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Abstract: Because studies of rare variant effects on gene expression have limited power, we investi-
gated set-based methods to identify rare expression quantitative trait loci (eQTL) related to Alzheimer
disease (AD). Gene-level and pathway-level cis rare-eQTL mapping was performed genome-wide
using gene expression data derived from blood donated by 713 Alzheimer’s Disease Neuroimaging
Initiative participants and from brain tissues donated by 475 Religious Orders Study/Memory and
Aging Project participants. The association of gene or pathway expression with a set of all cis poten-
tially regulatory low-frequency and rare variants within 1 Mb of genes was evaluated using SKAT-O.
A total of 65 genes expressed in the brain were significant targets for rare expression single nucleotide
polymorphisms (eSNPs) among which 17% (11/65) included established AD genes HLA-DRB1 and
HLA-DRB5. In the blood, 307 genes were significant targets for rare eSNPs. In the blood and the brain,
GNMT, LDHC, RBPMS2, DUS2, and HP were targets for significant eSNPs. Pathway enrichment
analysis revealed significant pathways in the brain (n = 9) and blood (n = 16). Pathways for apoptosis
signaling, cholecystokinin receptor (CCKR) signaling, and inflammation mediated by chemokine and
cytokine signaling were common to both tissues. Significant rare eQTLs in inflammation pathways
included five genes in the blood (ALOX5AP, CXCR2, FPR2, GRB2, IFNAR1) that were previously
linked to AD. This study identified several significant gene- and pathway-level rare eQTLs, which
further confirmed the importance of the immune system and inflammation in AD and highlighted
the advantages of using a set-based eQTL approach for evaluating the effect of low-frequency and
rare variants on gene expression.

Keywords: Alzheimer disease; expression quantitative trait loci (eQTL); rare variants; set-based
eQTL; SKAT-O; pathways; immune system; inflammation; ROSMAP; ADNI

1. Introduction

Late-onset Alzheimer disease (AD) is the most common type of dementia that affects
an estimated 5.7 million individuals aged 65 years and older in the United States, with the
number projected to rise to 14 million by 2050 [1]. AD is highly heritable (h2 = 58–79%) [2],
but common variants explain only one-third of the genetic portion of AD risk [2]. Highly
penetrant rare variants may account for some of the missing heritability [3]. Whole-exome
sequencing studies have identified robust AD associations with rare missense variants in
TREM2, AKAP9, UNC5C, ZNF655, IGHG3, CASP7 and NOTCH3 [4–9], and it is expected
that more AD-related rare variants will be identified by whole-genome sequencing (WGS)
studies, because some rare variants, including those in non-coding regions, likely contribute
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to AD risk. However, identification of genes that are impacted by these rare variants, and
thus likely have a functional role in AD, remains challenging.

Some AD risk variants are associated with gene expression, as demonstrated by recent
expression quantitative trait locus (eQTL) studies [10,11]. Rare variants may contribute to
extreme gene expression within a single tissue or across multiple tissues [12–15]. However,
genome-wide studies of rare eQTLs are generally underpowered to obtain significant
results. Although gene-based tests, which test the aggregate effects of multiple variants,
are commonly used to evaluate the association of a disease with rare variants, only a few
studies have applied this approach to the analysis of rare eQTLs. Several eQTL studies
employed set-based approaches including testing gene expression with multiple single
nucleotide polymorphisms (SNPs) chosen by variable selection [16,17] using a gene-based
partial least-squares method to correlate multiple gene transcript probes with multiple
SNPs [18], and identifying variants associated with transcript and protein modules [19].
These applications were not focused on rare variants, but still afforded higher power with
a potential to find significant associations with low-frequency variants.

Few studies have applied a set-based eQTL method for rare variants. Recently, Lutz
et al. applied burden and set-based (sequence) kernel association (SKAT) tests to normalize
read counts in RNA-sequence (RNA-seq) studies [20]. In this study, we performed a
gene-based cis-eQTL analysis using expression data derived from human blood and brain
tissue to identify genes that contain a set of potentially regulatory low-frequency and
rare variants (minor allele frequency (MAF) < 0.05) that are significantly associated with
their expression. Although this design focused on rare variants, and thus has low power
to detect expression differences between AD cases and controls, the set-based method
can potentially discriminate AD-related targets among a group of genes located within
1 Mb from the expression single nucleotide polymorphisms (eSNPs) that were previously
associated with the risk of AD. We also applied a pathway-based approach to determine
which genes contribute most to the overall gene expression profile of a significant pathway
containing a set of co-expressed functionally related genes.

