density and large aspect ratio, CNTs and BNNTs are proposed to be the ultimate material for the use as nano-
mechanical resonators for a variety of applications1–3. In addition, the extremely high elastic modulus of CNTs 
and BNNTs reported in the theoretical and experimental studies suggests that, compared with the conventional 
nanofibers, CNTs and BNNTs can be regarded as a better reinforcement for the nanocomposites4–6. Thus, to make 
CNTs and BNNTs be successfully employed in the aforementioned applications, a better understanding of their 
mechanical properties is required.

To characterize the mechanical properties of nanotubes a variety of experimental approaches have been pro-
posed7,8, among which the three-point bending (TPB) test conducted with the atomic force microscope (AFM) is 
widely used9–16. In such AFM-based TPB test nanotubes are deposited onto a stiff substrate with a topographical 
pattern, such as polished porous aluminium oxide membranes or silica gratings patterned with trenches (see 
Fig. 1a). As a result, some nanotube samples can occasionally lie over pores or trenches. During the TPB test the 
midpoint of the suspended portion of nanotubes is subjected to a downward force applied by the AFM tip, which 
will induce the transverse deflection of nanotubes. Force (F)-displacement (δ) curves are recorded, and the bend-
ing modulus Eb thus can be calculated directly from the slope of the F-δ curve together with the second moment 
of area I and the suspended length L by using following equation11–13,16

δ
= .E L F

I192 (1)b

3

Theoretically, the bending modulus of nanotubes obtained from the TPB test is expected to be equivalent to 
the Young’s modulus measured by the direct tensile test. However, in contrast to the result of the tensile test17 a 
unique size-dependent bending modulus was reported in most existing TPB tests of CNTs and BNNTs9–15. To 
explain the size-dependent elastic modulus of nanotubes observed in the TPB tests, a transverse shear theory 
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was proposed by Salvetat et al.11 initially in 1999 and then widely adopted by many other researchers12–15. By 
tacitly assuming that the size-dependence phenomenon originates from the transverse shear effect, the “curve 
fitting technique” was used to explain the size-dependence of the bending modulus. However, the shear modulus 
obtained by fitting the shear theory to the experimental results was usually found to be two orders of magnitude 
lower than the results measured via the torsion tests18 and the results calculated by the theoretical simulations19. 
This discrepancy makes us believe that a direct measurement of the transverse shear deformation is desired and 
some new theories may need to be formulated to reveal the physics behind the size-dependence of the bend-
ing modulus observed in the TPB tests. In addition, it is noticed that Eq. 1 is derived based on the classical 
Euler-Bernoulli beam model with the assumption that the ends of the beam are perfectly fixed. But in reality, 
we can see from Fig. 1a and b that in the TPB experiments a nanotube is usually deposited onto the surface of a 
substrate9–16. Under this circumstance, only a few rather than all atoms in the portion attaching to the substrate 
are blocked, so the ends of nanotubes may not be perfectly restricted. Therefore, the perfectly fixed ends assumed 
in the previous studies9–15 cannot exactly describe the real BCs of the nanotubes tested in the TPB tests. We need 
to abandon the assumption of the perfectly fixed ends and study the influence of BCs on the bending behaviours 
of nanotubes.

Motivated by these ideas, in this paper molecular dynamics (MD) simulations are performed to qualify the 
influence of the imperfect BCs on the bending behaviours of nanotubes. By changing the number of the blocked 
atoms at the ends of nanotubes, we reveal the effect of the imperfect BCs on the bending modulus and the atomic 
displacements of both single-walled (SW) and multi-walled (MW) nanotubes. Similar to the influence of the 
shear effect, when the imperfect BCs are considered the size-dependent bending modulus is also detected for 
nanotubes. Moreover, by comparing these two theories quantitatively, we identify the influence of the imperfect 
BCs as the possible major factor responsible for the strong size-dependence of the bending modulus found in the 
experiments for nanotubes10,15. In addition, the Euler-Bernoulli beam model together with the non-ideal BCs was 
proposed to account for the physics of the observed phenomena. This modified beam model is also found to fit 
the size-dependent bending modulus of nanotubes measured in the TPB experiments10,15 very well.

