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Insulin-like growth factor binding protein-7 (IGFBP7) was recently reported to be a ligand
of CD93, a potential target to normalize vasculature and attenuate immunotherapy.
However, its role in the tumor microenvironment (TME) and immunotherapy response
of bladder cancer (BLCA) remains unclear. We comprehensively evaluated the correlation
between IGFBP7 and multiple immunological characteristics of BLCA across The Cancer
Genome Atlas (TCGA) and two external cohorts. Importantly, the response of IGFBP7-
grouped BLCA patients to immunotherapy was predicted and validated by five real-word
immunotherapy cohorts. Finally, we developed an IGFBP7-based immune risk model
validated by five independent cohorts. IGFBP7 modulated the TME across pan-caners. In
BLCA, high expression of IGFBP7 was correlated with more aggressive clinical features.
IGFBP7 was positively associated with immunomodulators and promoted tumor-
infiltrating lymphocyte trafficking into the tumor microenvironment. However, T cells
recognition and tumor cell killing were lower in the high-IGFBP7 group. In addition, high
expression of IGFBP7 displayed lower enrichment scores for most pro-immunotherapy
pathways. Clinical data from IMvigor210 and GSE176307 indicated that IGFBP7
negatively correlated with the BLCA immunotherapy response. The same trend was
also observed in a renal cell carcinoma (RCC) cohort and two melanoma cohorts. Notably,
urothelial and luminal differentiation were less frequently observed in the high-IGFBP7
group, while neuroendocrine differentiation was more frequently observed.
Mechanistically, high IGFBP7 was associated with an enriched hypoxia pathway and
higher expression of key genes in ERBB therapy and antiangiogenic therapy.
Furthermore, our IGFBP7-based immune risk model was able to predict the prognosis
and response to immunotherapy with good accuracy (5-year AUC = 0.734). Overall,
IGFBP7 plays a critical role in the immunoregulation and TME of BLCA and may serve as a
novel potential target for combination treatment with immunotherapy for BLCA.
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INTRODUCTION

Bladder cancer (BLCA) is one of the most common malignancies
of the urinary system, with approximately 212,536 deaths each
year from BLCA (1). Generally, the treatment strategies of BLCA
include surgical resection, radiation therapy, chemotherapy and
immunotherapy (2, 3). Some patients with local BLCA can be
curable; however, the five-year survival rate of patients with
metastatic bladder cancer is low (4). In recent years, significant
advantages have been made in terms of immunotherapy and
targeted therapies for bladder cancer (5). Immune checkpoint
inhibitors (ICIs), as one of the most promising types in
immunotherapy, are widely used in treating different kinds of
cancers (6, 7). ICIs have also been reported to be relatively
effective for BLCA (8, 9), which may be attributed to the high
tumor mutation burden and abundant infiltration of immune
cells within the tumor microenvironment (TME) of BLCA (10–
12). Five ICIs have been approved for the treatment of locally
advanced and metastatic BLCA by the FDA (13). However, the
response to ICIs varies across BLCA patients, and only a
minority of BLCA patients benefit from these agents (14, 15).
To date, there is still a lack of novel drugs for the development of
more effective therapeutic strategies.

Insulin-like growth factor binding protein-7 (IGFBP7) is a
member of the IGFBP family, which binds insulin with high
affinity and IGF with low affinity (16). IGFBP7 was originally
identified in normal mammary epithelial cells and meningeal
cells, and its expression pattern varies with tumor type (17). In
some tumors, IGFBP7 exhibits tumor suppressor activity in certain
cancer types via regulation of cell proliferation, apoptosis, cell
adhesion epithelial mesenchymal transition (EMT) and
angiogenesis (18–20). However, IGFBP7 acts as a cancer-
promoting gene in esophageal adenocarcinoma and neck
squamous cell carcinomas (21, 22). Recently, Sun et al. (23) found
that IGFBP7, acting as a ligand of CD93, can disrupt normalizes
tumor vasculature and increase immune infiltration through the
CD93/IGFBP7 pathway. Moreover, a CD93-targeting monoclonal
antibody (mAb) has been demonstrated to reduce tumor growth
and enhance the effects of immunotherapy in pancreatic tumors or
melanoma via the CD93/IGFBP7 pathway (24). Together, IGFBP7
may provide potential value for the immunotherapy of cancer, but
the role of IGFBP7 in BLCA has not been elucidated.