2. Materials and Methods
2.1. Study Cohorts

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multisite longitudinal
study that began enrolling subjects in 2004, and includes persons with AD, mild cognitive
impairment (MCI), and normal cognitive functioning [21]. Affymetrix Human Genome
U219 array gene expression data derived from whole blood, whole-genome sequence
(WGS) data, and phenotype data were downloaded from a public-access database (http:
//www.loni.usc.edu (accessed on 11 December 2018)). The portion of the sample included
in this study included 207 AD cases, 284 MCI cases, 194 controls, and 28 individuals with
missing dementia status.

The Religious Orders Study (ROS)/Memory and Aging Project (MAP) also contributed
to this research. ROS enrolled older nuns and priests from across the US without known
dementia for a longitudinal clinical analysis and brain donation. MAP enrolled older
subjects without dementia from retirement homes, who agreed to brain donation at the
time of death [22,23]. RNA-sequence data, including gene expression information derived
from dorsolateral prefrontal cortex area tissue donated by 475 participants (281 autopsy-
confirmed AD cases and 194 controls), as well as WGS data included in this study, were
obtained from the AMP-AD knowledge portal (https://www.synapse.org/#!Synapse:
syn3219045 (accessed on 1 July 2018)) [24]. Characteristics of subjects from both cohorts are
provided in Table 1.

http://www.loni.usc.edu
http://www.loni.usc.edu
https://www.synapse.org/#!Synapse:syn3219045
https://www.synapse.org/#!Synapse:syn3219045
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Table 1. Characteristics of subjects in the Religious Orders Study/Memory and Aging Project
(ROSMAP) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.

Dataset Race N AD Cases MCI Cases Controls Female Age *

ROSMAP
(Brain)

NHW
98%
AA
2%

Other
<0.01%

475 281 0 194 63% 85.9 (4.8)

ADNI
(Blood)

NHW
93%
AA
4%

Other
3%

713 207 284 222 44% 76.3 (8.1)

NHW—non-Hispanic white, AA—African American. * mean (standard deviation).

2.2. Data Processing

ADNI microarray gene expression data were normalized and log-transformed using
limma [25]. ROSMAP RNA-seq data were normalized and then log-transformed using
a previously described pipeline [26]. The log-transformed expression data were evalu-
ated using surrogate variable analysis (SVA) [27] to obtain surrogate variables for global
technical effects and hidden effects, which were included as covariates in the analysis
models for eQTL discovery. Additional filtering steps of GWAS and gene expression data
included eliminating 167 ROSMAP and 96 ADNI subjects with missing data (resulting in
the sample sizes reported in Table 1), restricting gene expression data to protein-coding
genes (12,971 genes in ROSMAP and 16,025 genes in ADNI), and selecting only bi-allelic
low-frequent and rare variants (MAF ≤ 0.05) with a variant call rate of >95%.

2.3. Functional Annotation of Variants

Variants in the ADNI and ROSMAP WGS datasets were annotated using CADD
v1.6 [28] and GWAVA v1.0 software [29]. Combined Annotation-Dependent Depletion
(CADD) scores prioritize functional, deleterious, and disease-causal coding and non-
coding variants by integrating multiple annotations into one score by contrasting variants
that survived natural selection with simulated mutations [28]. A scaled CADD score of
10 or greater indicates a raw score in the top 10% of all possible reference genome single
nucleotide variants (SNVs), and a score of 20 or greater indicates a raw score in the top
1% [28]. Genome-Wide Annotation of Variants (GWAVA) scores predict the functional
impact of non-coding genetic variants based on annotations of non-coding elements and
genome-wide properties, such as evolutionary conservation and GC-content, in the range
of 0–1 with mutations scored >0.5 identified as “functional” and those scored ≤0.5 as
“non-functional” [29]. Genomic coordinates of variants in the ADNI dataset that were
established using genome build GRCh38 were converted to build hg19 using liftOver
software (https://genome.ucsc.edu/cgi-bin/hgLiftOver (accessed on 3 November 2018)).
Both ADNI and ROSMAP WGS variants were matched by chromosome, position, reference,
and alternate alleles. Variants having a CADD score >15 or a GWAVA region score >0.5 were
annotated as having a potential regulatory function.