Simulation Method
In the present study, we take the BNNT as an example to investigate the effect of the BCs on the bending proper-
ties of the tubular nanostructures. To conduct the computational calculations, the entire nanotube was divided 
into three sections, i.e., (1) the boundary layers at the two ends, which correspond to the portion of the nanotubes 
attaching to the substrate, (2) the moving layer at the middle of the nanotube, which is used to apply the equiva-
lent transverse displacement loads produced by the AFM tip, and (3) the free layers, which are between the mov-
ing and boundary layers. The free layers together with the moving layer are equivalent to the suspended portion of 
the nanotubes in the AFM-based TPB test. In this study, the classical MD simulations were employed to investi-
gate the bending behaviours of BNNTs. In the present MD simulation studies, the interactions between the boron 
and nitrogen atoms were described by Tersoff potentials20, where the parameters were adopted from21 and have 
been successfully employed to evaluate the mechanical properties of SW BNNTs21. Here, the energy-minimized 
configuration of BNNTs was obtained via the conjugate gradient method. Then MD simulations were performed 

Figure 1.  (a) Scanning electron microscope image of BNNTs adhered on the patterned substrate. Adapted with 
permission from ref. 15. Copyright (2012) American Chemical Society. (b) Schematic drawing of the AFM-
based TPB test of a BNNT. (c) MD TPB simulation model of a nanotube. The nanotube is divided into three 
sections, including boundary layer, free layer and loading layer. (d) The deformed shape of during the TPB 
simulation.
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with the following procedure. First, the BNNT was completely relaxed for a certain period (20 ps was used in this 
work) to minimize the internal energy and reach an equilibrium state. In doing this, the NPT ensemble (constant 
number of particles, pressure and temperature) was employed to maintain a constant temperature with the aid 
of the Nosé-Hoover thermostat algorithm22. In addition, the velocity Verlet algorithm with the time step of 0.5 fs 
was utilized to integrate the Hamiltonian equations of motion determined by Newton’s second law. Second, all 
or a few atoms at the boundary layers were blocked to simulate different BCs. Third, to launch the TPB test a 
displacement control methodology was adopted to apply the transverse deflection to the nanotubes, i.e., atoms in 
the moving layer were moved transversely, while all or a few atoms at the boundary layers were fixed (see Fig. 1c). 
Last, the moving layer was kept fixed and the system was relaxed for 1 ps so as to allow the BNNT to reach a new 
equilibrium state.

By repeating the above process, the nanotubes can be bent continuously until the required deflection has been 
obtained. In the present study, all MD simulations were conducted using a large-scale atomic/molecular massively 
parallel simulator (LAMMPS)23 with a periodic BC along the axial direction and a constant temperature of 1 K. 
Here, we selected such a low temperature to simulate the elastic bending behaviour of nanotubes because other 
deformation mechanisms occur rarely at the temperature of 1 K.

Results and Discussion
Based on the aforementioned MD simulation technique, we will conduct the TPB test for the BNNTs. The influ-
ence of the shear effect and the imperfect BCs on the bending modulus of BNNTs will be quantified. The phe-
nomena observed in MD simulations will be further analysed by using the continuum mechanics theories. In 
addition, based on MD simulations and the continuum mechanics theories we will reveal the correlation between 
the imperfect BCs and the size-dependent bending modulus of nanotubes reported in existing experiments10,15.

