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An increasing amount of microarray gene expression data sets is available through public repositories. Their huge potential in
making new findings is yet to be unlocked by making them available for large-scale analysis. In order to do so it is essential that
independent studies designed for similar biological problems can be integrated, so that new insights can be obtained.These insights
would remain undiscovered when analyzing the individual data sets because it is well known that the small number of biological
samples used per experiment is a bottleneck in genomic analysis. By increasing the number of samples the statistical power is
increased andmore general and reliable conclusions can be drawn. In this work, two different approaches for conducting large-scale
analysis of microarray gene expression data—meta-analysis and data merging—are compared in the context of the identification
of cancer-related biomarkers, by analyzing six independent lung cancer studies. Within this study, we investigate the hypothesis
that analyzing large cohorts of samples resulting in merging independent data sets designed to study the same biological problem
results in lower false discovery rates than analyzing the same data sets within a more conservative meta-analysis approach.

1. Introduction

Nowadays, an increasing amount of gene expression data sets
is available through public repositories (e.g., NCBI GEO [1],
ArrayExpress [2]), which might contain the necessary clues
for the discovery of new findings, leading to the development
of new treatments or therapies. It is one of the most recent
challenges to unlock the hidden potential of these data, by
using it in large-scale analysis pipe-lines. Integrating this vast
amount of data originating from different but independent
studies could be beneficial for the discovery of new biological
insights by increasing the statistical power of gene expression
analysis [3, 4].

With integrative analysis we mean combining the infor-
mation of multiple and independent studies, designed to
study the same biological problem, in order to extract more
general and more reliable conclusions. To this purpose, two
approaches exist:meta-analysis and analysis by data merging.
In themeta-analysis approach the results of individual studies
(e.g., 𝑃 values, ranks, classification accuracies, etc.) are
combined at the interpretative level. In contrast, the merging

approach integrates microarray data at the expression value
level after transforming the expression values to numerically
comparable measures. Both approaches are illustrated in
Figure 1.The first step, selecting and retrieving all appropriate
data sets, is the same for both scenarios. The main difference
between meta-analysis and the integrative analysis via data
merging is visible in the next two steps: according to the
meta-analysis approach (Figure 1(a)) each data set is analyzed
individually and the final results are combined, while accord-
ing to the merging approach (Figure 1(b)) the data sets are
first combined in a unique, much larger data set and then
analyzed.

The benefits of integrating multiple microarray gene
expression studies are straightforward. Combining informa-
tion from multiple existing studies can increase the relia-
bility and generalizability of results. Through the integrative
analysis of microarray data the sample size increases and
with it the statistical power to obtain a more precise estimate
of gene expression results. This immediately overcomes the
problem of low sample sizes, which is the main limitation
for individual microarray studies. At the same time the
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Figure 1: Schematic overview of the two main approaches of integrative microarray analysis in the context of the identification of differential
genes (DEGs). (a) Meta-analysis first derives results from each individual study and then combines the results. (b) Merging first combines
the data and then derives a result from this large data set.

heterogeneity of the overall estimate is assessed, making the
results more generalizable. This way we avoid the danger
of study-specific findings or artifacts. Integrative analysis
is also a relatively easy and inexpensive way of gaining
new biological insights since it makes comprehensive use
of already available data accumulated through the years by
various groups all over the world.

In [5, 6] several issues for integrative analysis are reported,
and while being specific for meta-analysis, many of them are
also relevant for merging. Most of these issues are however
related to the retrieval and preprocessing of the data and can
be solved by using an appropriate data acquisition approach,
as we show later in this work (see Section 2). For the merging
approach an additional issue has to be mentioned. Before
combining the expression values of different studies, they
have to be made comparable to each other. Since the use of
different experimentation plans, platforms, and methodolo-
gies by different research groups introduces undesired batch
effects in the gene expression values [7, 8] an additional
transformation of the data to remove those effects is needed.

To the best of our knowledge no real comparison of both
approaches can be found in the literature. In [9] a merging

approach is preferred to find a robust prognostic marker
for breast cancer using multiple microarray data sets, based
on the hypothesis that “[. . .] deriving separate statistics and
then averaging is often less powerful than directly computing
statistics fromaggregated data.”There is however no empirical
evidence to validate this statement yet.