2.4. Set-Based eQTL Analysis

The sequence of steps to identify set-based eQTLs in the blood and brain is shown in
Figure 1.

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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Figure 1. Overview of set-based rare expression quantitative trait loci (eQTL) analysis. Gene-level tests were performed 
for each protein-coding gene using an aggregate of all potentially regulatory single nucleotide polymorphisms (SNPs) 
with minor allele frequency ≤0.05 within 1 Mb of each gene. Pathway-level analysis was carried out in two steps. First, the 
weighted gene co-expression network analysis (WCGNA) method was applied to identify co-expressed gene modules. 
Next, pathway enrichment analysis was conducted using the Protein Analysis Through Evolutionary Relationships (PAN-
THER) tool to identify significantly enriched pathways in these gene modules, and pathway-level tests were then per-
formed on each enriched pathway, including the aggregated SNPs for each gene in the module. Results were considered 
significant (p < 0.05) after applying a Bonferroni correction. 

2.4.1. Gene-Level cis-eQTL Analysis 
For common variants, eQTL analysis entails testing the association of expression of 

one gene with one variant. Gene-level eQTL analysis was performed by testing the asso-
ciation of expression of one gene with aggregated cis-regulatory variants, limited to those 
with a frequency of <0.05 and located in or within 1 Mb of the gene. Gene-based tests were 
performed using the SKAT-O method, which combines the variance component (SKAT) 
approach and burden tests into one test with optimal power [30]. We implemented SKAT-
O tests for set-based eQTL analysis by considering the gene expression value as the out-
come, with the aggregated rare variant count as the predictor. The regression model for 
analyses of the ROSMAP data also included covariates for age, sex, post-mortem interval 
(PMI), study (ROS or MAP), and a term for a surrogate variable (SV1), derived from the 
gene expression data matrix to account for unmeasured/hidden technical effects on gene 
expression using surrogate variable analysis (SVA) [27]. Model covariates for analyses of 
the ADNI data included baseline age, sex, RNA integrity number (RIN), year of blood 
sample collection, and SV1. SKAT-O was implemented with group-wise tests using 
EPACTS software (https://genome.sph.umich.edu/wiki/EPACTS (accessed on 9 March 
2021)) with the following parameter specifications: epacts group —vcf [specific chr ge-
nome vcf.gz file]\—groupf [file of aggregated rare variants] —out [out file]\—ped [gene 
expression file]—max-maf 0.05\—pheno $gene—cov Age_baseline—cov Sex—cov RIN—
cov YearofCollection—cov SV1—test skat—skat-o—run 8. The significance threshold af-
ter adjusting for the number of genes tested was 3.86 × 10−6 (0.05/12,971) for analyses of 

Figure 1. Overview of set-based rare expression quantitative trait loci (eQTL) analysis. Gene-level tests were performed for
each protein-coding gene using an aggregate of all potentially regulatory single nucleotide polymorphisms (SNPs) with
minor allele frequency ≤0.05 within 1 Mb of each gene. Pathway-level analysis was carried out in two steps. First, the
weighted gene co-expression network analysis (WCGNA) method was applied to identify co-expressed gene modules. Next,
pathway enrichment analysis was conducted using the Protein Analysis Through Evolutionary Relationships (PANTHER)
tool to identify significantly enriched pathways in these gene modules, and pathway-level tests were then performed on
each enriched pathway, including the aggregated SNPs for each gene in the module. Results were considered significant
(p < 0.05) after applying a Bonferroni correction.

2.4.1. Gene-Level cis-eQTL Analysis

For common variants, eQTL analysis entails testing the association of expression
of one gene with one variant. Gene-level eQTL analysis was performed by testing the
association of expression of one gene with aggregated cis-regulatory variants, limited to
those with a frequency of <0.05 and located in or within 1 Mb of the gene. Gene-based
tests were performed using the SKAT-O method, which combines the variance component
(SKAT) approach and burden tests into one test with optimal power [30]. We implemented
SKAT-O tests for set-based eQTL analysis by considering the gene expression value as the
outcome, with the aggregated rare variant count as the predictor. The regression model for
analyses of the ROSMAP data also included covariates for age, sex, post-mortem interval
(PMI), study (ROS or MAP), and a term for a surrogate variable (SV1), derived from the
gene expression data matrix to account for unmeasured/hidden technical effects on gene
expression using surrogate variable analysis (SVA) [27]. Model covariates for analyses of the
ADNI data included baseline age, sex, RNA integrity number (RIN), year of blood sample
collection, and SV1. SKAT-O was implemented with group-wise tests using EPACTS
software (https://genome.sph.umich.edu/wiki/EPACTS (accessed on 9 March 2021)) with
the following parameter specifications: epacts group—vcf [specific chr genome vcf.gz
file]\—groupf [file of aggregated rare variants]—out [out file]\—ped [gene expression
file]—max-maf 0.05\—pheno $gene—cov Age_baseline—cov Sex—cov RIN—cov Year of
Collection—cov SV1—test skat—skat-o—run 8. The significance threshold after adjusting
for the number of genes tested was 3.86 × 10−6 (0.05/12,971) for analyses of the ROSMAP