Influence of the loading rate on the bending modulus of SW BNNTs.  To simulate the simi-
lar quasi-static loading condition utilized in the experiments9–15, we need to firstly determine the loading rate 
utilized in the present study. According to some previous studies24–26, the mechanical properties of nanotubes 
strongly depend on the loading rate. Specifically, some recent studies show that when the loading rate is relatively 
high, the external load will make the CNTs and BNNTs lose their structural integrity25,26. Thus, it is necessary to 
study the influence of the loading rate on the bending properties of BNNTs. To this end, based on the technique 
proposed above we have conducted a series of simulations on a (22, 0) zigzag BNNT (the diameter D is ~17.86 Å) 
with a length L about 190 Å. In the simulations all atoms at the boundary layers were fully blocked. Moreover, to 
study the influence of the loading rate on the bending properties, the atoms at the moving layer of the simulated 
BNNTs moved transversely with different velocities ranging from 0.06 Å/ps to 0.48 Å/ps. During the TPB simula-
tions we recorded the relationship between the deflection δ and the stored strain energy U of the BNNTs. In Fig. 2 
we plot the U-δ curves of the BNNTs under different loading rates. We can see from Fig. 2 that when the loading 
rate is smaller than 0.12 Å/ps U-δ curves almost overlap with each other, which means that when the loading rate 
is smaller than 0.12 Å/ps the influence of the loading rate almost can be ignored. Under this situation the loading 
condition can be equivalently treated as the quasi-static loading. Moreover, we can see from Fig. 2 that in the 
small deformation range U of all simulated nanotubes increases almost quadratically with δ. This U-δ relationship 
offers a means to calculate the bending modulus of the nanotubes. In order to obtain the bending modulus, a con-
tinuum model should be introduced. Generally, a nanotube can be most conveniently modelled as a beam model. 
Based on the Euler-Bernoulli beam theory the deflection δ is linearly proportional to the load F and is expressed 
by27 δ =​ FL3/192EbI. Thus, during bending the nanotubes the increase of total energy due to the work done by the 
applied load is U =​ Fδ/2 =​ 96EbIδ2/L3. This beam model thus leads to the bending modulus of the nanotube as

Figure 2.  The energy change ΔE vs the deflection δ of SW BNNTs under different loading rates. Here, the 
symbols are MD simulation results, while the lines denote the curve fitting to the MD simulation results based 
on Eq. 2.
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By fitting Eq. 2 to the MD simulation results shown in Fig. 2 we can see that, comparing to the case of the 
quasi-static loading, a relatively high loading rate will greatly increase the measured bending modulus of nano-
tubes. For example, we find that the bending modulus of the nanotubes obtained under the loading rate of 0.48 Å/ps  
is over two times larger than that obtained under the loading rate of 0.12 Å/ps. Therefore, to avoid the influence of 
loading rate and simulate the similar quasi-static loading condition utilized in the experiments9–15, in the follow-
ing discussion we choose the loading rate as 0.12 Å/ps.

Influence of the BCs on the bending modulus of SW BNNTs.  In this subsection we will start to 
study the influence of the BCs on the bending properties of SW BNNTs. A similar zigzag BNNT as illustrated 
in the above subsection was considered here. However, to study the influence the BCs three different BCs were 
considered for the nanotubes, i.e., all, half or a quarter of the atoms at the boundary layers of the nanotubes were 
blocked (see Fig. 3). U-δ curves of the simulated BNNTs were recorded during the TPB test. The recorded U-δ 
curves are plotted in Fig. 3 for SW BNNTs with different BCs. We can see from Fig. 3 that during the bending pro-
cess the strain energy stored in the nanotubes with partially fixed ends is smaller than that with fully fixed ends. 
Accordingly, we can expect from Eq. 2 that the influence of the imperfect BCs will reduce the bending modulus of 
nanotubes. Indeed, through fitting Eq. 2 to the MD simulation results depicted in Fig. 3 we find that the bending 
modulus of the nanotubes with half and a quarter of atoms at the boundary layers being blocked is respectively 
35% and 54% smaller than that of the nanotubes with all atoms at the boundary layers being blocked.