In this study, IGFBP7 was highly correlated with the
modulation of the TME in most cancers by pan-cancer analysis.
We found that IGFBP7 was negatively associated with T cells
recognition and tumor cell killing. In addition, IGFBP7 negatively
correlated with the BLCA immunotherapy response, and IGFBP7
had the potential to predict the molecular subtype of BLCA. Anti-
IGFBP7 therapy may be a suitable therapeutic candidate for
BLCA, but more studies are required for further validation.
MATERIALS AND METHODS

Data Source and Preprocessing
The mRNA sequencing expression profiles and clinical
information of bladder cancer patients were downloaded from
Frontiers in Immunology | www.frontiersin.org 2
The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.
gov/). The abbreviations for various cancer types are listed in
Table S1. The advanced urothelial cancer cohort (IMvigor210
cohort) (patients treated with atezolizumab) based on the
Creative Commons 3.0 License was downloaded from a freely
available data package (http://research-pub.gene.com/
IMvigor210CoreBiologies/) (25). Five BLCA datasets
(GSE176307, GSE13507, GSE31684, GSE32894, GSE48277)
and two melanoma datasets (GSE78220, GSE91061) were
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). Of these
cohorts, GSE176307 (patients treated with pembrolizumab or
atezolizumab), GSE78220 (patients treated with pembrolizumab
and nivolumab) (26), and GSE91061 (patients treated with
nivolumab) (27) were all treated with immunotherapy. In
addition, another immunotherapy cohort of renal cell
carcinoma (RCC) (PMID29301960) (patient treated with
nivolumab) was obtained from Miao’s study (28). The raw
data are shown in Supplementary Material.

Pan-Cancer Analysis of IGFBP7
For the pan-cancer analysis, the R package “ggplot2” was used to
identify the Spearman correlations between the expression of IGFBP7
and immunomodulators, which include immunostimulators,
chemokines, major histocompatibility complex (MHC) and
receptors (29). Correlations between the expression of IGFBP7
and immune checkpoints (CD274, CTLA4, HAVCR2, LAG3,
PDCD1, PDCDLIG2, TIGIT, and SIGLEC15) were also
computed. IGBP7 expression was measured in tumor-
infiltrating immune cells (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells) by using TIMER
2.0 (http://timer.cistrome.org/) (30).

Association Between IGFBP7 Expression
and Clinical Features
The patients were grouped based on different clinical features,
including T stage (T1&T2 versus (vs) T3&T4), N stage (N0 vs
N+), lymphovascular invasion (yes vs no), pathologic stage (stage
I&II vs stage III&IV), histologic grade (low grade vs high grade)
and histologic subtype (papillary vs non-papillary). According to
the results of the normality test and homogeneity of variances,
independent samples t tests were used to evaluate the differential
expression of IGFBP7 between different groups.

The Effect of IGBP7 on Immunological
Characteristics in BLCA
Coexpression was analyzed statistically by using the Spearman
correlation coefficient to identify the expression differences of
122 immunostimulators between the high- and low-IGFBP7
groups (The patients in the same cohort were divided into
high and low subgroups based on the median IGFBP7
expression value). Single-sample gene set enrichment analysis
(ssGSEA) was used to quantify the relative abundance of 15
immune cell infiltrates (31). Subsequently, the infiltration of
immune cells was compared between the high- and low-
IGFBP7 groups using the Wilcoxon rank sum test. The R
June 2022 | Volume 13 | Article 898493
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package “ComplexHeatmap”was used to visualize the expression
of genes frequently expressed on the surfaces of immune cells
(32). The cancer immunity cycle consists of the following seven
steps: release of cancer cell antigens (Step 1), cancer antigen
presentation (Step 2), priming and activation (Step 3), trafficking
of immune cells to tumors (Step 4), infiltration of immune cells
into tumors (Step 5), recognition of cancer cells by T cells (Step
6), and killing of cancer cells (Step 7). Tracking tumor
immunophenotype (TIP, http://biocc.hrbmu.edu.cn/TIP/) was
used to analyze and visualize the cancer immunity cycle (33).
The status of anti-cancer immunity was compared according to
IGFBP7 groups, and we plotted a heatmap with the R package
ComplexHeatmap. Pan-cancer T cell-inflamed score can also
define pre-existing cancer immunity, which includes eighteen
genes (34). Moreover, 18 inhibitory immune checkpoints with
therapeutic potential were selected, and then the correlations
between them and IGFBP7 were assessed.