https://genome.sph.umich.edu/wiki/EPACTS
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data and 3.12 × 10−6 (0.05/16,024) for analyses of the ADNI data (Figure 1). To identify
sentinel variants that contribute the majority of the evidence for significant gene-based
results, eQTL tests were performed for all significant genes and each individual potentially
regulatory rare variant (MAF ≤ 0.05) within 1Mb of the gene using linear regression
models with the above covariates in R [31] for each cis-regulatory variant. The significance
threshold after adjusting for the number of unique gene-SNP eQTLs was 1.83 × 10−6

(0.05/27,393) for analyses of the ROSMAP data and 1.17 × 10−7 (0.05/425,995) for analyses
of the ADNI data.

2.4.2. Pathway-Level cis-eQTL Analysis

Pathway-level eQTL analysis was employed to test the association of a pathway,
containing many genes, with sets of variants in each of the genes in the pathway one at
a time. First, modules of co-expressed genes were identified using the Weighted Gene
Co-expression Network Analysis (WGCNA) method implemented in R [32], including all
protein-coding genes that were expressed in the ADNI and ROSMAP datasets. Analyses
were conducted using the default parameters (soft-threshold power β = 6.00, deepSplit = 2
(medium sensitivity), a minimum module size of 20, and a merge cut height of 0.15) that
were recommended by the developers of the software [32] and applied in another AD
study [33]. Each gene module can be summarized quantitatively by a module eigengene
(ME) value derived from principal component analysis. The ME is considered to be repre-
sentative of gene expression profiles in a gene module. Next, gene-set pathway enrichment
analysis was performed using the Protein Analysis Through Evolutionary Relationships
(PANTHER) software tool [34] to determine which pathways were significantly enriched
in the gene modules identified from the WGCNA for pathway-level eQTL analysis. Sig-
nificance of the enriched pathways was determined by the Fisher’s Exact test with a false
discovery rate (FDR) of <0.05. Pathway-level eQTL analysis was performed for each signif-
icantly enriched pathway. The association of the ME value and each gene in the module
was tested individually using all potentially regulatory rare cis-SNPs (MAF < 0.05). Models
included the same covariates and parameter specifications as described for the gene-level
eQTL tests and were analyzed using the SKAT-O method implemented in EPACTS. A total
of 77 genes in 9 enriched pathways were evaluated in the ROSMAP dataset, and 100 genes
in 16 enriched pathways were evaluated in the ADNI dataset. After correction for the
number of genes that were tested, the thresholds for significant pathway-level rare eQTLs
were p < 6.49 × 10−4 in the ROSMAP dataset and p < 5.0 × 10−4 in the ADNI dataset
(Figure 1).

2.4.3. Comparison of Rare and Common eQTLs

To determine whether both common variants and gene-level aggregated rare/low-
frequency variants target expression of the same genes, we evaluated the overlap in
significant gene-based cis-eQTLs with those involving common variants (MAF > 0.05)
within 1 Mb of protein-coding genes that were obtained previously from the Framingham
Heart Study (blood) and ROSMAP (brain) gene expression datasets [26]. These comparisons
not only indicated which eGenes are regulated by rare and/or common variants, but also
determined whether multiple variants can separately up- or down-regulate expression of
the same gene.

