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An effective humoral immune response necessitates the generation of diverse and high-
affinity antibodies to neutralize pathogens and their products. To generate this assorted
immune repertoire, DNA damage is introduced at specific regions of the genome.
Purposeful genotoxic insults are needed for the successful completion of multiple
immunological diversity processes: V(D)J recombination, class-switch recombination,
and somatic hypermutation. These three processes, in concert, yield a broad but highly
specific immune response. This review highlights the importance of DNA repair
mechanisms involved in each of these processes and the catastrophic diseases that
arise from DNA repair deficiencies impacting immune system function. These DNA repair
disorders underline not only the importance of maintaining genomic integrity for preventing
disease but also for robust adaptive immunity.
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INTRODUCTION

A functional immune system is defined by a diverse repertoire of cells, surface receptors, and
antibodies needed to effectively respond to pathogenic challenges (1). Endogenous DNA damage is a
potent driver of disease and aging (2), can trigger innate immune responses, and drive loss of cells
via apoptosis, necrosis, and senescence (3–5). However, deliberate DNA damage is necessary for
vertebrates to respond to the limitless variability of pathogen-related antigens (6, 7). Programmed
DNA double-strand breaks (DSB) that occur in B and T cell receptor genes are necessary for
lymphocyte development and maturation (6, 8, 9). These programmed DNA breaks occur at specific
sites and serve as critical intermediates for rearrangements required for V(D)J recombination
(Figure 1) (9). Through this process, the nearly 1012 B and T cells in an individual express millions
of unique combinations of antibody and T-cell receptor genes (10). Immune repertoires of any two
individuals may overlap by only a fraction of a percent even though these repertoires are formed by
Variable, Diversity, and Joining gene segments that are shared by all humans (11, 12). The diversity
between two individuals at the immunoglobulin loci is greater than their germline diversity.
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Antibodies (immunoglobulins) directly neutralize pathogens
and their gene products (13). In addition, antibodies recruit
cellular effectors of immunity to eliminate pathogens and tumor
cel ls . During development, variable regions of the
immunoglobulin (Ig) locus undergo V(D)J recombination of
both the heavy (IGH) and light chains (IGL) to generate 1011
Frontiers in Immunology | www.frontiersin.org 2
to 1014 novel combinations of genetic material (13–15). Upon
stimulation, further diversifications of Ig genes can be induced by
Class Switch Recombination (CSR) and Somatic Hypermutation
(SHM) (Figure 1). Antibody effector function is governed by its
antibody class or isotype. In response to antigen stimulation and
costimulatory signaling, programmed DNA damage in the
constant region of the IGH locus of mature B cells initiates
CSR, causing cells to undergo antibody class switching (13, 16).
This allows antigen-activated B cells, which are initially IgM+ or
IgD+, to change heavy chain constant domains and express one
of the other isotypes encoded downstream in the locus, thus
altering antibody function and tissue distribution (6).

Germinal center B cells undergo affinity maturation in
lymphoid tissue germinal centers to generate high-affinity
antibodies that enable a more effective humoral immune
response (17, 18). This process relies upon SHM to generate
single point mutations in the IGH and IGL loci (19, 20). While
CSR acts on the constant region of the IGH and IGL loci, SHM is
directed at the variable region. CSR and SHM act in concert to
create high-affinity immune responses to each pathogen
encountered. VDJ, CSR, and SHM are absolutely dependent on
intentional but tightly regulated induction of DNA damage at
discrete areas of the genome (20). Multiple components of the
DNA repair machinery: sensors, binding proteins, kinases,
helicases, recombinases, nucleases, polymerases, and ligases are
required for the resolution of the programmed DNA damage
that occurs in each of these processes (19, 21). This review
highlights the pathophysiological consequences caused by
mutations in genes encoding these DNA repair enzymes
required for immune diversification.
V(D)J RECOMBINATION