Prediction of Immunotherapeutic and
Chemotherapy Drug Response
We compared the different expression levels of eight immune
checkpoint-related genes between the high- and low-IGFBP7
groups. Eighteen immunotherapy-positive signatures were
included in our study, and their enrichment scores were
calculated using gene set variation analysis (GSVA).
Comparisons for predicting the response to immunotherapy
were performed between the high- and low-IGFBP7 groups.
The TIDE algorithm was used to predict potential ICB
responses in the high- and low-IGFBP7 groups (35). The
immunotherapy response data for two BLCA cohorts
(IMvigor210 and GSE176307), RCC cohort (PMID29301960)
and two melanoma cohorts (GSE78220 and GSE91061)
were collected. We evaluated IGFBP7 expression in the PR/CR
group and SD/PD group. In addition, tumor mutation
burden was compared in the high- and low-IGFBP7 groups.
Moreover, we predicted IGFBP7-grouped chemotherapy
and tyrosine kinase inhibitor drug responses based on
the Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/) (36). The prediction
process was implemented by the R package “pRRophetic”, where
the samples’ half-maximal inhibitory concentration (IC50) was
estimated by ridge regression and the prediction accuracy.

Enrichment Analysis of Various
Therapeutic Signatures and BLCA
Molecular Subtypes
By using consensus MIBC and BLCA subtyping R packages, the
samples were assigned to different BLCA molecular subtypes,
which included a combined consensus subtype and six published
molecular classifications (University of North Carolina (UNC),
Baylor, Cancer Genome Atlas (TCGA), MD Anderson Cancer
Center (MDA), Lund and Cartes d’Identité des Tumeurs (CIT))
(37–42). Afterwards, we calculated the enrichment score of the
12 molecular subtype-specific signatures for the training and
validation cohorts (37). A gene set enrichment analysis was
performed computed by GSVA to evaluate various therapeutic
Frontiers in Immunology | www.frontiersin.org 3
signatures in both the training cohort and validation cohort. The
results are presented in the form of a heatmap, as well as
bar graphs.

Identification of Gene Mutation Analysis
and Drug-Related Genes of BLCA
To identify somatic mutations in patients with BLCA in the
TCGA database, mutation data were retrieved from the TCGA
database and visualized using the “maftools” package in R
software. The waterfall plot shows the mutation data of the top
30 mutated genes. We further used the data of BLCA-related
drug target genes obtained from the DrugBank database (https://
go.drugbank.com/) to compare their expression in IGFBP7
groups (43).

Development of an IGFBP7-Based
Immune Risk Model
We selected the dataset from TCGA as the training cohort. The
DESeq2 R package was used to analyze the differentially
expressed genes (DEGs) in the high- and low-IGFBP7 groups.
Prognostic genes of TCGA-BLCA were screened with a P value <
0.05. Immunologic signature gene sets were downloaded from
The Molecular Signatures Database (MSigDB) C7 dataset
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Next, the
three gene sets obtained were intersected and served as the
candidate gene set. The least absolute shrinkage and selection
operator (LASSO) Cox regression method using the “glmnet”
and “survival” R packages was applied to select the optimal
corresponding coefficients for risk model construction. Based on
the following formula, the risk score for each patient was
calculated.

RiskScorei =on
j=1expji � bj

where exp means the gene expression value, i means each
sample, j means each gene, and b means the coefficient in
LASSO regression. A forest plot was used to explore the
correlation between the genes and prognosis in BLCA. A
Kaplan–Meier curve was drawn to compare the overall
survival between the high-risk and low-risk groups. Receiver
operating characteristic (ROC) curve analyses and decision
curve analyses (DCA) were conducted to evaluate the model.
For validation of the risk model, five independent cohorts
(GSE13507, GSE31684, GSE32894, GSE48277, IMvigor210)
were used. Furthermore, we explored the associations
between the risk model and clinicopathological features,
tumor microenvironment features, various therapeutic
signatures, immune checkpoint genes, BLCA molecular
subtype and BLCA-related drug target genes.

Statistical Analysis
All statistical data analyses were performed using R software,
version 3.6.3. Continuous variables that conformed to the
normal distribution were compared using independent t tests
for comparisons between binary groups, while continuous
variables with skewed distributions were compared with the
Mann–Whitney U test. Categorical variables were compared by
June 2022 | Volume 13 | Article 898493
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using the chi-square test or Fisher’s exact test. Spearman
analysis was used for the correlation studies between
quantitative variables. Survival curves were analyzed using the
log-rank test (generated using the Kaplan–Meier method). All
statistical tests were two-sided with a level of significance set as
P < 0.05.
RESULT

