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Multicenter intracranial EEG 
dataset for classification of 
graphoelements and artifactual 
signals
Petr Nejedly   1,3,6 ✉, Vaclav Kremen   1,4,5, Vladimir Sladky1,6, Jan Cimbalnik1,6, 
Petr Klimes1,3,6, Filip Plesinger3, Filip Mivalt1, Vojtech Travnicek3,6, Ivo Viscor3, Martin Pail2, 
Josef Halamek   3, Benjamin H. Brinkmann   1,4, Milan Brazdil2,7, Pavel Jurak3 & 
Gregory Worrell1,4

EEG signal processing is a fundamental method for neurophysiology research and clinical neurology 
practice. Historically the classification of EEG into physiological, pathological, or artifacts has been 
performed by expert visual review of the recordings. However, the size of EEG data recordings is rapidly 
increasing with a trend for higher channel counts, greater sampling frequency, and longer recording 
duration and complete reliance on visual data review is not sustainable. In this study, we publicly share 
annotated intracranial EEG data clips from two institutions: Mayo Clinic, MN, USA and St. Anne’s 
University Hospital Brno, Czech Republic. The dataset contains intracranial EEG that are labeled into 
three groups: physiological activity, pathological/epileptic activity, and artifactual signals. The dataset 
published here should support and facilitate training of generalized machine learning and digital 
signal processing methods for intracranial EEG and promote research reproducibility. Along with the 
data, we also propose a statistical method that is recommended for comparison of candidate classifier 
performance utilizing out-of-institution/out-of-patient testing.

Background & Summary
Intracranial electroencephalography (iEEG) is an invasive procedure commonly used for localization of epileptic 
seizure onset zones in patients with drug resistant epilepsy. The iEEG signals are directly measured from cortical 
and deep brain structures, e.g. hippocampus, amygdala, etc. Currently, the visual inspection and artifact rejec-
tion of the data is standard pre-processing procedure that must be done prior to evaluating of epileptic seizure 
onset zones. The improvement of EEG acquisition systems, data storage, and surgical techniques allows for large 
scale data collection spanning over multiple days to weeks, recording from hundreds of electrodes with sampling 
rates reaching up to 32 kHz in research settings1. In addition to the clinical utility for mapping epileptic brain 
by localization of seizures and interictal epileptiform transients these data enable a wide range of neuroscience 
research activities. The amount of collected data is rapidly increasing and advancement in data compression, 
storage, visualization, and automated processing of data is important and has received significant attention2,3. 
The acquisition of large datasets has driven the development of improved data preprocessing tools that enable 
extraction of important application specific data segments i.e. to focus on the data that are clinically important 
like seizures or other brain states for research purposes. It is very burdensome for a human operator to manually 
classify hundreds of channels for data spanning days to weeks. If reliable automated methods, can be developed 
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they can easily and reliably mine the data and crop the segments of the data with the iEEG features of inter-
ests. The automatic classification of artifacts and segmentation of iEEG recordings is recognized as a challenging 
task, and many interesting studies have been published addressing the challenges4,5. In recent years, a variety of 
methods using machine learning techniques and deep learning techniques for iEEG processing emerged with 
impressive results6–8. The generalizability of an automated artifact detection method will enable broader utiliza-
tion and extension for any retrospective and prospective iEEG dataset, but this has received little attention. We 
have recently demonstrated robust generalization of automated detection algorithms for artifact classification 
using training and testing datasets collected from different institutions, acquisition systems, under different meas-
urement conditions7,8.