V(D)J recombination is the process that assembles the variable
domain of immunoglobulin and T-Cell Receptor (TCR) genes
via DNA rearrangements (22). V(D)J recombination increases
the sequence heterogeneity of a defined gene fragment during the
early stages of lymphocyte development. It shapes the immune
system repertoire by forming T-cel l receptors and
immunoglobulins in immature B cells. V(D)J recombination
involves multiple DNA repair proteins, including DNA-PKcs,
Ku70, Ku80, XRCC4, DNA Ligase IV, and the Cernunnos-XLF
protein, all required for non-homologous end-joining of DSBs.
Initiation of V(D)J recombination requires lymphoid-specific
DNA recombinases RAG1 and RAG2, which recognize
recombination signal sequences that flank all V, D, and J gene
units and as a complex introduce site-specific DSBs (23–26).
MRE11, RAD50, and EXO1 repair proteins are then needed to
join the broken DNA ends and resolve the DSB. Mutations in
DNA repair factors that participate in V(D)J recombination can
severely impact immune function. Mutations in the above genes
encoding the above DNA modifying proteins cause varied effects
on T and B cell immune cell repertoires. Immunological diseases
that arise from DNA repair defects impacting V(D)J
recombination are discussed below.
A

B

C

FIGURE 1 | Mechanisms of generating diversity in adaptive immunity.
(A) V(D)J recombination relies upon RAG-mediated recombination for the
rearrangement of immunoglobulin and T cell receptor variable (V), diversity
(D), and joining (J) gene segments during lymphocyte development. Many
enzymes involved in non-homologous end joining (NHEJ) and other DNA repair
mechanisms are required to correct the programmed DNA double-strand
breaks (DSB) that initiate gene segment rearrangement. (B) Class-switch
recombination (CSR) of the immunoglobulin heavy chain locus swaps antibody
isotype via recombination of different constant (C) regions. CSR requires
activation-induced cytidine deaminase (AID) to initiate a DNA DSB break at the
switch (S) region, which is subsequently repaired by classical and alternative
NHEJ. The schematic shows a CSR event that leads to the production of IgG
antibody isotype. (C) Somatic hypermutation (SHM) utilizes AID-dependent
programmed mutations in the variable region of antibody gene segments to
create a large number of antibodies with goal of creating greater affinity for
antigen. Antibody heavy (VH) and light (VL) chains, as well as antigen (black
circle) are illustrated. Figure created with BioRender.com.
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Severe Combined Immunodeficiency
Severe combined immunodeficiency (SCID) is a rare genetic
disorder characterized by impaired development of the immune
system and absence of T and B lymphocytes. Mutations in
human DNA repair genes RAG1, RAG2, DCLRE1C, PRKDC,
NHEJ1, and LIG4 cause SCID (27). These genes all encode
proteins that incise (RAG1-RAG2 complex), excise (DCLRE1C
Artemis protein) or participate in NHEJ DSB repair (PRKDC/
DNA-PKcs,NHEJ1/XLF4, and LIG4). Loss of function mutations
in RAG1/2, PRKDC, KU70, or KU80 preclude T and B cell
development, leading to SCID (26, 28) (Table 1).

Artemis deficiency, caused by null mutations in DCLRE1C,
also causes SCID. Artemis is an exonuclease essential for the
repair of DSBs via non-homologous end-joining (NHEJ) and
plays a critical role in V(D)J recombination. Artemis mutations
create a broad spectrum of phenotypes that range from SCID to
antibody deficiency (29, 44, 45). NK cell number and function
are unaffected in Artemis-deficient SCID patients. However,
Frontiers in Immunology | www.frontiersin.org 3
these patients commonly have radiation sensitivity consistent
with a DSB repair defect (44). The impact of a mutation on NHEJ
repair and capacity can vary between individuals with mutations
in DCLRE1C and do not correlate well with clinical severity (46).

DNA-PKcs is a key component of DNA Protein Kinase
complex (DNA-PK), which plays a critical role in NHEJ.
Artemis is a substrate for DNA-PKcs kinase activity and
phosphorylation is required for its nuclease activity that cleans
up broken DNA ends. Artemis binds DNA-PKcs and the
Artemis-DNA-PK complex cleaves 5’ and 3’ overhangs of
hairpins generated by the RAG complex. Mutations in PRKDC
can also impair Artemis activation or its ability to bind DNA
ends during DSB repair. DNA-PK also has a role in recruiting
other NHEJ proteins like XRCC4 and LIG4 to DSBs. As the
NHEJ pathway is critical in V(D)J recombination, hypomorphic
and null mutations in PRKDC lead to dysfunction in the
development of T and B cells. PRKDC mutations were only
discovered relatively recently in a SCID patient that exhibited
TABLE 1 | DNA repair deficiency-induced immunological disorders.