The Immunological Role of IGFBP7 in
Pan-Cancer
To determine the role of IGFBP7 in regulating the
microenvironmental immunity of cancer, correlations between
the expression of IGFBP7 and immunomodulators, immune
checkpoints and tumor-infiltrating immune cells were
performed. The results demonstrated that IGFBP7 was
positively correlated with a majority of immunomodulators in
the majority of cancers (Figure 1A). We also calculated the
infiltration levels of TIICs in the TME using the ssGSEA
algorithm. Except for KICH, KIRC, KIRP, SARC, TGCT,
Frontiers in Immunology | www.frontiersin.org 4
THCA, THYM and UVM, IGFBP7 exhibited a positive
correlation with the majority of TIICs in most of the cancer
types (Figure 1B). Additionally, we found that the expression of
IGFBP7 was mutually exclusive to immune checkpoints in
THCA, THYM, LAML, KIRC and KIRP. IGFBP7 was
positively related to most immune checkpoints in other
malignancies (Figure 1C). Overall, these findings indicated
that IGFBP7 played a key role in regulating microenvironment
immunity across most cancers.

Clinical Relevance of IGFBP7
The gene expression profiling data and clinical information of
BLCA patients were downloaded from the TCGA database. The
patients with BLCA were divided into different groups based on
clinical parameters to analyze differences in gene expression.
High expression of IGFBP7 was significantly related to
advanced T stage, pathologic stage and poorly differentiated
histologic subtype (Figures 2A–C). There were no statistically
significant differences in the pattern of gene expression between
N stage, lymphovascular invasion and histologic grade
(Figures 2D–F).
A B

C

FIGURE 1 | Immunological role of IGFBP7 in Pan-cancer. (A) correlations between the expression of IGFBP7 and immunomodulators (immunostimulatory,
chemokine, MHC, receptor). (B) correlations between the expression of IGFBP7 and tumor infiltrating immune cells. (C) correlations between the expression of
IGFBP7 and immune check point. The value of the correlation coefficient is represented by the intensity of blue or red, as indicated on the color scale. The asterisks
indicate significant differences calculated using spearman correlation analysis. (*p < 0.05; **p < 0.01).
June 2022 | Volume 13 | Article 898493
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The Immunological Role of IGFBP7 in the
TME of BLCA
Based on the above pan-caner analyses, IGFBP7 showed a strong
correlation with immunomodulators. We further examined the
association between immunomodulators and the expression level
of IGFBP7 (Figure 3A). This result indicated that IGFBP7 was
significantly positively correlated with a majority of
immunostimulators. Chemokines contributed to recruitment of
CD8+ T cells, macrophages, TH17 cells, and antigen-presenting
cells were also upregulated in the IGFBP7 high group. The results
for major histocompatibility complex (MHC) and receptors
demonstrated the same trend.

To further understand and characterize the microenvironment
immunity with IGFBP7 expression, the profile of TME cell
infiltration models was evaluated. We found that high
expression of IGFBP7 prompted immune cell infiltration in the
TME, with the exception of T helper cells and T17 cells
(Figure 3B). The infiltration of regulatory T cells (Tregs), which
have immunosuppressive effects, was also enhanced in the high-
IGFBP7 group. Likewise, IGFBP7 was positively correlated with
the effector genes of these TIICs (Figure 3C). Moreover, as a direct
systematic performance of the functions of the chemokines and
other immunomodulators, the activities of the cancer immunity
cycle (Figure 3D), including the release of cancer cell antigens
(Step 1), trafficking of immune cells to tumors (Step 4), and
infiltration of immune cells into tumors (Step 5), were found to be
upregulated in the IGFBP7 high group. Notably, the recognition of
cancer cells by T cells (Step 6) was weakened by IGFBP7. These
results were also presented by the heat-map graph (Figure 3E),
and they are consistent with previous findings. Validation cohorts
(Figures 3F, G) showed the same trend in some steps (Step 1, Step
4 and Step 5) of cancer immunity cycle. Although we did not
observe that high expression of IGFBP7 could significantly weaken
Frontiers in Immunology | www.frontiersin.org 5
the Step 6, in these two validation cohorts, the killing of cancer
cells (Step 7) was downregulated in the IGFBP7 high group.
Collectively, IGFBP7 shaped a hostile TME. The results of the
correlation between IGFBP7 gene expression and the T-cell
inflamed ssGSEA score indicated that IGFBP7 expression was
significantly positively related to the pan-cancer T cell inflamed
score in the training cohort and validation cohorts (IMvigor210
cohort and GSE176307) (Figure 3H). Furthermore, the inflamed
TME exhibited higher immune checkpoint inhibitor expression
levels (44). Consistently, IGFBP7 had positive correlations
with the vast majority of inhibitory immune checkpoints
(Supplementary Figure S1).

