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Improving cancer immunotherapy by targeting the STATe of MDSCs
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ABSTRACT
Cancer immunotherapy is a promising therapeutic avenue; however, in practice its efficacy is hampered by
an immunosuppressive tumor microenvironment that consists of suppressive cell types like myeloid-
derived suppressor cells (MDSCs). Eradication or reprogramming of MDSCs could therefore enhance
clinical responses to immunotherapy. Here, we review clinically available drugs that target MDSCs, often
through inhibition of STAT signaling, which is essential for MDSC accumulation and suppressive functions.
Interestingly, several drugs used for non-cancerous indications and natural compounds similarly inhibit
MDSCs by STAT inhibition, but have fewer side effects than anticancer drugs. Therefore, they show great
potential for combination strategies with immunotherapy.

Abbreviations: APC, Antigen-presenting cell; ATRA, All-trans-retinoic acid; DC, Dendritic cell; GM-CSF, Granulocyte
macrophage colony-stimulating factor; G-MDSC, Granulocytic myeloid-derived suppressor cell; HNSCC, Head and
neck squamous cell carcinoma; IFN, Interferon; iNOS, inducible nitric oxide synthase; JAK, Janus kinase; MDSC, Mye-
loid-derived suppressor cell; M-MDSC, Monocytic myeloid-derived suppressor cell; NOX, NADPH oxidase; PDE, Phos-
phodiesterase; PGE2, Prostaglandin E2; PPAR, Peroxisome proliferator-activated receptor; RCC, Renal cell carcinoma;
ROS, Reactive oxygen species; STAT, Signal transducer and activator of transcription; TCR, T cell receptor; TGF, Trans-
forming growth factor; TME, Tumor microenvironment; Treg, Regulatory T cell; VEGF, Vascular endothelial growth
factor
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The immunosuppressive tumor microenvironment

In the past decade, cancer research has focused on the develop-
ment of novel strategies, such as targeted therapies and immu-
notherapy, many of which have been approved for clinical use.
These novel modalities are based on targeting specific pathways
exploited by cancers using small molecule inhibitors or on
empowering the immune system to eradicate cancer cells. Tar-
geting immune checkpoints like cytotoxic T lymphocyte-
associated protein 4 and programmed cell death protein 1
shows impressive results.1 Other promising immunotherapies
include adoptive cell transfer with tumor-infiltrating lympho-
cytes, vaccination with tumor-associated antigens and dendritic
cell (DC)-based vaccines. Although these therapies show sur-
vival benefits and have lower incidences of lethal drug resis-
tance than traditional chemotherapy, still not every cancer
patient benefits from them.2 One of the challenges that remains
is generated by the tumors themselves, as they can evade
immune responses by modulating the immune system in their
local microenvironment.3 This tumor-engineered local envi-
ronment has been termed the immunosuppressive tumor
microenvironment (TME), as it very effectively suppresses anti-
tumor immune responses. Myeloid-derived suppressor cells

(MDSCs) are key players in the TME and studies showing the
importance of MDSCs in pathological conditions have accumu-
lated in the past years. Many of these studies report an
increased frequency of MDSCs in the blood of patients suffer-
ing from different types of cancer.4,5 In addition, the presence
of MDSCs in the TME is correlated with decreased efficacy of
immunotherapies, including adoptive cell therapy, DC vaccina-
tion and ipilimumab treatment,6-8 making MDSCs an impor-
tant target for enhancing the efficacy of these therapies. This is
substantiated by experiments in mice where eradication of
MDSCs increased the efficacy of anticancer vaccines, adoptive
cell therapy and anti-vascular endothelial growth factor
(VEGF) antibody therapy.9-11

Here, we discuss the role of MDSCs in the immunosuppres-
sive TME and detail the role of Signal Transducers and Activa-
tors of Transcription (STAT) proteins in MDSC accumulation
and suppressive mechanisms. We elaborate on the potential of
several clinically available drugs and natural compounds to
inhibit MDSCs as an unintended effect, often mediated by
STAT inhibition. Ultimately, we present some interesting strat-
egies for combination regimens of these drugs and natural
compounds with immunotherapy. The insights we discuss in
this review relieve immunosuppression by targeting MDSCs
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and likely result in enhancement of antitumor immune
responses by immunotherapy.