Pathway Disease Genes Description Refs

V(D)J
Recombination

Severe Combined
Immunodeficiency
(SCID)

RAG1, RAG2,
DCLRE1C,
PRKDC, NHEJ1,
LIG4

SCID patients have T and B lymphocyte deficiency. At least 4 diseases can be distinguished by
clinical phenotypes and the gene affected.

(18)

V(D)J
Recombination

SCID with
ARTEMIS
deficiency

DCLRE1C Subclinical immunodeficiency: reduction of naïve T cells with increased terminally differentiated T
cells due to a reduction in T-cell proliferation. Some patients have reduced B-cell numbers.

(29)

Hypomorphic mutations in DCLRE1C can cause atypical SCID, Omenn syndrome, Hyper IgM
syndrome, or inflammatory bowel disease.

V(D)J
Recombination

SCID with Ligase
IV deficiency

LIG4 Microcephaly and neurodevelopmental delay. (30)
T- and B-lymphocytopenia and varying degrees of hypogammaglobulinaemia often associated with
high IgM due to defective CSR. Some patients present with features of Omenn’s syndrome and
autoimmunity.

V(D)J
Recombination

SCID with
Cernunnos-XLF
deficiency

XLF T and B-cell lymphopenia, growth retardation, microcephaly, and increased sensitivity to ionizing
radiation.

(31)

V(D)J
Recombination

SCID with DNA-
PKcs deficiency

PRKDC Radiosensitive, growth retardation, microcephaly, and immunodeficiency due to profound T and B
cell lymphopenia. (32, 33)

V(D)J
Recombination

Ataxia
Telangiectasia
(A-T)

ATM Progressive cerebellar degeneration leading to ataxia, telangiectasia*, immunoglobulin deficiency
(IgA), lymphopenia (T cells), recurrent sinopulmonary infections, radiation sensitivity, premature
aging, and a predisposition to cancer, especially lymphomas.

(34)

Other abnormalities include poor growth, gonadal atrophy, delayed puberty, and insulin resistance,
ataxia: abnormal control of eye movement and postural instability.
Telangiectasia: abnormal, tortuous blood vessels
(*telangiectasia not present in all A-T patients)

V(D)J
Recombination
and, CSR

Ataxia
Telangiectasia-like
disorder (ATLD)

MRE11 Lack of specific functional antibodies causing minimal immunodeficiency, ataxia, and dysarthria. (35)

V(D)J
Recombination

Nijmegen
breakage
syndrome

NBN Progressive microcephaly presenting in utero, dysmorphic facial features, mild growth retardation,
mild-to-moderate intellectual disability, and, in females, hypergonadotropic hypogonadism. (36, 37)
Immunodeficiency (decreased T cells and reduced IgG/IgA) and a high incidence of pediatric
malignancies, mostly lymphomas and leukemias.

CSR and NHEJ RIDDLE syndrome RNF168 Radiosensitivity, Immunodeficiency, Dysmorphic features, and Learning difficulties, increased serum
IgM and reduced IgG levels. (38, 39)

CSR, SHM,
BER

Hyper IgM
Syndrome Type 5

UNG Elevated serum IgM with low IgG and IgA, increased susceptibility to bacterial infections and
lymphoid hyperplasia.

(40)

CSR and SHM Hyper IgM
Syndrome Type 2

AICDA Elevated serum IgM levels, low IgG, low IgA. lymphoid hyperplasia, and recurrent infections. (41)

CSR and MMR PMS2 or MSH6
deficiency

PMS2 Elevated serum IgM and low IgG and IgA, recurrent infections, cafe-au-lait spots. Associated with
Lynch Syndrome and colorectal and endometrial cancer. (42, 43)
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symptoms similar to patients with RAG or DCLRE1C mutations
(32). The patient was practically devoid of B and T cells while NK
cell numbers were normal. The patient did not display signs of
microcephaly or intellectual disability observed in other DNA
repair disorders impacting the immune system (32).