IGFBP7 Predicts Immunotherapy
Response in BLCA
We compared the expression of several common immunotargets,
including CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2,
LAG3, TIGT and SIGLEC15, between the high- and low-
IGFBP7 expression subgroups by using the training and
validation cohorts, and the results showed that the expression
of immunotargets was higher in the IGFBP7 high group
(Figures 4A–C). As expected, a higher TIDE score occurred in
the IGFBP7 high group (Figure 4D), which indicated that the
IGFBP7 high group showed worse clinical efficacy to ICB
therapy. In addition, IGFBP7 negatively correlated with the
enrichment scores of most immunotherapy-positive gene
signatures in the TCGA, IMvigor210 and GSE176307 cohorts
(Figures 4E–G).

Subsequently, we collected immunotherapy response data for
IMvigor210 and GSE176307 and evaluated IGFBP7 expression
in the PR/CR group and SD/PD group. In line with the results of
the response to ICB, IGFBP7 was shown to have lower
expression in the PR/CR group than in the SD/PD group
A B

D E F

C

FIGURE 2 | IGFBP7 expression and clinicopathological features in BLCA. (A–C) High T stage, high pathologic stage and non-papillary subtype were associated
with higher expressions of IGFBP7 in BLCA. (D–F) No statistically significant differences were found between the expression levels of IGFBP7 in BLCA and N stage,
lymphovascular invasion and histologic grade. **p < 0.01; ***p < 0.001; ns, no significance.
June 2022 | Volume 13 | Article 898493
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(Figures 4H, I). The same trend occurred in three external
cohorts (RCC cohort and two melanoma cohorts) (Figure 4J).
However, there were no significant differences. The tumor
mutation burden was significantly higher in the IGFBP7 low
group (Figure 4I).

IGFBP7 Predicts the Response to
Chemotherapy Drugs and Tyrosine Kinase
Inhibitors in BLCA
We predicted the response to chemotherapy drugs and tyrosine
kinase inhibitors for the high- and low-IGFBP7 groups based on
the DrugBank database. The results indicated that patients with
low expression of IGFBP7 were more sensitive to doxorubicin,
gemcitabine, methotrexate, mitomycin C and paclitaxel
(Figure 5). Nevertheless, a significantly higher response to
cisplatin and sunitinib was observed in the IGFBP7 high group.

IGFBP7 Predicts Molecular Subtypes and
Therapeutic Opportunities in BLCA
BLCA molecular typing was conducted in multiple research
centers and named the UNC subtype, Baylor subtype, TCGA
subtype, MDA subtype, Lund subtype, CIT subtype and
Frontiers in Immunology | www.frontiersin.org 6
consensus subtype. Despite these variations, all typing methods
contain two fundamental subtypes: the basal subtype and the
luminal subtype (45). The basal subtype has a poorer prognosis
than the luminal subtype but is neo-adjuvant chemotherapy
(NAC)-sensitive (46, 47). To further explore the expression
patterns of IGFBP7 in BLCA, we evaluated the distribution of
IGFBP7 in different molecular subtypes. In the training cohort,
we found IGFBP7 to be negatively related to the luminal
differentiation subtype of BLCA (Figure 6A). In addition, the
enrichment scores for urothelial differentiation, the Ta pathway,
luminal differentiation and mitochondria were greater in the
low-IGFBP7 group. The enrichment scores for EMT
differentiation, immune differentiation, smooth muscle,
myofibroblast, interferon response and neuroendocrine
differentiation were higher in the high-IGFBP7 group
(Figure 6B). We validated these outcomes by using two
external cohorts (Supplementary Figure S2A–D).

In addition, we performed enrichment analysis to evaluate
various therapeutic signatures in different IGFBP7 groups. The
difference in enrichment scores for various therapeutic
signatures between the high- and low-IGFBP7 groups was
significant (Figure 6C, D). Notably, the enrichment scores for
hypoxia were lower in the low-IGFBP7 group, which was not the
A B