Myeloid-derived suppressor cells

In healthy individuals, myeloid progenitor cells and immature
myeloid cells arise in the bone marrow and mature into granulo-
cytes, macrophages or DCs. However, during cancer progres-
sion, tumor-derived factors, like granulocyte-macrophage
colony-stimulating factor (GM-CSF) stimulate myelopoiesis,
but disturb maturation.12 This leads to the appearance of a het-
erogeneous population of immature myeloid cells in the blood
that have the morphology of granulocytes or monocytes, but
lack some of the markers expressed by these cells.13 Based on
their ability to efficiently inhibit T cell function, these cells are
referred to as MDSCs. In mice, MDSCs can be identified by the
expression of Gr-1 and CD11b and can be subdivided into gran-
ulocytic or monocytic MDSCs (G-MDSCs or M-MDSCs) based
on the expression of Ly6G or Ly6C, respectively.14 In humans,
adequate characterization is challenging due to the lack of spe-
cific markers. As a consequence, MDSCs have been defined by
different marker combinations in different studies.15 Generally,
MDSCs can be defined as CD33CCD11bCHLA-DR¡/low cells
that can be further subdivided into G-MDSCs or M-MDSCs by
the co-expression of either CD15 or CD14, respectively.16 The
importance for clinical outcome of the frequency of either
MDSC subtype differs across cancer types. For example, high
numbers of M-MDSCs, but not G-MDSCs, are associated with
negative response of non-small-cell lung cancer patients to plati-
num-based chemotherapy and the combination treatment of
platinum with bevacizumab.17 Furthermore, elevated frequen-
cies of M-MDSCs are also associated with decreased survival of
melanoma patients, regardless of previous therapy.18

MDSC suppressive mechanisms inhibit T cell development
and function

After activation, MDSCs can inhibit both innate and adaptive arms
of the immune system. They affect the innate immune system
mostly indirect by secretion of immune inhibitory cytokines like
IL-10 and transforming growth factor (TGF)-b, driving macro-
phages to a suppressive M2 phenotype,19 and negatively affecting
natural killer cell maturation, respectively (Fig.1A).20 The effect of
MDSCs on adaptive immunity is more direct, involving the sup-
pression of T cells, using several mechanisms. First, MDSCs inhibit
T cell function and proliferation by depleting the essential amino
acids L-arginine and L-cysteine from the TME (Fig.1B). L-arginine
is a substrate for arginase-I and inducible nitric oxide synthase
(iNOS), which are both highly expressed by MDSCs.13 Depletion
of L-arginine leads to loss of the T cell receptor (TCR)z chain,
resulting in decreased growth and differentiation.21 Similarly,
MDSCs can deplete L-cysteine from the TME, resulting in
decreased proliferation and activation of T cells.22 Second, MDSCs
produce reactive oxygen (ROS) and nitrogen species, like hydrogen
peroxide (H2O2) and peroxynitrite (ONOO

¡) (Fig. 1C). iNOS pro-
duces NO after T-cell-derived interferon (IFN)g stimulation,
which subsequently forms peroxynitrite after reacting with a super-
oxide anion (O2

¢¡).23 Superoxide anions are produced by NADPH
oxidase (NOX) and can react with water to form H2O2. ONOO