In this workwe investigate both approaches in the context
of the identification of lung cancer-related differentially
expressed genes (DEGs) or biomarkers, that is, genes that
have a discriminating profile in normal tissues versus lung
cancer tissues. Those genes can provide new insights into the
biologicalmechanisms of lung cancer and of cancer in general
and can lead to promising biomarkers and new directions
for drug development or treatments. We select a number of
already published and publicly available data sets containing
both normal and cancer tissues and identify robust and stable
DEGs using both approaches for integrative analysis.

2. Material and Methods

2.1. Data Acquisition. To retrieve relevant publicly available
data sets we used the InSilico DB [10] as a starting point.
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Table 1: List of six publicly available lung cancer microarray data sets used in this application.

Data set Platform No. of genes No. of samples (control/cancer) Reference
GSE10072 GPL96 12718 107 (49/58) Landi et al. [13]
GSE7670 GPL96 12718 66 (27/27) Su et al. [14]
GSE31547 GPL96 12718 50 (20/30) —
GSE19804 GPL570 19798 120 (60/60) Lu et al. [15]
GSE19188 GPL570 19798 156 (65/91) Hou et al. [16]
GSE18842 GPL570 19798 91 (45/46) Sanchez-Palencia et al. [17]
Total 590 (312/266)

InSilico DB is a web-based central warehouse containing
ready-to-use, consistently preprocessed, and expert-curated
genome-wide data sets (https://insilicodb.org/app/). A list
of potential data sets was programmatically retrieved from
the InSilico DB using the getDatasetList function from
the R/Bioconductor inSilicoDb package [11]. This list was
further restricted by defining the following constraints.

(i) Only frozen RMA (fRMA, [12]) processed studies
were considered, that is, studies for which the original
CEL files were available and which were consis-
tently preprocessed by the internal InSilico genomic
pipeline.

(ii) Each study should contain at least 30 samples in order
to be statistically relevant.

(iii) Each study should contain both samples from
normal tissue and from lung cancer tissue, more or
less equally distributed. In order to achieve this we
looked at the “Disease” keyword which is available
in most curations and filtered on “lung cancer” |
“adenocarcinoma” values and “control” |
“normal” | “healthy” values for lung cancer and
normal samples, respectively.

(iv) Only studies assayed on Affymetrix Human Genome
U133A (GPL96) and Affymetrix Human Genome
U133 Plus 2.0 (GPL570) were taken into considera-
tion.

This search resulted in a list of six studies, summarized
in Table 1. For each data set a new curation was made
and stored in the InSilico DB to make it trackable. These
curations contain the Disease keyword with control and
lung cancer as keywords and are used as such through the
rest of this paper.

2.2. Identification of Differentially Expressed Genes (DEGs).
A very important application of microarray studies is the
identification of genes that are consistently and significantly
differentially expressed in one group of samples compared to
another, according to a target biological variable of interest.
These genes are called informative genes, biomarkers, or
differentially expressed genes (DEGs). Many methods and
approaches to find DEGs exist and here we opted for the
R/Bioconductor limma package [18]. Recent and detailed
overviews of possible alternative methods can be found in
[19, 20].

After applying limma we call every gene significantly
differentially expressed if

(i) it has an adjusted 𝑃 value lower than 0.05;
(ii) it has a log fold change higher than 2.

In order to ensure the robustness of the found DEG lists
and to encounter false-positive discoveries we implemented
an extra resampling step on top of the limma method. In
each iteration, we arbitrarily keep 90% of the samples and
apply limma to obtain a DEG list fulfilling the two above-
mentioned criteria. After 𝑛 resampling iterations we obtained
𝑛 different DEG lists and our final DEG list will be the
intersection of those lists. Taking the intersectionmight seem
rather strict but we empirically confirmed a convergence of
the number of DEGs after around 50 resampling iterations,
depending on the quality of the study. A resampling iteration
size 𝑛 of 100 was used for all experiments.

2.3. Experimental Setting. The general workflow for both
meta-analysis andmerging approacheswas already visualized
in Figure 1.

For the meta-analysis approach (see Figure 1(a)), we first
obtain a robust DEG list—as described above—for each of
the six studies individually and then combine the results by
taking the intersection of those DEG lists. This final list of
DEGs will contain all genes that were found to be informative
across all studies consistently.