D

E

F

G

H

C

FIGURE 3 | The effect of IGBP7 on Immunological Characteristics in BLCA. (A) Differences in the expression of 122 immunomodulators (immunostimulators,
chemokines, MHC and receptors) between high- and low-IGFBP7 groups in BLCA. (B) Enrichment scores of 15 immune cell infiltrates in high- and low-IGFBP7
groups. (C) Expression levels of the gene markers of the five common TIICs in the high- and low-IGFBP7 groups. (D, F, G) The activities of the various steps of the
cancer immunity cycle calculated by ssGSEA algorithm in the high- and low-IGFBP7 groups in three cohorts. (E) Differences in the various steps of the cancer
immunity cycle between high- and low-IGFBP7 groups. (H) Correlations between IGFBP7 and the pan-cancer T cell inflamed score in the TCGA, IMvigor210 and
GSE176307 cohorts. *p< 0.05; **p<0.01; ***p<0.001. ns, no significance; ns, p≥0.05.
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same as other radiotherapy-predicted pathways. IMvigor210 and
GSE176307 were used to validate our outcomes (Supplementary
Figures S2E–H). Moreover, the results from the DrugBank
database indicated a notably higher response to ERBB therapy
and antiangiogenic therapy in the high-IGFBP7 group
(Figure 6E; Supplementary Figures S2I, J). We further
visualized the mutation data of TCGA-BLCA, and the top 30
mutated genes are displayed (Supplementary Figure 3A).
Likewise, tumor mutation burden was calculated and
Frontiers in Immunology | www.frontiersin.org 7
compared between the high- and low-IGFBP7 groups. There
were no significant differences between the high- and low-
IGFBP7 groups (Supplementary Figure 3B).

Development and Validation of the
IGFBP7-Based Immune Risk Model
A Wayne diagram showed that 543 candidate genes were
significantly related to prognosis (Figure 7A). Subsequently,
the LASSO algorithm was used to identify the 23 best
FIGURE 5 | IC50 of chemotherapy drugs and tyrosine kinase inhibitors in bladder cancer based on IGFBP7 expression. *p< 0.05; **p<0.01; ***,p<0.001. ns, no
significance; ns, p≥0.05,
A

B

D

E

F

G

I

H

J

C

FIGURE 4 | IGFBP7 predicts therapeutic response to immunotherapy in BLCA. (A–C) Expression levels of immune check points in the high- and low-IGFBP7
groups in the TCGA, IMvigor210, GSE32894 cohorts. (D) ICB responses in the high- and low-IGFBP7 groups using TIDE algorithm. (E–G) The enrichment scores of
several immune-related signatures in the high- and low-IGFBP7 groups. (H, I) Correlation between IGFBP7 and the clinical response of cancer immunotherapy in the
IMvigor210 and GSE176307 cohort. (J) Correlation between IGFBP7 and the clinical response of cancer immunotherapy in the RCC cohort and two melanoma
cohorts. CR: complete response; PR, partial response; PD, progressed disease; SD, stable disease. (CR/PR means patient who are CR or PR; SD/PD means
patient who are SD or PD). *p< 0.05; **p<0.01; ***p<0.001. ns, no significance; ns, p≥0.05.
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candidate genes. The forest plots illustrated univariate Cox
analysis of the prognostic impact of the candidate gene set
(Figure 7B). The risk score model was constructed based on
the training cohort. ROC analysis was used to test our model,
and the area under the ROC curve was above 0.697, which
meant a moderate sensitivity and specificity for predicting the
prognosis of BLCA (Figure 7D). Furthermore, we divided the
patients into high- and low-risk groups based on their risk
scores. As shown in Figure 7C, there was a significant
difference in overall survival between the two groups. The
risk model was then validated using another five sets of
validation datasets (Figures 7E–I). Considering the clinical
usefulness of the risk model, we drew a DCA curve. According
to the DCA, when the threshold probability for a patient was
within the approximate range of 20-100%, the risk model
added more net benefit than the “all positive” or “all negative”
strategies in the TCGA cohort (Figure 8A). A nomogram
model was constructed for predicting the prognosis of BLCA
by using clinical characteristics, including age, T stage, N stage
and risk score. The nomogram plot in Figure 8B shows the
weight of each variable based on the multivariate Cox analysis,
and the straight line down to the endpoint scales could predict
the probability of survival at 1, 3, and 5 years. In addition, as
expected, patients with lymphovascular invasion, high
Frontiers in Immunology | www.frontiersin.org 8
histologic grade, advanced pathologic stage and non-paillary
subtype were more likely to obtain a higher risk score
(Figures 8C–J).