DNA ligase IV syndrome, which has features of SCID, is
caused by a LIG4 deficiency. This rare autosomal recessive
disorder is characterized by microcephaly, abnormal facial
features, sensitivity to ionizing radiation, and SCID (30). Only
30 patients with Ligase IV syndrome have been described, and
while they all are sensitive to ionizing radiation (47), they exhibit
a broad spectrum of clinical features. Patients typically exhibit
low T and B cell numbers and low serum Ig levels, resulting in
immunodeficiency (30).

Ataxia Telangiectasia
Ataxia Telangiectasia (A-T) is a genetic neurodegenerative
disorder that is characterized by progressively cerebellar
atrophy with impaired coordination of voluntary movements
(ataxia), the development of reddish lesions of the skin and
mucous membranes due to dilation of blood vessels
(telangiectasia), and immune dysfunction (cellular and
humoral immunodeficiency resulting in increased susceptibility
to infections, cancer and malignancies, in particular lymphoid
malignancies) (34). A-T is caused by mutations in the AT-
mutated (ATM) gene, the gene product of which is a key
component of the DNA damage response. Mutations in ATM
cause aberrant V(D)J recombination and apoptosis during
lymphocyte development, resulting in patients having
immunoglobulin deficiencies and lymphopenia (48–50). A-T
patients with inactivating mutations in ATM sporadically have
T cell prolymphocytic leukemia (T-PLL), B cell chronic
lymphocytic leukemia (B-CLL), and mantle cell lymphoma
(MCL) (51). CSR deficiency is also characteristic of A-T,
resulting in high serum IgM levels, with low IgA and IgG
levels (35).

Nijmegen Breakage Syndrome
Nijmegen breakage syndrome (NBS) is a rare autosomal
recessive syndrome of chromosomal instability mainly
characterized by microcephaly at birth, SCID, and a
predisposition to malignancies. It is caused by mutations in
NBN, which encodes NBS1 (36, 52). NBS1 forms a multimeric
complex with MRE11 and RAD50 nuclease (MRN complex) via
its C-terminus. The function of NBS1 is to recruit and retain the
complex at sites of DNA damage by directly binding to histone
H2AX, a histone phosphorylated by PI3-kinase family members
such as ATM, in response to DNA damage. The MRN complex
facilitates the rejoining of DBSs predominantly by homologous
recombination repair rather than NHEJ (52, 53). NBS patients
have variability in immunodeficiency, as the number of CD8+ T
cells could be normal, elevated, or considerably reduced, with
decreased CD4+ T cell counts. However, universally there is an
increase in unresolved recombination-mediated breaks in IGH
and a compensatory proliferation of mature B cells as absolute B
cell numbers are decreased, consistent with a V(D)J
recombination defect (36, 37).
Frontiers in Immunology | www.frontiersin.org 4
CLASS SWITCH RECOMBINATION

The ability of the immune system to fight and eliminate a wide
array of pathogens is made possible by the production of a variety
of antibody isotypes, each with unique effector functions. Naïve B-
cells produce only membrane-bound antibodies IgM and IgD.
Following infection, naïve B cells are activated and can be induced
to undergo CSR (13, 18, 54). CSR occurs in the DNA encoding the
constant region of IGH (16). Here, deletional recombination
occurs between DSBs intentionally introduced at switch (S)
regions between IGH constant region genes (18) (Figure 1).