3. Results
3.1. Gene-Level eQTL Associations

In the gene-level eQTL analysis, aggregating on average 416 unique low-frequency and
rare variants for each gene, 65 significant gene-level eQTLs (p < 3.86× 10−6) were identified
in the brain (Figure 1, Table S1). Eight of these genes, including established AD genes
HLA-DRB1 [35] and HLA-DRB5 [36], are located in or near the major histocompatibility
locus. By comparison, 307 significant gene-level eQTLs, with an average of 678 unique
variants, were observed in blood at p < 3.12× 10−6 (Figure 1, Table S2). Among these genes,



Genes 2021, 12, 419 6 of 16

ABCA7, ECHDC3, and MS4A6A are known AD loci [35,36]. The genes GNMT, LDHC,
RBPMS2, DUS2, and HP were significant in both the brain and blood (Table 2), noting
that the evidence for RBPMS2 was stronger in the blood (p = 1.69 × 10−36) than the brain
(p = 9.90 × 10−8).

Table 2. Significant gene-level eQTLs common to blood and brain.

Chr Begin
Position

End
Position Gene

Brain Blood

CVar + Unique Var ˆ p-Value CVar + Unique Var ˆ p-Value

6 41,942,338 43,929,364 GNMT 671 437 1.85 × 10−6 1006 640 2.87 × 10−7

11 17,434,230 19,468,040 LDHC 429 273 2.07 × 10−7 762 473 2.25 × 10−10

15 64,039,999 66,063,761 RBPMS2 404 249 9.90 × 10−8 648 417 1.69 × 10−36

16 67,034,867 69,106,452 DUS2 714 482 1.98 × 10−6 1085 723 6.41 × 10−08

16 71,090,452 73,094,829 HP 741 461 2.28 × 10−9 1206 750 2.43 × 10−11

+ Cumulative number of variants. ˆ Number of unique variants. Chromosome and map position according to GRCh37 assembly.

3.2. Variant-Level eQTL Associations

Examination of the variant-level eQTL associations for the 65 significant genes in
the brain identified 61 significant eGene-eSNP eQTL pairs, involving 22 unique eGenes
(Table S3). By a very wide margin, the most significant eQTL pair featured rs772849040
located in NFAT5, which targeted DDX19A-DDX19B (p ≤ 1.0 × 10−314). DDX19A-DDX19B
was also a significant eGene for rs17881635 located in COG4 (p = 6.26 × 10−23). COPZ1
and TMPRSS6 were both significant eGenes for seven eSNPs each. A much larger number
of eQTL pairs (n = 832) were significant in the blood, in which 185 eGenes were unique
(Table S4). Four of these genes had 20 or more significant eSNPs: KRT79 (n = 36), TAC3
(n = 32), CDK12 (n = 24), and SOS1 (n = 20). LDHC was a significant eGene for two eSNPs
in the blood (rs117652970, p = 1.12 × 10−21 and rs17579565, p = 8.26 × 10−21) and a third
eSNP in the brain rs773835421, p = 1.60 × 10−6). Adjacent genes DHRS4 and its homolog
DHRS4L2 were significant eGene targets for 17 eSNPs. Similarly, three SNPs were each
significant eQTLs paired with ATP6V0D1 and CMTM2, and four SNPs were each significant
eQTLs paired with IKZF3 and GSDMA. In the brain, rs1260874991 and rs1405001784 were
significant eSNPs for two zinc finger protein genes (ZNF101 and ZNF103).

3.3. Pathways Enriched in the Brain and Blood

Pathway enrichment analysis of each gene module revealed 9 significant enriched
pathways in the brain and 16 in the blood (Table 3). The apoptosis signaling, cholecys-
tokinin receptor (CCKR) signaling map, and inflammation mediated by chemokine and
cytokine signaling pathways were enriched in both the brain and blood. Focusing on genes
in the significantly enriched pathways in the brain, the aggregated rare variants in CCL7
and CCL8 were associated with the inflammation mediated by chemokine and cytokine
signaling pathway (p = 1.84 × 10−5 and p = 4.50 × 10−4, respectively, Table 4). In total, 6 of
the 22 genes that contained significant aggregated rare eQTLs associated with pathway
expression in the blood were members of the same inflammation pathway: ALOX5AP
(p = 1.26 × 10−4), CXCR2 (p = 1.53× 10−6), FPR2 (p = 1.25× 10−4), GRB2 (p = 6.04 × 10−7),
IFNAR1 (p = 1.98 × 10−5), and RAF1 (p = 2.11 × 10−5) (Table 4). Furthermore, CFLAR
(p = 2.42 × 10−4), TMBIM6 (p = 4.48 × 10−4), and TNFRSF10C (p = 8.77 × 10−5) were
significant rare variant eQTLs in apoptosis signaling pathways in the blood. Signifi-
cant aggregated rare variant eQTLs were observed with ALOX5AP in both gene-level
(p = 2.20 × 10−10) and pathway-level (p = 1.26 × 10−4) analyses (Table 4).
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Table 3. Significant pathway enrichment in gene modules in the brain and blood.