Except for the value of predicting prognosis, our risk
model significantly predicted the response to immunologic
therapy. The expression of IGFBP7 and pan-cancer T cell
inflamed score were both significantly positively correlated
with the risk score (Figures 7J, K). Furthermore, the
enrichment scores of most of the cancer immunity cycle
steps were higher in the high-risk group (Supplementary
Figure S4A). Similarly, the expression of a majority of
immune checkpoints was higher in the high-risk group
(Supplementary Figure S4B). The association between
the risk score and different molecular subtypes was in line
with previous findings. Patients with basal-type bladder
cancer had a higher risk score and a worse prognosis
(Supplementary Figures S4C, D). We also discovered that
the enrichment scores of T cell infiltration inhibited
oncogenic pathways were significantly higher in the high-
risk group, while those in hypoxia were higher in the low-risk
group (Supplementary Figures S4E, F). Finally, according to
the heatmap, ERBB therapy, antiangiogenic therapy,
immunotherapy and chemotherapy may be appropriate for
BLCA with higher risk scores (Supplementary Figures S4G).
A

B

D

E

C

FIGURE 6 | IGFBP7 predicts the molecular subtype and the therapeutic response to several therapies in BLCA. (A) Correlations between IGFBP7 and molecular
subtypes using different algorithms and bladder cancer signatures. (B) The enrichment scores of 12 molecular subtype-specific signature in the high- and low-
IGFBP7 groups. (C, D) Correlations between IGFBP7 and the enrichment scores of several therapeutic signatures. (E) Correlation between IGFBP7 and the BLCA-
related drug-target genes obtained from the Drugbank database. *p< 0.05; **p<0.01; ***p<0.001. ns, no significance; ns, p≥0.05.
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DISCUSSION

As one of the most common malignant tumors of the urinary
system, BLCA lacks effective targeted treatment. With the great
advances of immunotherapy in BLCA, its favorable safety and
tolerability are progressively manifested. However, given that the
overall response rates to immunotherapy are still low, more
accurate and effective targets for immunotherapy are urgently
needed. It is generally known that IGFBP7 plays a role in
tumorigenesis via the IGF/insulin signaling pathway. IGFBP7
can block downstream signaling and impede cell growth,
apoptosis and the TME. Previous studies indicated that
IGFBP7 functions as a tumor suppressor in several tumors,
including hepatocellular carcinoma, colorectal carcinoma,
prostate cancer cells, and breast cancer (17, 48–50).
Nevertheless, some differences in results were found in
esophageal adenocarcinoma and neck squamous cell
carcinomas (21, 22). The role of IGFBP7 in BLCA is still
unclear, and more evidence is needed to explore the
association between IGFBP7 and tumor immunologic features.

In this study, pan-cancer analysis indicated that IGFBP7 was
positively correlated with immunomodulators, the infiltration
levels of TIICs, and immune checkpoints in the majority of
cancers. It is well known that the TME mediates immune escape
and regulates the sensitivity of tumors to anticancer drugs. The
TME is composed of various types of immune cells, including T
Frontiers in Immunology | www.frontiersin.org 9
cells, NK cells and dendritic cells, which are responsible for
anticancer immunity (51). Regulatory T cells (Tregs) have
immunosuppressive effects because they can promote evasion
of the recognition of tumor antigens by antigen-presenting cells
and T cells (52). More importantly, IGFBP7 showed a strong
correlation with the TME in BLCA. We found that most
immunostimulators and TIICs were significantly upregulated
in the IGFBP7 high group. Additionally, the enrichment score
of Tregs was also higher in the IGFBP7 high group. In the tumor
immunity cycle, IGFBP7 enhanced the release of cancer cell
antigens, trafficking of immune cells to tumors and infiltration of
immune cells into tumors. Theoretically, high IGFBP7
expression may result in a better immune microenvironment.
However, the recognition of cancer cells by T cells eventually
weakened in TCGA cohort. Meanwhile, we did not observe that
the killing of cancer cells was significantly downregulated by
IGFBP7 in the TCGA cohort but was found in both the IMvigor
210 and GSE176307 cohorts.