¡

causes nitration and nitrosylation of components of the TCR sig-
naling complex andH2O2 causes loss of the TCRz-chain, both thus
decreasing T cell activation.24,25 ONOO¡ release also leads to nitro-
sylation of chemokines like CCL2, resulting in decreased recruit-
ment of tumor-infiltrating T cells and high infiltration of
immunosuppressive myeloid cells, including tumor-
associated macrophages and MDSCs.26 Lastly, MDSCs can induce
the development of regulatory T cells (Tregs), and expand the exist-
ing Treg population, both of these mechanisms requiring direct
cell–cell contact (Fig. 1D).27,28 The secretion of several factors by
MDSCs, including, TGF-b and IL-10might be involved in this pro-
cess, although the mechanism is still unclear.29 Finally, L-arginine
depletion byMDSCs also contributes to Treg expansion.28

STAT protein signaling is important in regulation of MDSCs

MDSC expansion and suppressive mechanisms are mainly reg-
ulated by the STAT signaling pathway. This protein family con-
sists of seven proteins that regulate many vital cellular
functions, such as proliferation and cell survival. They are acti-
vated through binding of cytokines or growth factors to their
receptors, leading to activation of Janus kinase (JAK) tyrosine
kinases, which phosphorylate STAT proteins. The phosphory-
lated STATs then translocate to the nucleus and regulate the
expression of STAT target genes.30

Many tumors exploit STAT signaling through the secretion
of tumor-derived factors (Fig. 2). This hijacking of STAT sig-
naling plays an important role during cancer initiation and pro-
gression and in maintaining an immunosuppressive TME, for
instance by inducing accumulation of MDSCs or stimulation of
their suppressive capacity.12 Tumor-derived factors, like G-
CSF, GM-CSF and VEGF, induce STAT3 signaling, resulting in
increased expression of proliferation-inducing and anti-
apoptotic proteins, including c-Myc, Bcl-XL, cyclin D1 and sur-
vivin. These proteins promote proliferation of immature mye-
loid cells, while preventing apoptosis and differentiation into
mature cells, resulting in increased MDSC frequencies.31 Addi-
tionally, STAT3 directly regulates MDSC suppressive
mechanisms by inducing NOX2 expression,32 and arginase
production.33 STAT3 also induces the gene expression and pro-
tein level of the pro-inflammatory protein S100A9 in myeloid
progenitors. Overexpression of S100A9 prevents differentiation
into mature myeloid cell types by directly facilitating ROS pro-
duction, resulting in expansion of MDSCs.34 Furthermore,
S100A9 binds to CD33 on MDSCs and induces production of
IL-10, TGF-b, arginase and ROS.34,35 The presence of constitu-
tively active STAT1 correlates with increased frequency of
MDSCs in tumors of breast cancer patients 36 and induces pro-
liferation and suppressive capacity by regulating iNOS and
arginase-I activity.31,37 A third STAT protein, STAT5 induces
MDSC expansion by reducing differentiation into mature mye-
loid cells through inhibition of interferon regulatory factor
(IRF)-8.38 STAT6 induces MDSC proliferation and survival
and enhances arginase-I activity in MDSCs.39-41

The immunosuppressive capacity of MDSCs and their nega-
tive correlation with disease stage, treatment response and sur-
vival clearly suggest their importance in cancer progression and
suboptimal outcomes of cancer immunotherapy. Eradication
or reprogramming of MDSCs is a logical strategy to re-engineer
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the TME and improve immunotherapy efficacy. The important
role of STATs in accumulation and function of MDSCs, make
the STAT proteins interesting targets to achieve this goal.

MDSCs as a target for enhancing immunotherapy efficacy

Drugs are known to have off-target effects, which are the main
source of unwanted drug-related side effects. However, increasing
evidence shows that chemotherapeutics and other drugs also have
unintended effects that are beneficial, such as stimulation of
immune responses by reduction of inhibitory molecules on DCs 42

and inhibitory effects on MDSCs. Several chemotherapeutics,

drugs that are currently not used in cancer treatment and natural
compounds have unintended effects on MDSCs (Table 1). Gener-
ally, these effects can result in inhibition of expansion and recruit-
ment of MDSCs, inhibition of suppressive functions, or induction
of MDSC differentiation into mature myeloid cells (Fig. 3). Several
of these drugs modulate STAT signaling pathways, further empha-
sizing the potential of this pathway as aMDSC-inhibitory target.