The process of introducing DSBs begins with activation-
induced cytidine deaminase (AID), which demethylates
cytosines to uracil at immunoglobulin switch regions (55, 56).
Next, uracil-DNA glycosylase (UNG), a component of the base
excision repair (BER) pathway, excises the uracils, leaving abasic
sites that are further processed to create DNA single strand
breaks (SSB) (57, 58). If SSBs occur in both strands of the DNA
in close proximity, then a DSB results. DNA mismatch repair
(MMR) can also create DSBs following AID-induced
demethylation (16). MMR recognizes U:G mismatches and
resects single-stranded DNA created by mismatch-induced
DNA unwinding. If there is a SSB on the opposite strand in
the resected region, then a DSB is introduced. The DSBs at the
switch regions are recognized, recombined, and then repaired
using primarily NHEJ, similar to VDJ recombination (59). In
CSR, alternative end-joining (A-EJ) also plays a role in repairing
DSBs (60). In contrast to the classical NHEJ (c-NHEJ), A-EJ is a
relatively slower and more error-prone process that relies upon
annealing at microhomologies. A-EJ is also considered as a
prominent source of genome instability (59). A-EJ is
substantially less efficient than NHEJ but enables CSR in
c-NHEJ-deficient cells (60). Many factors including, stage of
the cell cycle, also influence which repair pathway is utilized (61).
Some DNA repair factors have distinct contributions in A-EJ
versus c-NHEJ. For example, 5-Hydroxymethylcytosine binding,
ES cell-specific-protein (HMCES) is dispensable for c-NHEJ but
the significant CSR defect observed in HMCES-deficient primary
B cells is due to its downstream role in A-EJ (62). Elevated end-
resection, non-productive interchromosomal translocations and
inversions were observed during sequence analysis of CSR
junctions of kinase-dead DNA-PKcs but not DNA-PKcs-
deficient B cells (63). ERCC1-XPF, whose role in CSR is not
fully understood, removes non-homologous 3’ overhangs that
result from annealing at microhomologies during A-EJ (64).

While most CSR-related diseases (discussed below) result
from non-functional CSR proteins, the initiation of AID-
induced damage outside of the IGH locus can lead to
translocations and B cell lymphomas (65–68). Beyond AID’s
role in CSR, it also participates in a phenomenon called locus
suicide recombination (LSR) which abolishes B cell function (69,
70). In LSR, AID initiates recombination between the most
upstream IGH switch region (Sm) and a “switch-like” region
near the 3’ regulatory region resulting in the deletion of the IGH
constant region, rendering the B cell non-viable. Although its
regulation is not well understood, the balance between CSR and
LSR may play a critical role in B cell fate. These studies illustrate
April 2022 | Volume 13 | Article 834889
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the deleterious aspects of AID-mediated recombination that
yield non-productive antibodies and B cell death (69, 71).

DNA Repair Syndromes
Affecting CSR
DNA repair is critical for antibody diversification through CSR,
which is evident in the numerous CSR-related diseases caused by
mutations in DNA repair proteins (Table 1). When CSR is not
functioning properly, individuals exhibit immunodeficiency due
to an impaired ability of B-cells to switch to IgA, IgG, and/or IgE
production. The characteristic phenotype of CSR-related diseases
is elevated serum IgM levels with low IgA, IgG, and/or IgE levels
(6, 13). There is substantial variation in clinical phenotypes both
within a disease and between diseases with impaired CSR. For
example, a study of patients with MSH6 deficiency found that one
patient had elevated IgM levels and reduced IgG, four had elevated
IgM and normal IgG, two had normal IgM and reduced IgG, and
one had normal IgM and normal IgG (72).

Although AID is not technically a DNA repair protein, its
intentional introductions of DNA damage are crucial for the
initiation of CSR. Mutations in AICDA, the gene that encodes
AID, cause hyper-IgM syndrome (HIGM) type 2 (41). Patients
with HIGM type 2 typically present with elevated serum IgM levels
with low IgA and IgG levels (73, 74). Following the replacement of
cytosine DNA bases in switch regions with uracil by AID, BER and
MMR proteins play critical roles in producing DSBs. Mutations in
UNG, coding for the BER protein UNG, result in the HIGM Type
5 (Table 1). Like HIGM type 2, this syndrome is characterized by
high serum IgM levels, low IgG levels, and low IgA levels (40, 42).
Additionally, patients with PMS2- and MSH6-driven MMR
deficiency exhibit defective CSR, which is also the case in MLH1
and MSH5-deficient mice (Table 1) (43, 72, 75, 76).