To better understand the influence of the imperfect BCs on the bending properties of the nanotubes, in Fig. 4a 
we show the atomic displacement of the nanotubes with half fixed BCs during the TPB simulation. Considering 
the fact that the displacement of the nanotubes is symmetric to the midpoint, in the present paper we only show 
the results of the left half part of the nanotubes. From Fig. 4a we can see that for the nanotubes with half fixed 
BCs, in the portion attaching to the substrate some atoms also have relative torsional displacements to the blocked 
atoms. Moreover, during the simulations the atomic stress of the nanotubes with fully and partially fixed ends is 
shown in Movie 1 and Movie 2, respectively. In the movies the atoms are coloured according to the atomic stress 
along the length direction. We can see from these movies that in the region nearby the boundaries the atomic 
stress of the nanotubes with partially fixed ends is much smaller than that with fully fixed ends. Accordingly, 
in the region nearby the boundaries the moment (proportional to the stress) generated in the nanotubes with 
partially fixed ends is much smaller that generated in the nanotubes with fully fixed ends. These results suggest 
that the perfectly fixed ends widely utilized in the previous studies9–15 cannot exactly describe the real BCs of 
the nanotubes in the TPB test and a general BC should be introduced for nanotubes as far as the beam model is 
employed. Thus, as shown in Fig. 4b, we assume that the ends of the nanotubes are restricted by a torsional spring 
with the coefficient of k rather than perfectly fixed.

It is known that when a transverse force F is applied at the midpoint of a beam as shown in Fig. 4b, its deflec-
tion should be symmetric to the midpoint. Then, the deflection of the whole beam can be equivalently repre-
sented by its left (or right) half part with the force and BCs as shown by Fig. 4c. Based on the Euler-Bernoulli 
beam theory, the differential equation of the static deflection of the beam illustrated in Fig. 4c is expressed as

Figure 3.  (a) The energy change Δ​E vs the deflection δ of SW BNNTs with various BCs as schematically 
depicted in (b).
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where E is Young’s modulus, w is the transverse deflection and x is the coordinate. The BCs of the beam in Fig. 4c 
are hinged with a rotational spring at x =​ 0 and free to move laterally with an applied force at x =​ L/2, that is
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Integrating Eq. 3 four times successively with respect to x yields an algebraic equation with four constant coef-
ficients, which generally can be written as

= + + +w c x c x c x c , (5)1
3

2
2

3 4

where c1 −​ c4 are the constants of integrations. Using Eq. 4 in Eq. 5 gives
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Substituting Eq. 6 into Eq. 5 yields the analytical expression of the beam profile
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The maximum deflection δ of the beam at x =​ L/2 is calculated according to Eq. 7 by

δ = +
+

.
FkL FL EI
EI kL EI

8
12 (16 32 ) (8)

4 3

Thus, when the influence of the imperfect BCs is considered, Eq. 1 can be rewritten to give the deflection as

Figure 4.  (a) Vector plot of atomic displacements of the SW BNNT during the TPB test. (b) The continuum 
mechanics model of a BNNT supported by the torsional spring at the end. (c) Schematic of the continuum 
mechanics model of a BNNT in bending. (d) The elastic modulus ratio Eb/E as a function of the stiffness of the 
torsional spring k. Here, the solid circles correspond to the results measured in Fig. 3a.
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Based on Eq. 9, in Fig. 4d we show the influence of the spring coefficient k on the elastic modulus ratio Eb/E. 
Here, for the SW nanotubes their second moment of area I can be written as I =​ πD3t/8, where t is the equivalent 
wall-thickness of the BNNT and usually assumed to be 3.4 Å28. We can see from Fig. 4d that when k is relatively 
large the ratio Eb/E approaches one, which means that when the torsional spring is relatively large the BCs of the 
equivalent beam model of the nanotubes can be equivalently treated as the perfectly fixed ends. In this case the 
bending modulus obtained from the TPB test is equivalent to the Young’s modulus of the nanotube. On the other 
hand, the ratio Eb/E is found to decrease as k decreases and approaches 0.25 when k is relatively small. Actually, 
when k ~ 0 the nanotube should be equivalently regarded as a simply supported beam and, accordingly, the deflec-
tion should be27 δ =​ FL3/(48EI). Comparing this equation to Eq. 1 we see that in this case the Young’s modulus 
is four times greater than the bending modulus predicted based on Eq. 1. In other words, when the torsional 
spring is relatively small, Eq. 1 which was widely utilized in the TPB experiments9–15 will greatly underestimate 
the Young’s modulus of nanotubes. Moreover, by fitting the present continuum mechanics solution (Eq. 9) to the 
MD simulation results (shown in Fig. 3), we can obtain the equivalent stiffness of the torsional spring utilized in 
the continuum mechanics model of the SW BNNTs with partially fixed ends. The results are shown in Fig. 4d, 
where the equivalent stiffness of the torsional spring is found to decrease as the number of the blocked atoms of 
the BNNTs decreases.