For the merging approach (see Figure 1(b)), we first
merge all six studies into one global data set using the
following batch effect removal methods: NONE (no batch
effect removal), BMC (batch-mean centering, [21]), COM-
BAT (empirical bayes, [22]), DWD (distance-weighted dis-
crimination, [23]), and XPN (cross-platform normalization,
[24]). Then we applied to each merged data set the same
procedure to find robustDEGs.Allmethods are implemented
and documented in the inSilicoMerging R/Bioconductor
package [25]. More information on merging through the
removal of batch effects can be found in [26].

3. Results and Discussion

3.1.Meta-Analysis Approach. Wefirst look at the results of the
meta-analysis approach by looking at the number of DEGs
obtained from the individual data sets as listed in Table 2.
In the second column the number of DEGs without using
resampling is shown, followed by the number of DEGs after

https://insilicodb.org/app/
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Table 2: Number of differentially expressed genes (DEGs) for all
individual data sets. The final result of this meta-analysis case is the
intersection of the different lists in the last column.

Data set No. of DEGs(i) No. of DEGs No. of DEGs(ii)

(resamp.) (intersection)
GSE10072 90 74

25

GSE7670 79 52
GSE31547 67 43
GSE19804 158 109
GSE19188 351 284
GSE18842 499 398
(i)Number of DEGs found on the complete data set without resampling.
(ii)Number of DEGs in the intersection of the DEG lists of all single data sets
after using resampling.

applying resampling as explained in the previous section. We
notice that using this resampling strategy leads to a decrease
in the number of DEGs for all data sets (ratios between 60
and 80% depending on the specific data set). The rationale
behind this extra validation step for the biomarkers discovery
is the fact that a stable biomarker should be identified even
by making small perturbations in the data set, caused by
removing systematically random samples.

Another observation that can be made is the higher
number of DEGs for the last three data sets.This difference is
probably due to the difference in platform: GPL96 for the first
three studies andGPL570 for the last three studies; see Table 1.
Since the latter platform has more than 7000 genes more
than the former platform, a higher chance of finding DEGs is
obvious. Also note from Table 1 that the average sample size
for platform GPL96 is around 74, while for platform GPL570
it is around 122; this also can have a minor effect on the
robustness of DEGs.

The final list of DEGs in the meta-analysis approach can
be obtained by taking the intersection of all single-study
DEG lists. This list of 25 genes consists of genes that are
consistently differentially expressed in all six studies and
can be considered as the most promising list of biomarkers
for lung cancer, based on our input data. This list can be
found in Supplementary Information (S1) available online at
http://dx.doi.org/10.1155/2014/345106.

3.2. Merging Approach. In the merging approach, all six
data sets are first merged into one global data set and thus
only one DEG list is finally retrieved. Within this study we
applied six different batch effect removal methods resulting
in six different lists of DEGs. The results are presented in
Table 3 by listing the number of DEGs found for every batch
effect removal method. We still notice a need for resampling
as it clearly helps to remove false positives, although the
difference in number of DEGs with and without resampling
is less prominent than in the meta-analysis approach (ratios
between 85 and 89% for the different batch effect removal
methods).

As a first remark from Table 3 we can observe a relatively
low impact of using batch effect removal for this particular
study. With the exception of the XPN method, the methods

Table 3: Number of differentially expressed genes (DEGs) for all
merged data sets.

BERM(i) No. of DEGs(ii) No. of DEGs No. of DEGs(iii)

(resamp.) (intersection)
NONE 131 112

102
BMC 124 109
COMBAT 125 110
DWD 125 111
XPN 143 123
(i)BERM: batch effect removal method. (ii)Number of DEGs found on
the complete data set without resampling. (iii)Number of DEGs in the
intersection of the DEG lists for all batch effect removal methods after using
resampling.
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Figure 2: Multidimensional scaling (MDS) plot of the merged data
set with no batch effect removal. Samples are colored based on the
target biological variable of interest and the different symbols corre-
spond to the individual studies. The figure is generated using the
plotMDS function from the inSilicoMerging R/Bioconductor
package [25].

of BMC, COMBAT, and DWD are not able to find more
DEGs than when no batch effect removal at all is performed.
However, the six lists have 102 genes in common, which is
quite a significant result.The final list of DEGs in themerging
approach is obtained by taking the intersection of all batch
effect removal methods.This list of 102 genes can be found in
Supplementary Information (S2).