Pathway
# Genes in
Pathway

Gene
Module

# Module
Genes in
Pathway

Module Genes
Uncorrected

p-Value FDRExpected #
of Genes *

Fold
Enrichment † +/−

BRAIN
Apoptosis signaling 77 7 12 1.64 7.3 + 3.09 × 10−7 5.01 × 10−5

Toll receptor signaling 32 8 6 0.46 12.97 + 1.45 × 10−5 2.36 × 10−3

Wnt signaling 235 4 21 7.35 2.86 + 3.49 × 10−5 5.65 × 10−3

Cadherin signaling 127 4 14 3.97 3.53 + 9.59 × 10−5 7.77 × 10−3

CCKR signaling map 111 7 10 2.37 4.22 + 2.22 × 10−4 1.20 × 10−2

Gonadotropin-releasing hormone receptor 152 4 14 4.75 2.95 + 5.28 × 10−4 2.14 × 10−2

p53 62 7 7 1.32 5.29 + 5.76 × 10−4 2.33 × 10−2

Inflammation mediated by chemokine and cytokine signaling 173 16 5 0.51 9.89 + 1.54 × 10−4 2.50 × 10−2

Angiogenesis 126 4 12 3.94 3.05 + 9.95 × 10−4 3.22 × 10−2

BLOOD
Blood coagulation 43 24 8 0.27 29.9 + 8.22 × 10−10 1.34 × 10−7

Parkinson’s disease 85 15 7 0.79 8.82 + 2.28 × 10−5 3.72 × 10−3

Inflammation mediated by chemokine and cytokine signaling 237 14 11 2.27 4.84 + 2.50 × 10−5 4.08 × 10−3

T-cell activation 73 32 4 0.18 22.02 + 3.87 × 10−5 6.30 × 10−3

B-cell activation 66 12 6 0.66 9.08 + 7.89 × 10−5 1.29 × 10−2

PDGF signaling 127 12 7 1.27 5.5 + 3.79 × 10−4 2.06 × 10−2

Apoptosis signaling 112 5 12 3.15 3.81 + 1.51 × 10−4 2.47 × 10−2

JAK/STAT signaling 17 7 4 0.28 14.33 + 3.21 × 10−4 2.62 × 10−2

Ras 64 5 8 1.8 4.44 + 7.61 × 10−4 3.10 × 10−2

CCKR signaling map 164 5 14 4.61 3.04 + 3.94 × 10−4 3.21 × 10−2

Angiotensin II-stimulated signaling through G proteins and
β-arrestin 33 5 6 0.93 6.47 + 6.14 × 10−4 3.34 × 10−2

Histamine H2 receptor-mediated signaling 24 5 5 0.67 7.41 + 1.03 × 10−3 3.37 × 10−2

Inflammation mediated by chemokine and cytokine signaling 237 24 7 1.47 4.75 + 7.94 × 10−4 4.32 × 10−2

Heme biosynthesis 11 6 4 0.25 15.93 + 2.74 × 10−4 4.47 × 10−2

Integrin signalling 180 7 11 2.96 3.72 + 2.84 × 10−4 4.62 × 10−2

Inflammation mediated by chemokine and cytokine signaling 237 20 8 1.78 4.48 + 5.07 × 10−4 8.26 × 10−2

* Number of genes expected in the gene module by chance based on the total set of genes in the pathway as determined for the ROSMAP and ADNI datasets. † fold enrichment = # module genes in
pathway/expected number of genes in module.
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Table 4. Significant pathway-level eQTLs in the brain or blood by aggregating cis rare variants.