Influence of the BCs on the bending modulus of MW BNNTs.  In the above analysis, we have studied 
the influence of the BCs on the bending behaviours of SW BNNTs. Subsequently, we will investigate how the BCs 
affect the corresponding bending properties of MW nanotubes. To this end, we considered a (6, 0)@(14, 0)@
(22, 0) triple-walled BNNT, where the tube layers are stacked inversely (see refs 29 and 30 for details). In order to 
model the long-range van der Waals (vdW) interaction for the interlayer interaction, the original Tersoff potential 
energy proposed above is extended by adding a long-range Lennard-Jones (LJ) 12–6 potential. The LJ parameters 
employed in the present simulation were adopted from31. Similar to the above SW BNNT, here the length L of 
the MW BNNT was taken as 190 Å. It is noted that because the inner layers of MW BNNTs are wrapped by the 
outermost layer, when an MW BNNT attaches to the substrate, only the atoms at the outermost layer of the MW 
BNNT can be blocked. Similar to the above studies of the SW BNNTs, to study the influence of the BCs on the 
bending properties of MW BNNTs, at the two edges of the outermost layer of BNNTs half atoms were blocked 
(see Fig. 5a). The U-δ relationship of such MW BNNT obtained in the TPB simulation is plotted in Fig. 5b, where, 
for the sake of comparison, the results of the MW BNNT with all atoms at the boundary layers being blocked are 
also presented.

Through fitting Eq. 2 to the MD simulation results depicted in Fig. 5b we find that the bending modulus of 
the MW BNNTs with half fixed BCs is 40% smaller than those with fully fixed BCs. Although the influence of 
the imperfect BCs on the bending modulus is qualitatively the same for both SW and MW BNNTs, the influence 
of the imperfect BCs on the MW BNNTs is stronger than that on the SW BNNTs as the imperfect BCs reduce 
the bending modulus of the SW BNNTs by only 35%. To shed some light on the observed difference between the 
SW and MW BNNTs, in Fig. 5c we show the atomic displacement of the MW BNNTs with half fixed BCs during 
the TPB test. From Fig. 5 we can see that the atomic displacement of the outermost layer of the MW BNNTs is 
similar to that of their SW counterparts, where some atoms in the portion attaching to the substrate have relative 
torsional displacements to the blocked atoms. As for the inner layers of the MW BNNTs with half fixed BCs, a 
rotation displacement is also detected in the boundaries of the second and third layers since the displacements of 
the atoms in the inner layers of the MW nanotubes are only restricted by the weak vdW forces. It is worth empha-
sizing that such rotation displacement in the boundaries of the inner layers of the MW nanotubes was ignored 
in the previous studies9–15, where the boundaries of each layer of the MW nanotubes were tacitly assumed to be 
completely fixed. Considering the contribution of the additional rotation displacement in the boundaries of the 
inner layers, it is reasonable to expect that the influence of the imperfect BCs on the bending properties of the 
MW BNNTs should be more significant than that on the SW BNNTs, which is consistent with our MD simulation 
results.