Similar results of NONE and the other batch effect
removal methods represent a surprising result that we inves-
tigated more in detail since there are clearly batch effects
present, as is demonstrated in amultidimensional scaling plot
of the merged data set with no batch effect removal (NONE)
in Figure 2. From this MDS plot we can see that the biggest
source of variation is rather technical than biological since all
samples are clustered in two groups corresponding to the two
different platforms they were assayed on. It could be expected
that this undesirable effect would influence the discovery of

http://dx.doi.org/10.1155/2014/345106
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Figure 3: Different boxplots for ADRB1 gene. On the left we have two boxplots for the merged data set without batch effect removal
(NONE) and on the right for the merged data set with batch effect removal (COMBAT). All boxplots are grouped and colored based on
the target biological variable of interest; the boxplots on top are further grouped per original data set. The figure is generated using the
plotGeneWiseBoxPlot function from the inSilicoMerging R/Bioconductor package [25].

DEGs. Based on our results this is however not the case and
the explanation lies in the fact that MDS plots provide a
global view on the data, while the identification of DEGs is
more based on local effects, that is, the specific expression
of one gene in certain conditions. The explanation for this
apparently paradoxical result is in the fact that not all genes
are affected by batch effect removal in the same way. Genes
which are differentially expressed in individual studies could
still remain differentially expressed after data merging with
no batch effect correction, if their expression is not much
affected by batch effects.Moreover, even if a gene is affected by
batch effects we observed that the difference between the two
modes or conditions of the gene (in our case control versus
lung cancer) is almost always preserved over all samples of
the merged data set.

To illustrate the local effect of batch effect removal
methodswewill inspect two genes in detail. First, gene ADRB1
is one of the genes that was only identified as a DEG if no
batch effect removal was applied, raising the question if batch
effect removal method is distorting the biological signal of

this gene. We can look at the boxplots of this specific gene
in Figure 3. On the top left plot we can notice that this gene is
only differentially expressed in three studies and those three
studies are from the same GPL570 platform. For the other
studies from the GPL96 platform, the situation is completely
different with an almost stable expression of the ADRB1 gene.
The difference in expression in the three studies is however
big enough to bias the global expression as being differentially
expressed (FC> 2), as can be seen in the bottom left plot. If we
apply batch effect removal, all samples from both platforms
are brought closer together, thereby decreasing the influence
of the differential expression of platformGPL570.This results
in a global expression that is not differentially expressed
anymore (FC < 2) see bottom right plot. From one point
of view COMBAT (arbitrarily chosen, other batch removal
methods are similar) indeed removes a biological relevant
signal that is present in the data, or at least part of the data,
but one can argue that this signal is not consistent across all
individual studies and can be due to a technical, platform-
dependent artifact.
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Figure 4: Different boxplots for LRRN3 gene. On the left we have two boxplots for the merged data set without batch effect removal
(NONE) and on the right for the merged data set with batch effect removal (COMBAT). All boxplots are grouped and colored based on
the target biological variable of interest; the boxplots on top are further grouped per original data set. The figure is generated using the
plotGeneWiseBoxPlot function from the inSilicoMerging R/Bioconductor package [25].

We also investigate the gene LRRN3 which, in contrast,
was only identified as DEG if batch effect removal was
applied. If we compare the top left and top right plots from
Figure 4 we can see that COMBAT (again arbitrarily chosen,
other batch removal methods are similar) nicely removes the
batch effect between the different studies for this gene and
creates a clear and consistent differential expression profile
across all samples. This leads to a situation in which this
gene is labeled as differentially expressed by the COMBAT
method, but not by the NONE method since it, just slightly,
fails in the log fold change requirement. In this case, instead of
a technical artifact, it is actually the batch effect that distorts
the global expression profile of the LRRN3 gene.

4. Conclusion

Both meta-analysis and merging approaches are able to find
differentially expressed genes (DEGs) consistently expressed
in all individual data sets. In both approaches a resampling
or bootstrapping framework is needed to avoid false positives
and to ensure robust gene lists.

Although batch effects were clearly present whenmerging
the different data sets, they were not hindering the iden-
tification of DEGs. This surprising finding is however not
generalizable to the clustering or classification of tasks since
it is very depending on the specific application.

If we compare the final DEGs for the meta-analysis
approach with the list obtained in the merging approach
we can conclude that significantly more DEGs are identified
through merging. Moreover, all 25 identified DEGs through
meta-analysis are also identified in the merging approach.
Most genes in both lists were scanned in the literature
and showed to play a role or at least be involved in the
development of lung cancer and can be further validated and
used in clinical applications.
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