Automated processing and data mining with Convolutional Neural Networks (CNN) are powerful, but the 
interpretation of particular classifications and correlation with known iEEG waveforms is difficult. The inabil-
ity to dissect the CNN decision process makes it less interesting for understanding fundamental neurophysi-
ology, and ultimately for usage in clinical practice. We recently demonstrated the ability to temporally localize 
graphoelements that drive the final classification and make visual review and interpretation of raw EEG record-
ings possible8. This approach could also prove useful for supervised adaptive retraining in active learning and 
expert-in-the-loop scenario based on expert’s review of the data yielding false positive or false negative classifi-
cations. Common iEEG graphoelements of physiological activity (e.g. delta, alpha & beta bands oscillations) can 
be identified and characterized. Further, data contaminated with artifactual signals from several types including 
artificial or physiological sources. The most common artifact is powerline noise (50 Hz or 60 Hz) that is usually 
induced to the acquisition systems. Other artifacts have originally received less attention or were incorrectly 
assumed not to contaminate iEEG. But, it was later proven that eye movements and muscle artifacts might distort 
iEEG recordings9–11 and need to be either removed or discarded from analysis. In many recent electrophysiolog-
ical studies across several domains (neurology, cognition, etc.), the research focuses more and more on subtle 
attributes of the iEEG signal such as power in high frequency bands12–15. In such analyses, it is critical to recognize 
and control for subtle power changes in the signal that might be caused for example by high frequency harmonics 
of power line noise and other artificial generators that would be previously omitted by cropping a frequency band 
(e.g. analyzing data in low frequencies only). In general, iEEG often contains artifactual signals in electrodes 
that are spatially closer to scalp or cranial nerve foramen (movement, muscle artifacts, eye movements). The 
ECG signal and weak scalp signals might also propagate to the measurement system by a common reference. In 
addition, natural pulsation of the brain tissue driven by respiration, cerebro-spinal fluid pulsation, and hearth 
rhythm (blood-flow and pulsation in vessels) might cause motion distortion artifacts. The patients undergoing 
the iEEG monitoring have electrodes implanted into the brain structures that are assumed to generate the epilep-
tic/pathological activity like interictal epileptiform spikes and high-frequency-oscillations13. The problematic part 
of automated iEEG classification, that biases results of the studies, is the fact that artifactual signals (like muscle 
artifacts) caused by patient movement or other physiological sources commonly share features with pathological 
signals, e.g. power in band 200–600 Hz.

The purpose for public sharing of this dataset is to advance the field and the progress of generalized machine 
learning and iEEG processing techniques in neurophysiology. In particular, machine learning techniques capable 
of processing data from multiple institutions without performance degradation and without the need of retrain-
ing will be extremely useful. We anticipate these methods will boost the creation of new, large gold standard data-
sets from multiple institutions. The generalized pre-trained models should be re-trainable (transfer-learning)16,17 
to adapt to new datasets without requiring a collection of new annotated gold standards, which should signifi-
cantly decrease the time for manual annotation and therefore advance the iEEG utilization in clinical practice and 
research. For this reason, we believe that public sharing of such datasets is a cornerstone for further advancing 
iEEG research.

Methods
Data collection.  The iEEG dataset published in this study was collected from two institutions: St. Anne’s 
University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, Minnesota, United States of America). 
The data acquisition methods, and signal annotation techniques described below are adopted and expanded 
version of descriptions in our related work7,8. Here, for purposes of data sharing, we significantly extended the 
datasets that were used in our previous studies7,8. We provided additional information that are clinically relevant 
and might extend usability of the dataset. Each data segment is described by clinical useful features: classifica-
tion category (power line interference; high frequency noise; pathological activity; physiological activity), seizure 
onset zone (True, False), anatomical location, electrode type, reviewer identification number, patient number. 
Provided information allows for various statistical testing scenarios. The description of the format of data and 
meta-data is extensively commented in section Data Format Description.

The St. Anne’s University Hospital (FNUSA) dataset was made up of iEEG data collected in awake resting state 
from 14 patients diagnosed with drug resistant epilepsy (DRE) who underwent a standard pre-surgical moni-
toring for localization of seizure onset zone, a standard for epilepsy surgery. The acquisition system used for the 
measurement in the hospital was a BrainScope system (M&I, BrainScope, Czech Republic). This system allows 
for recording up to 192-channel with maximum 25 kHz sampling rate and common reference montage. Here the 
system was used to record 30 minutes of awake resting interictal iEEG recordings with 25 kHz sampling rate. Raw 
data was filtered with 2 kHz low-pass filter, and down-sampled to 5 kHz to avoid aliasing. The electrodes used 
in all patients from the dataset were standard intracranial depth electrodes (5, 10 and 15 contact semi-flexible 
multi-contact platinum electrodes (ALCIS - Temis Health, France), with a diameter of 0.8 mm, a contact length 
of 2 mm, contact surface area 5.02 mm2 and inter-contact distance 1.5 mm).