Inhibition of MDSC expansion and recruitment

Targeted cancer therapies, like vemurafenib, affect MDSC
expansion. Vemurafenib is a small molecule serine-threonine

Figure 1. MDSC-suppressive mechanisms target innate and adaptive arms of the immune system. (A) Myeloid-derived suppressor cells (MDSCs) can inhibit the innate
immune system by TGF-b-induced inhibition of NK cell function and induction of a M2 macrophage phenotype by secretion of IL-10. (B) MDSCs deprive T cells of amino
acids L-cysteine and L-arginine, which are essential for proliferation and differentiation. (C) MDSCs release reactive oxygen species, such as hydrogen peroxide (H2O2) and
peroxynitrite (ONOO¡). H2O2 causes loss of the T cell receptor (TCR)z-chain and peroxynitrite causes nitration and nitrosylation of chemokines like CCL2 and components
of the TCR signaling complex, thereby both inhibiting T cell activation and recruitment. (D) MDSCs induce the development of regulatory T cells (Tregs) or expand existing
Treg cell populations; these effects are mediated by interaction of the TCR with MHC-II and CD40 with CD40L. Furthermore, secretion of factors like IL-10 and TGF-b, and
deprivation of L-arginine by MDSCs induce Treg polarization. ARG1, arginase 1; CCL2, chemokine (C–C motif) ligand 2; iNOS, inducible nitric oxide synthase; NOX2, NADPH
oxidase 2; NO, nitric oxide; NK, natural killer; TGF-b, transforming growth factor-b; IL, interleukin.
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kinase inhibitor that is specific for V600 mutated, constitutively
active, B-RAF and is used to treat melanoma patients. In a
recent clinical trial, decreased M-MDSCs and G-MDSCs fre-
quencies were observed in patients that achieved a clinical
response. In addition, vemurafenib inhibited the production of
cytokines, like IL-6, by melanoma cells, thereby inhibiting M-
MDSC development.43,44 Other kinase inhibitors also showed
the potential to inhibit MSDC expansion, although this was
mainly shown in preclinical models. Tyrosine kinase inhibitors
axitinib, sorafenib and sunitinib inhibited tumor growth by
inhibiting several growth factor receptors, including VEGF and
platelet-derived growth factor receptor.45 Axitinib treatment of
mice significantly decreased the number of MDSCs in the spleen
and tumor, by downregulating STAT3 expression.46 Further-
more, the combination of axitinib with DC vaccination
enhanced elimination of MDSCs compared to axitinib or vacci-
nation alone.47 Sorafenib similarly decreased MDSC frequency
and their analogous mechanisms of action suggest that, like axi-
tinib, sorafenib targets STAT3.48 Sunitinib is used to treat meta-
static renal cell carcinoma (RCC) patients, in whom it decreased
the frequency of both G-MDSCs and M-MDSCs in peripheral

blood, and partially restored IFNg production by T cells.49,50

However, intratumoral MDSCs are often less affected and can
develop resistance to sunitinib. This was observed in RCC
patients, where the majority of patients treated with sunitinib
prior to primary tumor resection showed high intratumoral
MDSC frequencies compared to non-treated primary tumors.50

GM-CSF-induced STAT5 signaling is crucial in the develop-
ment of sunitinib resistance, as MDSCs cultured in the presence
of GM-CSF, developed sunitinib resistance via increased STAT5
signaling.51 Additionally, sunitinib enhanced stromal cell-derived
factor-1-dependent induction of MDSC frequency in mice bear-
ing human RCC xenografts. Taken together, the overall effect of
sunitinib on MDSCs remains unclear.52