Comparison between the influence of the BCs and the shear deformation.  As we mentioned 
in the introduction, a unique size-dependent bending modulus of nanotube was reported in most existing TPB 
experiments9–15, and the shear effect was widely accepted as a possible explanation for such size-dependent bend-
ing modulus. However, those studies were all based on the “curve fitting technique” by initially assuming that the 
size-dependence phenomenon originates from the shear effect. Thus, a direct measurement of the influence of 
the transverse shear deformation is still required. Moreover, we can see from above discussion that in addition to 
the shear effect the imperfect BCs can also greatly influence the bending modulus of nanotubes and thus can be 
regarded as another possible factor that may induce the size-dependent bending modulus of the nanotubes. To 
reveal the physics behind this size-dependence phenomenon we need to respectively quantify the influence of 
these two factors: the transverse shear deformation and the imperfect BCs. Firstly, we will quantify the influence 
of the transverse shear deformation. According to the Timoshenko beam theory27, when the transverse shear 
deformation is considered Eq. 1 can be rewritten to give the total deflection modulus of a beam with perfectly 
fixed BCs9,11, which is shown as follows
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where fs is a shape factor and equals to a value of 10/9 for a cylindrical beam9,11, G is the shear modulus and A is 
the cross-sectional area. After expanding I and A, we obtain the equivalent bending modulus of a beam consider-
ing the transverse shear deformation as follows
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where α =​ d/D is the ratio of the inner diameter d to the outer diameter D of nanotubes. The above Timoshenko 
beam theory (Eqs 10 and 11) converges to the Euler-Bernoulli beam theory when the beam is rigid in shear, i.e., 
G →​ ∞​. In this case, the bending modulus is found to be equal to the Young’s modulus. We can see from Eq. 11 
that, in terms of the influence of the geometry of the nanotubes the effect of the transverse shear deformation on 
the bending modulus of the nanotubes is mainly determined by their diameter-to-length ratio (D/L). Inspired by 
this idea, to quantify the influence of the transverse shear deformation on the bending behaviours of nanotubes, 
using the simulation technique proposed above we calculated the bending modulus of five (6, 0)@(14, 0)@(22, 0) 
triple-walled BNNTs, whose length is respectively 290 Å, 250 Å, 190 Å, 140 Å and 100 Å (the diameter-to-length 
ratio is accordingly 0.094, 0.128, 0.179, 0.071 and 0.062). Here, to eliminate the influence of the imperfect BCs 
all atoms at the boundary layers of the BNNTs were completely blocked. The obtained elastic modulus ratio Eb/E 
of the simulated BNNTs is plotted in Fig. 6 (triangles) as a function of D/L. Here, the Young’s modulus E was 
obtained by fitting Eq. 11 to the obtained MD simulation results. For the sake of comparison, the experimental 

Figure 5.  (a) Schematic diagram of the imperfect BC of an MW BNNTs. (b) The energy change Δ​E vs the 
deflection δ of MW BNNTs with fully fixed and partially fixed BCs. (c) Vector plot of atomic displacements of 
each layer of the MW BNNTs during the TPB test. Here the gray rectangle shows the boundary region of the 
BNNTs.