Mayo Clinic data were recorded during the first night after electrode implantation and consisted of two-hour 
long iEEG recordings. The data were collected between 1 AM and 3 AM from 25 patients with DRE undergoing 
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evaluation for epilepsy surgery. The Neuralynx Cheetah system (Neuralynx Inc., Bozeman MT, USA) was used 
to acquire the data at sampling rate of 32 kHz with hardware filter bandwidth of DC – 9 kHz. Similar to St’ Anne’s 
recordings, all data were filtered by an antialiasing filter, but in this case with cutoff frequency of 1 kHz. The data 
was subsequently down-sampled to 5 kHz. Patients were implanted with either depth electrodes or grids and 
strips, or the combination. An illustrative example (Fig. 1) shows co-registered electrode placement of fused MRI 
and CT scans of patient undergoing invasive EEG monitoring with stereotactic depth electrode. The depth elec-
trodes used in the dataset were AD-Tech electrodes (AD-Tech Medical Instrument Corp., Racine, WI or PMT, 
Chahassen, MN, USA) and consisted of 4 or 8 Platinum/Iridium contacts (2.3 mm long, 1 mm diameter, spaced 
5 or 10 mm center-to-center). AD-Tech subdural grids and strips electrodes had 4.0 mm diameter Platinum/
Iridium discs (2.3 mm exposed) with 10 mm center-to-center distance.

Ethics declaration.  All subjects gave written informed consent in accordance with the Declaration of 
Helsinki. The protocol was approved by the Mayo Clinic Institutional Review Board and St. Anne’s University 
Hospital Research Ethics Committee and the Ethics Committee of Masaryk University.

Data annotation.  All data were reviewed in SignalPlant18, a free software tool for signal processing, inspec-
tion and annotation. The dataset was annotated by 3 reviewers, where each recording was reviewed by single 
reviewer. Each recording was visually reviewed in time domain alongside power distribution matrices (PDM) 
for manual artifact detection13. The PDM method estimates the signal power envelope by data filtering in spe-
cific frequency bands, and further computes the absolute value of the analytical signal (analytical signal is com-
plex signal comprising original signal in the real domain and its Hilbert transform in imaginary domain) to 
obtain the signal envelope. Visual inspection of the PDM allow for fast localization of high-power events appear-
ing across all channels and are likely to be artifacts. The signal regions with high power envelope were subse-
quently reviewed in the time domain to classify signals into pathological/artifactual group. Standard clinical 
evaluation of pathology of the brain substrate requires two-year post-surgical follow-up evaluating reduction 
of epileptic seizures. However, in this study, we are targeting identification of signal graphoelements and thus 
defining pathological signal group as signals with epileptiform graphoelements e.g.: HFOs and spikes or epi-
leptiform discharges, that are visually reviewed and predominantly extracted from electrodes implanted to a 
brain structures like hippocampus. Generation of PDM is time consuming process, however, SignalPlant allows 
for CUDA GPU accelerated signal filtering19, which significantly speeds up the process. Annotated events were 
segmented with constant-length-segmentation into 3 sec (15000 samples) long data clips. The length of the 
constant-length-segmentation window was empirically estimated regarding the fact that muscle artifacts span 
over multiple seconds. This iEEG data window provides sufficient context to reliably differentiate between all 
classes of the data (physiological activity, pathological/epileptic activity, power-line noise, and other non-cerebral 
artifacts).

Fig. 1  A patient undergoing invasive EEG monitoring with stereotactic depth electrodes had a high-resolution 
spiral CT image acquired following electrode placement for verification and to rule out hemorrhage. The CT 
images were co-registered to the patient’s pre-operative 7-Tesla T1 weighted MRI using MIM version 6.8.3 
(Mim Software Inc.), with pixel intensities averaged to optimize concurrent visibility of CT electrodes and MRI 
tissue contrast.
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Data Records
The datasets from St Anne’s University Hospital and Mayo Clinic consist of 155182 and 193118 data clips, respec-
tively. The basic overview of segments distributions for each class/dataset is described in Table 1. Comprehensive 
data description statistics might be derived from datasets metadata files. In general, datasets contain data clips 
from four groups of distinctive events: powerline noise (in our case 50 Hz or 60 Hz depending on power line fre-
quency at clinic’s location); muscle and machine artifacts; physiological iEEG activity in different behavioral states 
of subject (sleep/wake/wake-relax); pathophysiological activity. For example, Fig. 2a shows signals recorded in 
FNUSA contaminated by 50 Hz noise. Figure 2b shows movement artifact and Fig. 2c illustrates baseline jumps 
caused by instrumentation). Muscle, movement and machine artifacts group is iEEG recording that contains 
most often high frequency components caused either by movements, muscle artifactual activity of subject or arti-
facts caused by instrumentation. Figure 2d shows normal wake-relaxed state iEEG activity from FNUSA dataset. 
Pathological/epileptiform activity can consist from interictal epileptiform activity like spikes or high frequency 
oscillations (Fig. 2e). The datasets are publicly available to use under CC0 license and might be downloaded from 
figshare20 repository.