CHR Begin
Position

End
Position Gene CVAR + Unique

VAR ˆ p-Value Gene
Module Pathway

17 31,600,172 33,592,552 CCL7 * 340 206 1.84 × 10−5 16 Inflammation mediated by chemokine and cytokine signaling

17 31,648,819 33,621,655 CCL8 * 319 195 4.50 × 10−4 16 Inflammation mediated by chemokine and cytokine signaling

17 72,322,351 74,401,630 GRB2 1108 717 6.04 × 10−7 14 Inflammation mediated by chemokine and cytokine signaling

2 217,992,496 220,001,949 CXCR2 943 564 1.53 × 10−6 14 Inflammation mediated by chemokine and cytokine signaling

5 174,085,268 176,108,976 HRH2 335 196 9.07 × 10−6 5 Histamine H2 receptor mediated signaling

1 25,859,096 27,901,441 RPS6KA1 1208 790 1.01 × 10−5 5 Ras Pathway, CCKR signaling map

11 76,033,278 78,180,311 PAK1 565 355 1.83 × 10−5 5 Ras Pathway, CCKR Signaling map

21 33,696,834 35,718,581 IFNAR1 525 332 1.98 × 10−5 14 Inflammation mediated by chemokine and cytokine signaling

3 11,628,812 13,702,170 RAF1 431 255 2.11 × 10−5 14 Inflammation mediated by chemokine and cytokine signaling

1 83,964,144 85,961,982 GNG5 589 336 3.43 × 10−5 5 Histamine H2 receptor mediated signaling

9 115,150,150 117,160,754 ALAD 620 425 4.97 × 10−5 6 Heme biosynthesis

1 44,478,672 46,476,606 UROD 1061 649 5.92 × 10−5 6 Heme biosynthesis

19 13,202,507 15,228,794 PRKACA 767 501 7.60 × 10−5 5 Histamine H2 receptor mediated signaling, CCKR
signaling map

9 127,005,465 128998618 HSPA5 1235 692 7.91 × 10−5 15 Parkinson disease

8 21,946,761 23968794 TNFRSF10C 817 520 8.77 × 10−5 5 Apoptosis signaling

19 51,273,985 53272173 FPR2 440 280 1.23 × 10−4 14 Inflammation mediated by chemokine and cytokine signaling

13 30,317,837 32,332,540 ALOX5AP 297 197 1.26 × 10−4 14 Inflammation mediated by chemokine and cytokine signaling

2 200,984,212 203,030,077 CFLAR 637 404 2.42 × 10−4 5 Apoptosis signaling

17 39,458,200 41,463,831 STAT5A 1093 708 3.08 × 10−4 12 PDGF signaling

14 50,190,597 52,294,891 NIN 516 323 3.65 × 10−4 12 PDGF signaling

12 49,108,257 51,158,233 TMBIM6 1082 716 4.48 × 10−4 5 Apoptosis signaling

+ Cumulative number of variants; ˆ Number of unique variants; * Results from brain (otherwise results from blood); Chromosome and map position according to GRCh37 assembly.
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3.4. Gene Targets of eQTLs in the Brain and Blood

Comparison of significant rare and common eQTLs in each tissue (Figure 2) revealed
203 genes in the blood and 40 genes in the brain that were targets of rare and common
eSNPs (Table S5), including 19 in the blood and 9 in the brain that have both been previously
implicated in AD (Table 5). Three genes (LDHC, RBPMS2, and HP) are targets that were
observed in significant rare and common eQTLs in the brain and the blood.
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Table 5. Genes previously implicated in AD whose expression is influenced by both rare and
common SNPs.

eQTLs in Blood eQTLs in Brain

eGene Reference eGene Reference

ABCA7 * [36] ACOT1 [37]
ADAMTSL4 [38] HLA-A [39]

ARRB2 [40] HLA-DOB * [26]
ATG7 [41] HLA-DRB1 * [35,41]
CD36 [42] HLA-DRB5 * [36]

CREB5 [43] HP [44]
CTNNAL1 [45] POMC [46]
ECHDC3 * [35] RNF39 [47,48]

HP [44] ZNF253 [49]
KF1B [50,51]

LRRC2 [52]
MS4A6A * [36]

PADI2 [53]
PDLIM5 [54]
S100A12 [55]
SPPL3 [56]

TMEM51 [57]
TREML4 [58]
UBE4B [59]

* AD locus established by GWAS.