Other drugs that, similar to axitinib, sorafenib and sunitinib,
inhibit VEGF can also induce MDSC eradication. The anti-
VEGF antibody bevacizumab, reduced the frequency of imma-
ture myeloid cells in colorectal cancer patients.53

Besides targeted cancer therapies, MDSC expansion can also be
inhibited by drugs that are currently not used in cancer therapy. In
a preclinical model, a significant reduction in earlyMDSC accumu-
lation in the blood was obtained with the peroxisome proliferator-

Figure 2. Induction of MDSC expansion and suppressive functions by the STAT signaling proteins. Tumor-derived factors induce signal transducers of activators of tran-
scription (STAT) signaling, which stimulated MDSC expansion and suppressive functions. IL-4 and IL-13 induce STAT6 that regulates ARG1, leading to enhanced MDSC pro-
liferation and survival. IL-6, GM-CSF, G-CSF and VEGF induce STAT3 signaling, which regulates ARG1, NOX2 and the expression of factors like MYC, Bcl-XL, cyclin D1,
survivin and S100A9. This leads to enhanced MDSC proliferation and suppressive capacity, reduced apoptosis and inhibition of differentiation into mature cells. IFNg and
IL-1b regulate STAT1 activation, which induces iNOS and ARG1 expression by MDSCs, leading to induced proliferation and suppressive capacity. STAT5 signaling is
induced by GM-CSF and inhibits the differentiation of MDSCs into mature cells through inhibition of IRF-8. IL, interleukin; IRF, interferon regulatory factor; GM-CSF, granu-
locyte-macrophage colony-stimulating factor; G-CSF, granulocyte-colony stimulating factor; VEGF, vascular endothelial growth factor; IFNg , interferon-g ; JAK, Janus kinase;
ARG1, arginase 1; NOX2, NADPH oxidase 2; iNOS, inducible nitric oxide synthase; Bcl-XL, B-cell lymphoma-extra-large.
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activated receptor (PPAR)-g activator rosiglitazone, which is used
in diabetes treatment.54 Similarly, the histamine blocker cimetidine
blocked the expansion of MDSCs in tumor-bearing mice by induc-
tion of apoptosis and by inhibition of NO and arginase
production.55

Inhibition of MDSC-suppressive activity

Investigating changes in MDSC-suppressive capacity in clinical
settings is challenging and studies addressing this issue are limited.
The most notable study reports that ipilimumab decreased the
expression of arginase in melanoma patients, indicative for loss of
MDSC suppressive capacity. Furthermore, treatment with ipili-
mumab for more than 3 weeks decreased the frequencies of G-
MDSCs andM-MDSCs.56,57 Phosphodiesterase-5 (PDE-5) inhibi-
tors, like sildenafil, are generally used in erectile dysfunction and

pulmonary hypertension and inhibit IL-4Ra signaling, which reg-
ulates suppressive pathways in MDSCs via STAT6.58 Indeed,
administration of sildenafil downregulated the activity of iNOS
and arginase-I in MDSCs through a STAT6-mediated pathway,
resulting in prolonged survival of melanoma-bearing mice.59,60

Not much is known about the effects of sildenafil on human
MDSCs, but intriguingly, sildenafil increased T cell proliferation
of in-vitro-treated PBMCs obtained from patients with multiple
myeloma and head and neck squamous cell carcinoma
(HNSCC).59 Recent clinical trials showed that tadalafil, another
PDE-5 inhibitor, reduced the number of MDSCs as well as their
production of arginase and iNOS in HNSCC and multiple mye-
loma patients, resulting in increased numbers of tumor-specific T
cells.61-63 Additionally, it was shown that NO release can activate
cyclooxygenase enzymes.64 Cyclooxygenase 2 is a key regulator of
prostaglandin (PG)E2 synthesis, which can induce the expression
of immunosuppressive factors, like IL-10 and IL-4Ra and

Table 1. Overview of drugs that target MDSCs.