Technical Validation
In order to validate the reliability of gold standard annotations, we have used a cross-validation statistics in pre-
dicting the class by model that has been trained by annotations from another reviewer. For example, model 
was trained on data classified by reviewers 1 and 2 and subsequently tested on out of sample data segments 
classified by reviewer 3 (Fig. 3, Table 2). This procedure was repeated for each reviewer. Moreover, we provide 
out-of-institution testing statistics in order to show that annotations are consistent across institutions (Fig. 4, 
Table 3). Given methods provides a measure of data labeling quality. In order to validate the annotations, we 
used the Convolutional LSTM neural network that was previously described8. The model processes z-score nor-
malized spectrograms of data and provides probability for each classification group. Here, we used the standard 
metrics i.e.: area under the receiver operating characteristic (AUROC) and area under the precision-recall curve 
(AUPRC) that are commonly applied in evaluation of model classification performance. For class imbalance 
datasets, like in our case, it’s crucial and more objective to report both AUROC and AUPRC in order to show 
unbiased model performance.

Data format description.  We publish this dataset in a format that allows easy accessibility to a general 
machine learning community and allows for optimal and fast machine learning. For this reason, the datasets are 

Classification category
St. Anne’s University 
Hospital (FNUSA)

Mayo 
Clinic

Physiological Activity 94560 56730

Pathological Activity 52470 15227

Artifacts 32599 41303

Power line noise (50 Hz/60 Hz) 13489 41922

Total 193118 155182

Table 1.  St Anne’s University Hospital (FNUSA) and Mayo Clinic Datasets. The table shows the number of 
3-second examples for each classification category. The datasets described in this table are extended versions of 
previously used data in our related research7,8.

a

b

c

d

e
0.5 s 1.0 s 1.5 s 2.0 s 2.5 s

Fig. 2  Figure shows intracranial EEG signal examples from different classification categories. (a) powerline 
noise, (b) muscle artifact, (c) baseline jump artifact, (d) physiological signal, and (e) epileptiform pathological 
signal with an HFO riding on a spike.
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Training dataset Testing dataset

Reviewer 1 Reviewer 2 Reviewer 3

Training of 
Conv-LSTM model

Tests of Conv-LSTM
model

Cross-Validation 
Results

a b

c d
Deploy 
model

Fig. 3  Diagram depicts pipeline used for cross-validation testing of generalized model. (a) training dataset, (b) 
testing dataset, (c) generalized model training, (d) testing phase.

Reviewer

Mayo Clinic FNUSA

AUROC AUPRC AUROC AUPRC

1 0.97 0.92 0.94 0.86

2 0.99 0.97 0.87 0.72

3 0.95 0.91 0.91 0.83

AVG 0.97 0.93 0.92 0.80

Table 2,.  Table describes cross-validation results for each reviewer separately. Standardly used classification 
metrics: AUROC and AUPRC are reported.

Mayo dataset

30% 70% 100%

Testing data      Training data
(to learn signals) 

       Stopping crit.        

Results from
Mayo data

a b

c d

 FNUSA dataset

Tests of Conv-LSTM
model

Deploy 
modelTraining of 

Conv-LSTM model

Fig. 4  Diagram depicts pipeline used for out-of-institution testing of generalized model. (a) training dataset, 
(b) testing dataset, (c) generalized model training, (d) out-of-institution testing.