Defects in DSB recognition and signaling proteins can cause
CSR-related immunodeficiency. The MRN complex (MRE11-
RAD50-NBS1) recognizes DSBs and activates ATM, the key
transducer of signaling in response to DSBs. Ataxia Telangiectasia
(A-T), Ataxia Telangiectasia-Like Disorder (A-TLD), and NBS,
caused by mutations in ATM, MRE11, and NBS1, respectively, all
lead to CSR defects (34, 35). NBS patients have a defect in CSR as
well as VDJ recombination. A-T and A-TLD share many clinical
phenotypes such as ataxia, dysarthria, and abnormal eye
movements. However, A-T and NBS result in more similar
immunodeficiency phenotypes than A-T and A-TLD. Patients
with A-T and NBS often exhibit elevated serum IgM levels, low
IgA levels, and low IgG levels (Table 1) (77–79). In contrast, A-TLD
patients exhibit very mild immunodeficiency, with reductions in
some specific antibody isotypes observed (35, 80). RNF168 is
another protein involved in signaling and repair protein
recruitment following recognition of DSBs (38). RIDDLE
syndrome is caused by RNF168 mutations and is characterized by
defective CSR resulting in low serum IgG levels (39). Mutations
affecting critical NHEJ proteins often cause CSR-related
immunodeficiency. Low or absent serum IgA and IgG levels are
common in Cernunnos-XLF- and DNA-PKcs-deficient patients
(81, 82). In addition, DNA Ligase IV deficiency often results in
low serum IgG levels (30) (Table 1).
Frontiers in Immunology | www.frontiersin.org 5
SOMATIC HYPERMUTATION

SHM is another example of intentional DNA damage being
induced to enable antibody diversification in germinal center B
cells. SHM introduces point mutations in the Ig locus primarily
in the antibody variable (V) region that codes for the antigen-
binding site of immunoglobulin heavy and light chains
(Figure 1). This allows for the production and selection of B
cells with high-affinity antibodies (17, 83, 84). The mutation
frequency in SHM is a million-fold higher than the basal genome
mutation rate. How B cells restrict SHM to the V region while
maintaining genome-wide integrity is not well understood. AID
initiates antibody affinity maturation through SHM, analogous to
initiating CSR. Centroblast B cells in the germinal centers of
lymphoid organs express large amounts of AID to initiate SHM
(85). Numerous point mutations occur at both the site of uracil
incorporation and proximal nucleotides through three
predominant mechanisms: replication, BER, and MMR. Uracil
incorporated by AID can persist into the S phase during which
DNA replication can result in C to T (or G to A) transition
mutations (86). However, replication accounts for less than half
of all the mutations incorporated during SHM (83). Error-prone
non-canonical BER and MMR can combine to diversify
mutations introduced during SHM (87, 88). Similar to CSR,
SHM-associated uracils are excised by UNG creating an abasic
site during BER. Abasic sites are then bypassed by an error-prone
translesion synthesis (TLS) DNA polymerase, like Rev1, which
can introduce C:G transversion (88, 89). Alternatively, a non-
canonical MMR pathway can recognize and repair AID-induced
U:G mispairs. This pathway utilizes the error-prone TLS DNA
polymerase h, which primarily creates mutations at A:T base
pairs (88, 90, 91). Inactivating mutations in AID can result in
HIGM type 2 and UNG mutations can result in HIGM type 5
(41, 57, 92). In both conditions, the patients have defects in CSR
and SHM and are susceptible to infections (Table 1).
CONCLUSION

While genotoxic injury is looked upon as unfavorable, it is quite
beneficial for certain processes like meiotic recombination and
immunological diversity. Deliberate induction and repair of
DNA damage serve as a catalyst to expand our immune
repertoire. V(D)J and class-switch recombination yield unique
antibody combinations and establish effector function (6). Both
pathways incorporate many components of the DNA damage
response, recombinases, and enzymes from NHEJ repair
pathway in addition to other components of the DNA repair
machinery, including helicases, nucleases, polymerases, and
ligases. Lastly, intentional de novo mutations in the variable
region of immunoglobulin genes by SHM create high-affinity
antibodies. While DNA repair-deficient murine models have
been used to explore disease mechanisms and driver events in
tumorigenesis, samples from DNA repair disorder patients have
provided great insight into the functional consequences of
April 2022 | Volume 13 | Article 834889
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impaired DNA damage on diversification and development of
the adaptive immune system. Future exploration to investigate
immune perturbations in other monogenic diseases of DNA
repair may provide insight into other DNA repair mechanisms
that contribute to immune responses.
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