Drug name Cancer type Effect on MDSCs References

Drugs for cancer therapy
Chemotherapeutic drugs
Decitabine Colon carcinomaa Stimulation of differentiation into mature APCs 68

All-trans-retinoic acid (ATRA) Colon carcinomaa, metastatic renal cell carcinomab, small cell
lung carcinomab

Stimulation of differentiation into mature APCs,
reduction of ROS production

69-72

Paclitaxel Mammary tumora, melanomaa Stimulation of differentiation into DCs, reduction
of MDSC levels and inhibition of suppressive
capacity

73-75

Docetaxel Mammary tumora Promotion of MDSC differentiation into M1-
macrophages

76

Kinase inhibitors
Vemurafenib Melanomab Reduction of MDSC levels and inhibition of M-

MDSC development

43,44

Axitinib Metastatic renal cell carcinomaa, melanomaa Reduction of MDSC levels through STAT3
inhibition

46,47

Sorafenib Hepatocellular carcinomaa Reduction of MDSC levels 48

Sunitinib Metastatic renal cell carcinoma Reduction of MDSC levels 49

Monoclonal antibodies
Bevacizumab Colorectal cancerb Reduction of immature myeloid cell levels 53

Ipilimumab Melanomab Inhibition of ARG-1 expression and reduction of
M-MDSC and G-MDSC numbers

56,57

Drugs for other indication
PPAR-g activators
Rosiglitazone Pancreatic carcinomaa Reduction of early MDSC accumulation 54

Histamine blockers
Cimetidine Lung carcinomaa Reduction of MDSC expansion by induction of

apoptosis and inhibition of NOS and ARG-I
expression

55

Phosphodiesterase-5 inhibitors
Sildenafil Colon carcinomaa, melanomaa, head and neck squamous cell

carcinomab, multiple myelomab
Inhibition of iNOS and ARG-I activity by

downregulation of IL-4Ra

59,60

Tadalafil Head and neck squamous cell carcinomab, multiple myelomab Reduction of MDSC levels, reduction of arginase
and iNOS production

61-63

Diuretics
Amiloride Colorectal carcinomab Inhibition MDSC suppressive capacity via

reduced exosome secretion

66

Natural compounds
Icariin Mammary carcinomaa Inhibition of NO and ROS production via STAT3

inhibition and induction of differentiation
into macrophages and DCs

67

Cucurbitacin I, cucurbitacin B MethA sarcomaa, lung cancerb Stimulation of differentiation into DCs through
inhibition of JAK2/STAT3

77,78

Curcumin Gastric cancera, colon carcinomaa Stimulation of differentiation into M1
macrophages through inhibition of JAK2/
STAT3

80

1a,25-hydroxyvitamin D3 Lung carcinomaa, head and neck squamous cell carcinomab Stimulation of immature myeloid cells
differentiation into DCs

81,82

aMurine cancer model
bhuman cancer
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inhibitory molecules, like programmed death-ligand (PD-L)1, by
MDSCs.65 Indirect inhibition of PGE2 release through inhibition
of NO release by PDE-5 inhibitors could also contribute to the
inhibitory effects of these drugs on MDSCs. These findings clearly
illustrate the potential of PDE-5 inhibition as a way to inhibit
MDSCs via STAT signaling regulation. Another interesting drug
is amiloride, which is a diuretic drug used to treat high blood pres-
sure. Amiloride inhibited MDSCs suppressive capacity by inhibit-
ing the secretion of CSF-containing exosomes by the tumor and
consequently inhibiting IL-6/STAT3 signaling. Patients with colo-
rectal cancer receiving amiloride treatment indeed had decreased
STAT3 activation and reducedMDSC suppressive capacity.66

In addition to drugs, natural compounds can also have unin-
tended effects on MDSC suppressive capacity. The natural
compound icariin, the active ingredient of a herb used in Chi-
nese medicine, inhibited ROS and NO production by MDSCs,
through inhibition of STAT3 and AKT phosphorylation.