Training set Testing set AUROC AUPRC

St. Anne’s 
(FNUSA) Mayo Clinic 0.80 0.71

Mayo Clinic St. Anne’s 
(FNUSA) 0.84 0.74

Table 3.  Table describes out of institution testing. Standardly used classification metrics: AUROC and AUPRC 
are reported.
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stored in two separate zip archives, where each archive consist of data records from one institution. Each data 
segment is saved in.mat file format in order to allow processing in commonly used computing tools like Matlab 
and Python. Proposed format was recognized as very easy to work with during several machine learning com-
petitions for classification of electrophysiological signals (mostly from cardiology domain) e.g. Computing in 
Cardiology Challenges21. Data segments are saved as data vectors (1 × 15000 float vector). Each dataset contains 
coma separated value (segments.csv) document describing metadata for each segment i.e.: segment_id, channel, 
category, reviewer, seizure onset zone (SOZ), anatomy, electrode type, anonymized patient_id, and institution. At 
the same time, we published the datasets in iEEG-BIDS format to comply with neuro data sharing standard22,23. 
Datasets and annotations are stored in multi-scale electrophysiology file format24 (.mef) that is supported23 by 
BIDS22. An official C code libraries and documentation for.mef usage are publicly available at https://github.com/
msel-source/meflib.

In order to promote data sharing and reproducibility of results, we also publish the example of the train-
ing code for neural network models along with the dataset. We also publish Python pipelines together with 
requirements for Python environment. This should allow for smooth data handling and help with using the 
dataset. Example codes are might be downloaded from figshare20 or github (https://github.com/xnejed07/
NoiseDetectionCNN-GRU).

Usage Notes
To streamline the data segmentation and machine learning process and to avoid an extra workflow on side 
of potential data users (direct manipulation with.mef files and compilation of supported C code libraries), 
we decided to publish the datasets that are segmented to 3-second segments (15,000 samples) also in matlab 
files (.mat). The 3-second length of the segment was empirically chosen based on electrophysiological char-
acteristics of iEEG, experiments, tests, and results of our previous study7. Each segment is appropriately labe-
led to an assigned class with all the other meta-data provided. We encourage using this dataset for training of 
deep-learning methods for processing of new intracranial EEG data. The datasets might be used as a pretraining 
step. We assume that this will significantly increase the speed of automated annotation process of new data. We 
have previously published and described the transfer learning method7, that produces the probability matrices 
for each classification group. The organization of the dataset into small data clips allows for a rapid model devel-
opment. That means that user doesn’t need to spend extensive amount of time with data annotation and other 
machine learning preprocessing steps, which usually consume a major part of time in development and testing 
of machine learning methods.

Received: 5 November 2019; Accepted: 6 May 2020;
Published: xx xx xxxx

References
	 1.	 Stead, M. et al. Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133, 2789–2797 (2010).
	 2.	 Brinkmann, B. H., Bower, M. R., Stengel, K. A., Worrell, G. A. & Stead, M. Multiscale Electrophysiology Format: An Open Open-

source Electrophysiology Format Using Data Compression, Encryption, and Cyclic Redundancy Check. Conf. Proc. Annu. Int. Conf. 
IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf. 2009, 7083–7086 (2009).

	 3.	 Brinkmann, B. H., Bower, M. R., Stengel, K. A., Worrell, G. A. & Stead, M. Large-scale Electrophysiology: Acquisition, Compression, 
Encryption, and Storage of Big Data. J. Neurosci. Methods 180, 185–192 (2009).

	 4.	 Gliske, S. V. et al. Universal automated high frequency oscillation detector for real-time, long term EEG. Clin. Neurophysiol. 127, 
1057–1066 (2016).

	 5.	 Hu, S., Stead, M. & Worrell, G. A. Automatic Identification and Removal of Scalp Reference Signal for Intracranial EEGs Based on 
Independent Component Analysis. IEEE Trans. Biomed. Eng. 54, 1560–1572 (2007).

	 6.	 Cimbalnik, J. et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin. Neurophysiol. 130, 1945–1953 
(2019).

	 7.	 Nejedly, P. et al. Intracerebral EEG Artifact Identification Using Convolutional Neural Networks. Neuroinformatics 17, 225–234 
(2018).

	 8.	 Nejedly, P. et al. Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification 
of the Human Electroencephalogram. Sci. Rep. 9 (2019).

	 9.	 Ball, T. Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage 46, 708–716 (2009).
	10.	 Kovach, C. Manifestation of ocular-muscle EMG contamination in human intracranial recordings. NeuroImage 54, 213–233 (2011).
	11.	 Jerbi, K. et al. Saccade Related Gamma-Band Activity in Intracerebral EEG: Dissociating Neural from Ocular Muscle Activity. Brain 

Topogr. 22, 18–23 (2009).
	12.	 Cimbalnik, J., Kucewicz, M. T. & Worrell, G. Interictal high-frequency oscillations in focal human epilepsy. Current Opinion in 

Neurology 29, 175–181 (2016).
	13.	 Brázdil, M. et al. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Annals of Neurology 82, 299–310 

(2017).
	14.	 Worrell, G. & Gotman, J. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies. 