Abnormal tumor blood vessels cause the formation of an
immunosuppressive microenvironment, leading to immune
escape. Several studies have demonstrated that IGFBP7 is
typically overexpressed in tumor-associated endothelial cells
relative to normal vascular endothelial cells (53–55). Sun et al.
(23) demonstrated that IGFBP7 acted as a ligand of CD93 and
disrupted normalizes tumor vasculature, including reducing
pericyte and smooth muscle cell coverage on blood vessels and
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FIGURE 7 | Development of IGFBP7-based immune risk model. (A) Venn diagram showing the candidate gene set. (B) Forest plot of the correlation between the
candidate genes and prognosis in BLCA. (C, D) Kaplan-Meier survival curve analysis of the low- and high-risk in TCGA training set and the predictive accuracy of
risk model for survival. (E–I) Validation of the risk model in five external independent sets: GSE13507, GSE31684, GSE32894, GSE48277, IMvigor210.
(J, K) Correlations between riskscore, expression of IGFBP7 and pan-cancer T cell inflamed score.
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increasing vascular permeability and leakage by the CD93/
IGFBP7 pathway. Abnormal tumor vascular structure and
function lead to interstitial hypertension and a hostile TME
characterized by hypoxia and acidosis. These changes in the
tumor microenvironment may influence immune cell function.
Previous studies indicated that hypoxia and acidosis hindered
the maturation of APCs and DCs, and immature DCs could not
activate T cells effectively, although they can still present antigens
(56, 57). Although immune infiltration can increase via the
interaction of IGFBP7 and CD93, hypoxia drives the
preferential recruitment of Tregs, which express negative
costimulatory molecules and lead to inadequate costimulation
for T-cell activation (58, 59). In the meantime, infiltrated TILs
were inactive, and effector T cells were unable to recognize and
kill the tumor cells. Therefore, as we demonstrate here, high
expression of IGFBP7 did not seem to enhance the cancer
immunity cycle but tended to diminish. Furthermore, we offer
the following conjecture regarding why higher IGFBP7
expression is accompanied by more enriched TILs: the
increases in tumor vascular permeability can result in leakage
through the vessel wall, which allows the tumor cells and TILs to
leave the tissue more easily. However, further studies are
Frontiers in Immunology | www.frontiersin.org 10
required to verify this conjecture. Overall, high expression of
IGFBP7 increased TIICs, but the activities of the recognition of
cancer cells by T cells and killing of cancer cells were decreased.
These factors may shape the different responses to immune
therapy between patients with high and low IGFBP7 expression.

In theory, the expression of immune checkpoints will be
upregulated in an immunosuppressive microenvironment, and
this was indeed the case. In our further analysis, we found that
high IGFBP7 expression was correlated with a lower response to
ICB. This result was consistent with the views of Sun et al (24). In
addition, the enrichment scores of immunotherapy-positive
signatures showed that most immunotherapy-positive
signature enrichment scores were higher in the IGFBP7 low
group. Clinical data indicated concordant findings. We found
that IGFBP7 was significantly inversely correlated with the
immunotherapeutic response in two BLCA cohorts
(IMvigor210 and GSE176307). The same tendency was also
found for two additional melanoma cohorts and the RCC
cohort. Moreover, immunosuppressive oncogenic pathways,
such as the FGFR3, PPARG, and b-catenin pathways, were
found to suppress the infiltration of TIICs via a reduction in
the expression of immunomodulators (60–62). IGFBP7 was
A B
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FIGURE 8 | Validation of IGFBP7-based immune risk model. (A) DCA curve for assessment of the clinical usefulness of the risk model. (B) Nomogram for predicting
the probability of 1-, 3-, and 5-year survival probability for BLCA patients. (C–J) Differences in clinicopathological features between the high- and low-risk groups in
the TCGA cohort. **p<0.01; ***p<0.001.
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remarkably negatively correlated with these oncogenic pathways,
which was consistent with our previous results. Notably, IGFBP7
expression was positively related to the enrichment scores of
immunosuppressive pathways, including anti-EGFR and
hypoxia therapy. In terms of chemotherapy drug response, the
lower expression of IGFBP7 could make the cancer cells more
sensitive to most chemotherapy drugs but resistant to cisplatin.
Furthermore, IGFBP7 expression predicted the response to
therapeutic options in BLCA, and it showed a notably higher
response to ERBB therapy and antiangiogenic therapy in the
high-IGFBP7 group.

Molecular subtype can help prognosticate and predict the
response to immunotherapies, radiotherapy, neoadjuvant
chemotherapy and several targeted therapies (37–39, 63). We
found that high expression of IGFBP7 was less likely to be a
luminal differentiation subtype, but the luminal subtype was
related to a better prognosis. Moreover, the enrichment scores
for urothelial differentiation, the Ta pathway, luminal
differentiation and mitochondria were higher in the high-
IGFBP7 group. All the results above were validated in
independent cohorts. Eventually, we constructed a risk model
to predict prognosis and the response to immunologic therapy.
Our model was externally validated to show good robustness.

Given the above, IGFBP7 plays an important role in the
regulation of the tumor microenvironment and impacts the
immunotherapy response. We hypothesize that anti-IGFBP7
therapy holds great promise to improve the response to
immune therapy, making it potentially an excellent drug target
for combination treatment with immunotherapy for BLCA,
which certainly necessitates further studies to verify
our speculations.
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