Furthermore, it reduced MDSC frequency and promoted differ-
entiation into macrophages and DCs.67

In summary, the checkpoint inhibitor ipilimumab and sev-
eral drugs that are currently not used as direct anticancer
agents, like PDE-5 inhibitors, can inhibit MDSC suppressive
mechanisms. Similar to the PDE-5 inhibitors, amiloride and
icariin induce their effect by regulating STAT signaling path-
ways. The known mechanism of action and the fact that these
drugs induce mild side effects compared to anticancer drugs
make them the most promising candidates to use in combina-
tion strategies with immunotherapy.

Induction of MDSC differentiation into mature cells

Chemotherapeutic drugs, like the DNAmethyltransferase inhibi-
tor decitabine, can inhibit MDSCs by inducing their differentia-
tion into mature antigen-presenting cells (APCs).68 Furthermore,

Figure 3. Mechanisms by which drugs and natural compounds inhibit MDSCs. Several drugs and natural compounds used in cancer treatment or for other indications
have off-target effects that result in inhibition of myeloid-derived suppressive cells (MDSCs) through four distinct mechanisms. The off-target effects can inhibit expansion
of MDSCs, inhibit their T cells suppressive capacity or induce the differentiation of MDSCs into mature APCs. Cimetidine induces the apoptosis of MDSCs. ARG1, arginase 1;
iNOS, inducible nitric oxide synthase; APC, antigen-presenting cell; TCR, T cell receptor; ATRA, all-trans retinoid acid.
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themetabolite of vitamin A, all-trans retinoic acid (ATRA), which
is also used in the treatment of cancer, promoted the differentia-
tion of MDSCs into mature myeloid cells in both tumor-bearing
mice and metastatic RCC patients.69,70 A clinical trial in patients
with small cell lung cancer showed that combining ATRA with
DC vaccination significantly reduced MDSC frequencies and
enhanced IFNg production by CD8C cells compared to vaccina-
tion alone.71 Additionally, by acting through ERK-dependent
induction of glutathione, ATRA also reduced ROS production by
MDSCs.72 Paclitaxel, a chemotherapeutic of the taxane group,
induced differentiation of MDSCs into DCs, via a Toll-like recep-
tor 4-dependent mechanism.73,74 Treatment of tumor-bearing
mice with paclitaxel inhibited the number of tumor-infiltrating
MDSCs and abrogated their T cell suppressive capacity.75

Another taxane family member, docetaxel, decreased the fre-
quency of MDSCs by promoting differentiation into M1-like
macrophages.76

Several natural compounds induce MDSC differentiation
by direct inhibition of STAT signaling. In vitro, cucurbitacin I
and B enhanced differentiation of spleen-derived immature
myeloid cells into mature DCs by inhibition of the JAK2/
STAT3 pathway. This coincided with a decrease of immature
myeloid cells in spleens of treated tumor-bearing mice and in
patients with advanced lung cancer.77,78 However, tumor
MDSCs were not sensitive to cucurbitacin I. Tumors have the
ability to inhibit STAT3 activity in MDSCs by creating a state
of hypoxia. These MDSCs then become functionally indepen-
dent of STAT3, which diminishes the inhibitory effect of
cucurbitacin. Interestingly, STAT3 expression in these tumor
MDSCs could be restored by treatment with the CD45PTP-
inhibitor sialidase, which blocked hypoxia-induced STAT3
downregulation. Combination treatment consisting of cucurbi-
tacin I together with sialidase significantly decreased the fre-
quencies of tumor MDSCs compared to cucurbitacin I
alone.79 Similarly, curcumin induced differentiation of MDSCs
into M1-type macrophages through interaction with JAK2/
STAT3.80 Although an involvement of STAT signaling has
not been reported, 1a,25-hydroxyvitamin D3 induced differ-
entiation of CD34C immature cells into mature DCs in both
tumor-bearing mice and HNSCC patients.81,82 Treatment of
HNSCC patients with vitamin D3 before tumor resection
resulted in higher levels of intratumoral CD8C T cells and
prolonged recurrence-free survival, which could be due to its
effect on MDSCs.83 Taken together, both chemotherapeutics
and natural compounds are capable of inducing MDSC differ-
entiation into mature cells, thereby preventing immune sup-
pressive activity. However, due to possible severe side effects
of chemotherapeutics like ATRA, and the known involvement
of STAT3 in the mechanisms of action of cucurbitacin or cur-
cumin, these compounds would be most promising to syner-
gize with immunotherapy.