www.nature.com/scientificreports/

8Scientific Reports | 6:38974 | DOI: 10.1038/srep38974

results reported by Tanur et al.15 are also presented in Fig. 6. In the experiment conducted by Tanur et al.15 the 
MW BNNT suspension was firstly dropped onto clean silica substrates patterned and was allowed to dry. After 
this, the TPB test technique as we described in the introduction was utilized to measure the bending modulus 
of the BNNTs. In their TPB test a nanotube was ideally assumed as a homogeneous isotropic beam model15. 
Additionally, the ends of the beam model of the nanotubes were assumed to have perfectly BCs (completely 
simply supported or fixed). Based on these assumptions the bending modulus of the nanotubes measured in 
the TPB test was found to decrease with increasing diameter-to-length ratio, which was explained by the shear 
theory. We can see from Fig. 6 that when atoms at the boundary layers of the BNNTs were completely blocked 
Eb/E obtained by MD simulations (triangles) increases with decreasing D/L, which is qualitatively similar to 
the experimental observations (circles)15. In this case the size-dependent bending modulus obtained in MD 
simulations is attributed to the shear effect, since through fitting Eq. 11 to the MD simulation results we obtain 
the shear modulus G as 245 GPa, which agrees well with 250 GPa that obtained through the torsion test32. On 
the other hand, in quantity the gap between the present simulation results and the experimental results is huge. 
For example, when D/L drops to 0.1 Eb/E obtained in MD simulations of the BNNTs with fully fixed BCs is 0.9, 
which means that when D/L <​ 0.1 the influence of the transverse shear deformation almost can be ignored due 
to the fact that when D/L <​ 0.1 the shear effect reduces the bending modulus by no more than 10%. However, 
in the same range of D/L Eb/E of the BNNTs that measured in the experiment15 still strongly depends on the 
geometric size of the BNNTs. The significant difference in quantity between the MD simulation results only 
considering the shear effect and the experiment results clearly shows that the transverse shear deformation may 
not be the main reason for the size-dependent bending modulus that observed in existing TPB experiments of 
BNNTs15. Thus, caution must be exercised when the influence of the transverse shear deformation is considered 
to explain the experimental data. It is noted here that the current conclusion can be extended from the present 
BNNTs to CNTs. It is known that BNNTs and CNTs have comparable Young’s modulus and shear modulus32, 
thus the influence of the shear effect on the the equivalent bending modulus of CNTs is quantitatively close to 
that on the BNNTs (see Eq. 11).

Then, to quantify the influence of the imperfect BCs on the size-dependence of the bending modulus, we sim-
ulated the same five triple-walled BNNTs with different lengths (or different diameter-to-length ratios). Here, to 
take the influence of the imperfect BCs into account half atoms at the boundary layers of the outermost layer were 
blocked (see Fig. 5a). The results of Eb/E obtained in the simulations are plotted in Fig. 6 (squares) as a function of 
D/L. Similar to the influence of the shear effect, from Fig. 6 we see that the influence of the imperfect BCs also lead 
to the size-dependent bending modulus of the nanotubes, where the bending modulus declines with increasing 
D/L. Specifically, the imperfect BCs are found to exert more substantial influence on the bending modulus. For 
example, when D/L increases from 0.1 to 0.18 Eb/E of the nanotube with partially fixed BCs decreases from 0.55 to 
0.24, whereas in this process the result of the nanotube with fully fixed BCs is found to decrease from 0.9 to 0.72. 
It is noted in Fig. 6 that both theoretical predictions are qualitatively similar to the experimental observations. But 
the theory of the imperfect BCs is found to be even closer to the experiment15. The qualitative agreement between 
the proposed theory and the experiments shows the relevance of the imperfect BCs to the size-dependent bend-
ing modulus of nanotubes observed in the TPB experiments9–15.

In the meantime, in Fig. 6 a detectable discrepancy is still observed between the experimental results and the 
simulation results when the effect of the imperfect BCs is considered. Specifically, comparing with the results 
(squares) obtained in the present simulations, the bending modulus measured in the experiment15 drops more 
significantly with increasing diameter-to-length ratio. This discrepancy can be possibly attributed to the different 
geometric sizes of the nanotubes between these two studies. Different to the shear theory (Eq. 11), where the 
bending modulus of the nanotubes only depend on the diameter-to-length ratio (D/L) (see Eq. 11), in the theory 
of imperfect BCs (Eq. 9) the bending modulus show a more complex relationship with the geometric size of the 
nanotubes. For example, as we will illustrate in the following subsection, when the influence of the imperfect 

Figure 6.  The elastic modulus ratio Eb/E as a function of the diameter-to-length ratio D/L of the MW 
BNNTs with fully fixed and partially fixed BCs. For comparison purpose, the experimental data (solid circles) 
adapted from15 is also shown. Here, the dashed lines are polynomial fits drawn to guide the eye.
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BCs is considered, the bending modulus of the nanotubes with longer length will drop more significantly with 
increasing D/L. This result is in coincidence with the results observed in Fig. 6, where the nanotubes tested in the 
experiment15 is longer than those simulated in the present study.