Biomarkers in Medicine 5, 557–566 (2011).
	15.	 Kucewicz, M. T. et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 

137, 2231–2244 (2014).
	16.	 Tan, C. et al. A Survey on Deep Transfer Learning. Artificial Neural Networks and Machine Learning – ICANN 2018 Lecture Notes 

in Computer Science 270–279 (2018).
	17.	 Yang, L., Hanneke, S. & Carbonell, J. A theory of transfer learning with applications to active learning. Mach. Learn. 90, 161–189 

(2013).
	18.	 Plesinger, F., Jurco, J., Halamek, J. & Jurak, P. SignalPlant: an open signal processing software platform. Physiol. Meas. 37, N38–48 

(2016).
	19.	 Nejedly, P., Plesinger, F., Halamek, J. & Jurak, P. CudaFilters: A SignalPlant library for GPU-accelerated FFT and FIR filtering. Softw. 

Pract. Exp. 48, 3–9 (2017).
	20.	 Nejedly, P. et al. Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals. figshare https://doi.

org/10.6084/m9.figshare.c.4681208 (2020).

https://doi.org/10.1038/s41597-020-0532-5
https://github.com/msel-source/meflib
https://github.com/msel-source/meflib
https://github.com/xnejed07/NoiseDetectionCNN-GRU
https://github.com/xnejed07/NoiseDetectionCNN-GRU
https://doi.org/10.6084/m9.figshare.c.4681208
https://doi.org/10.6084/m9.figshare.c.4681208


7Scientific Data |           (2020) 7:179  | https://doi.org/10.1038/s41597-020-0532-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

	21.	 Clifford, G. et al. AF Classification from a Short Single Lead ECG Recording: the Physionet Computing in Cardiology Challenge 
2017. 2017 Computing in Cardiology Conference (CinC)(2017).

	22.	 Pernet, C. R. et al. EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Sci. Data 6 (2019).
	23.	 Holdgraf, C. et al. iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. 

Sci. Data 6 (2019).
	24.	 Stead, M., Bower, M., Brinkmann, B., Warren, C. & Worrell, G. Large-Scale Electrophysiology. Epilepsy 409–416 (2011).

Acknowledgements
This research was supported by NIH R01-NS92882, NIH UH2-NS095495, by the Institutional Resources for 
Research by Czech Technical University in Prague, Czech Republic, Projects LO1212, LQ1605 National Program 
of Sustainability II (MEYS CR), the CAS project RVO:68081731 and LTAUSA18056. This research has been 
financially supported by grant AZV NV 19-04-00343.

Author contributions
All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for 
publication. P.N., V.K. and V.S., designed the study and data science pipelines. J.C., P.K. M.F., T.V. and B.H.B. 
managed the data and created the annotations for the St Anne’s university Hospital and Mayo Clinic. I.V., J.H. 
and F.P. designed the statistical analysis, signal processing pipelines and methods. M.P. and M.B., conducted 
patient care and data acquisition at St Anne’s University Hospital. P.J. and G.W. were principal investigators of the 
proposed project, obtained funding, and provided technical and clinical input.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ 
applies to the metadata files associated with this article.
 
© The Author(s) 2020

https://doi.org/10.1038/s41597-020-0532-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals

	Background & Summary

	Methods

	Data collection. 
	Ethics declaration. 
	Data annotation. 

	Data Records

	Technical Validation

	Data format description. 

	Usage Notes

	Acknowledgements

	Fig. 1 A patient undergoing invasive EEG monitoring with stereotactic depth electrodes had a high-resolution spiral CT image acquired following electrode placement for verification and to rule out hemorrhage.
	Fig. 2 Figure shows intracranial EEG signal examples from different classification categories.
	Fig. 3 Diagram depicts pipeline used for cross-validation testing of generalized model.
	Fig. 4 Diagram depicts pipeline used for out-of-institution testing of generalized model.
	Table 1 St Anne’s University Hospital (FNUSA) and Mayo Clinic Datasets.
	Table 2, Table describes cross-validation results for each reviewer separately.
	Table 3 Table describes out of institution testing.