Discussion and future perspectives

Inhibition of the immunosuppressive TME and the presence of
MDSCs in the TME is correlated with increased efficacy of immu-
notherapy. Targeting MDSCs by using clinically available drugs
and natural compounds could improve antitumor immune
responses induced by immunotherapy. The importance of STAT

signaling pathways in the expansion and suppressive capacity
provides a promising target to inhibit MDSCs. We discussed a
number of drugs that can, as an unintended effect, inhibit the
expansion of MDSCs, inhibit their suppressive functions, or pro-
mote their differentiation into mature APCs, often mediated by
inhibition of STAT signaling pathways. Targeted cancer thera-
pies, like tyrosine kinase inhibitors, and several chemotherapeu-
tics reduce MDSC expansion or induce their differentiation into
non-suppressive mature myeloid cells, but also have the potential
for severe side effects.84,85 Patients treated with immunotherapy
can already experience severe side effects, which might be exacer-
bated when combined with these drugs.86 We therefore propose
to combine immunotherapy with drugs that have similar effects
on MDSC expansion and function, but induce less severe side
effects compared to conventional chemotherapy and some tar-
geted therapies used in cancer treatment. We have highlighted
several drugs and natural compounds used for diverse indica-
tions, which modulate MDSC function and differentiation. On a
molecular level, most of these drugs exert their effect on MDSCs
by interfering with the STAT signaling pathway. For instance, sil-
denafil and amiloride inhibit the suppressive mechanisms of
MDSCs by interfering with STAT6 and STAT3 signaling, respec-
tively. Natural compounds, like icariin, cucurbitacin and curcu-
min, inhibit the suppressive capacity of MDSCs or induce their
maturation, by inhibiting STAT3. There is still a group ofMDSC-
inhibiting drugs, including rosiglitazone and cimetidine, for
which themechanism of action is unknown. However, the impor-
tance of STAT signaling in MDSC inhibition indicates that this
pathway could be a potential mechanism for their effect. Further-
more, two specific JAK-inhibitors, tofacitinib and ruxolitinib,
were FDA approved for the treatment of several auto-inflamma-
tory diseases, including rheumatoid arthritis. Their specific tar-
geting of JAK/STAT signaling makes them interesting candidates
to target STAT signaling in MDSCs and to be used in combina-
tion with immunotherapy in anticancer regimes. However, the
only study available on these drugs is in the context of rheumatoid
arthritis and in that setting tofacitinib surprisingly resulted in the
expansion ofMDSCs.87 On the other hand, in amelanomamouse
model, specific JAK inhibition with the experimental compound
AZD1480 reduced MDSC frequencies, but it also enhanced their
suppressive capacity.88 These results could indicate that blocking
of JAK signaling might not result in inhibition of STAT signaling
and show that the effect of JAK signaling on MDSC expansion
and suppressive capacity is still unclear and requires more
research.

We propose that the drugs sildenafil and amiloride together
with the natural compounds icariin, cucurbitacin I, cucurbita-
cin B and curcumin would be the prime candidates to test in
combination with immunotherapy, as they were shown in
experimental settings to inhibit the suppressive mechanisms of
MDSCs or induce their maturation by targeting STAT6 or
STAT3, with only mild side effects compared to chemotherapy
and targeted cancer therapies. Clinical trials combining these
possible candidate drugs with immunotherapy will have to
prove their potential in the clinic.
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