Relevance to the experimental observations.  Finally, we will show the correlation between the beam 
model considering the imperfect BCs (Eq. 9) and the experimental observations. In Fig. 7a and b (circles) we respec-
tively show the experimental results of the elastic modulus ratio Eb/E of BNNTs15 and CNTs10 as a function of their 
diameter-to-length ratio D/L. Eb/E of the BNNTs and the CNTs both apparently decreases with increasing D/L.

In Fig. 7a we give a curve fitting to the experimental data of MW BNNTs using Eq. 9, which is based on the 
beam model with the imperfect BCs. Here, the MW BNNT is simply treated as a filled cylinder and thus the sec-
ond moment of area I =​ πD4/64. In addition, the length L of the BNNTs is 400 nm and approximately the same in 
all cases15; the Young’s modulus E of the BNNTs is 1800 GPa as predicted in ref. 15. We can see from Fig. 7a that 
the present theory of imperfect BCs can well fit the size-dependent bending modulus of BNNTs observed in the 
experiment15 when the spring coefficient k is 22 μN · μm/rad. Moreover, we can see from Fig. 7a that when D/L is 
relatively small Eb/E tends to one, which means that the BCs of the nanotubes now can be treated to be completely 
fixed. On the other hand, when D/L is relatively large Eb/E gradually approaches to 0.25, which means that in this 
case the nanotube tested in the AFM-based TPB test should be considered as a simply supported beam model 
rather than a fixed beam model.

Similarly, in Fig. 7b we give a curve fitting to the experimental data of MW CNTs10 using Eq. 9. Here, the 
suspended length L of the CNTs ranges from 240 nm to 420 nm10 and the Young’s modulus E of the CNTs is 
1400 GPa, which was obtained based on the fitting technique proposed by Tanur et al.15. We can see from Fig. 7b 
that Eq. 9 fits the experimental data10 well when k is 0.18 μN · μm/rad. According to the previous studies33, the 
binding interaction between the CNTs and the silica substrate could be weaker than that between the BNNTs 
and the substrate. Such smaller binding energy of the interface between the CNTs and the substrate is a possible 
reason for the smaller k detected in the TPB test of CNTs.

In addition, we can see from Fig. 7b that different to the shear theory (Eq. 11), where the bending modulus of 
the nanotubes only depend on the diameter-to-length ratio (see Eq. 11), in the theory of imperfect BCs (Eq. 9) the 
bending modulus show a more complex relationship with the geometric size of the nanotubes. For example, for 
nanotubes with the same diameter-to-length ratio but different lengths, the bending modulus of the nanotubes 
will increase as the length decreases (see Fig. 7b). Such complex relationship between the bending modulus and 
geometric size of nanotubes is a possible responsible for the large scattering of the measured experimental data 
(see Fig. 7b).

Conclusions
The influence of the imperfect BCs on the bending properties of BNNTs was investigated based on MD simu-
lations. Our results show that the imperfect BCs will reduce the bending modulus of nanotubes. Moreover, the 
influence of the imperfect BCs on the MW nanotubes is more significant than that on the SW nanotubes. At the 
same time, to capture the physics behind the MD simulation results a beam model with the general BCs was also 
proposed.

In addition, similar to the influence of the previously proposed transverse shear effect, the influence of 
the imperfect BCs will also induce the size-dependence of the bending modulus of nanotubes. However, 

Figure 7.  The relevance of the present theory of imperfect BCs to the size-dependent bending modulus of (a) 
BNNTs15 and (b) CNTs10 measured in experiments.
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comparing these two theories quantitatively, we find that the size-dependence phenomenon of the bending 
modulus induced by the imperfect BCs is more significant than that induced by the shear effect, which suggests 
that the imperfect BC can be a possible physical origin that leads to the strong size-dependence of the bending 
modulus found in the TPB experiments for nanotubes9–15. Indeed, the modified beam model proposed in the 
present study that takes the influence of the imperfect BCs into account is found to fit the experimental data10,15 
very well.
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