4. Discussion

Our study demonstrates that low-frequency and rare variants have a significant impact
on both the expression of genes considered individually and the co-expression of genes
in pathways. Our study highlights the value of the set-based rare-eQTL method because,
similar to gene-based association tests, many novel significant genes we identified were not
detected by the analysis of rare variants individually, which requires a much larger sample
size. In addition, many of the most significant rare-variant findings involved genes with
prior connections to AD through case-control comparisons using GWAS, gene expression,
and functional studies.
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Several of the most significant gene-level eQTL findings in the blood have previ-
ously been implicated in AD. MS4A6A (p = 1.77 × 10−22) is among a family of genes
containing many SNPs that are associated with AD risk at the genome-wide level [35,36]).
A meta-analysis of gene expression studies found that NUMA1 (p = 6.01 × 10−76) was
significantly upregulated in the hippocampus of AD cases [60], and another study showed
that downregulation of GAD1 (p = 1.49 × 10−58) was associated with reduced neuronal
activity [61]. Follistatin, encoded by FST (p = 4.02 × 10−30), is a gonadal protein that in-
hibits the follicle-stimulating protein. The transmembrane protein, tomoregulin-2, contains
follistatin-like modules and is found extensively in amyloid plaques in AD brains [62].
KIF1B (p = 4.49 × 10−21) expression is significantly increased in AD and is associated
with accelerated progression in neurodegenerative diseases [50,51]. The established AD
gene ADAM10 [35] is downregulated by SFRP1 (p = 2.16 × 10−20), which is signifi-
cantly increased in the brain and cerebrospinal fluid (CSF) of AD patients [63]. EXOC2
(p = 6.19 × 10−9) was identified as an AD age-of-onset modifier [64] and contains a rare
missense variant that was observed in seven AD cases in an AD whole-exome sequencing
study [9].

Four of the five significant gene-level rare eQTLs in the brain and blood (Table 1) have
also been implicated in AD. GNMT expression has been detected in the hippocampus and
its deficiency results in reduced neurogenic capacity, spatial learning, and memory impair-
ment [65]. LDHC has differentially methylated regions in the blood in AD cases [66]. The
overexpression of DUS2 reduces Aβ42 toxicity [67]. The acute-phase protein haptoglobin,
encoded by HP, is significantly elevated among AD patients compared to healthy controls
in serum [44,68] and CSF [69] in Asians and persons of European ancestry. The HP 1/1
genotype was associated with poorer cognitive function and greater cognitive decline than
other HP genotypes in a sample of 466 African Americans with type 2 diabetes [70]. The
RNA-binding protein RBPMS2 has not been linked to AD but is a constituent of a leukocyte
signature for traumatic brain injury [71].

We identified several pathways that are significantly enriched with genes involved in
the CCKR signaling map, apoptosis signaling, and inflammation mediated by chemokine
and cytokine signaling pathways, all of which have been linked to AD [72–74]. Wnt signal-
ing, one of the significant pathways we observed in brain, suppresses tau phosphorylation
and Aβ production/aggregation, inhibits BACE1 expression, and promotes neuronal sur-
vival [75]. HSPA5 (p = 7.91 × 10−5), one of the significant pathway-level eQTL findings, is
involved in both amyloid precursor protein metabolism and neuronal death in AD [76].

Our rare-eQTL gene-level and pathway-level results confirm the substantial immune
and inflammatory component to AD. Significant gene-level rare eQTLs in the brain in-
cluded several HLA region loci linked to AD by GWAS (HLA-DRB1 and HLA-DRB5 [35,36])
and cell-type specific eQTL analysis (HLA-DOB [26]). IL27 (p = 1.69 × 10−30) is a cytokine,
and CARD17 (p = 6.73 × 10−13) encodes a regulatory protein of inflammasomes, which are
responsible for the activation of inflammatory responses [77]. Overall, 8 of the 21 significant
pathway-level rare eQTLs involved genes which have roles in the inflammation mediated
by the chemokine and cytokine signaling pathway. Chemokine levels were found to be
significantly increased in serum, CSF, and brain tissue from AD cases [78]. Chemokine
receptor CXCR2 induces Aβ peptides [79]. Another gene in this group, IFNAR1, encodes
the interferon α and β receptor subunit 1. Primary microglia isolated from the brains of
APP/PS1 mutant mice with ablated type-I interferon signaling have shown reduced levels
of Aβ1–42 [80]. In addition to being a significant pathway-level rare eQTL, FPR2 is also
very significant eQTL in the blood (p = 1.22 × 10−240), and more specifically, in interferon
and anti-bacterial cells (p = 3.81 × 10−17) [26]. It is involved in the uptake and clearance of
Aβ and contributes to innate immunity and inflammation [81]. ALOX5AP (a.k.a. FLAP)
is expressed in microglia and encodes a protein which, with 5-lipoxygenase, is required
for leukotriene synthesis. Leukotrienes are arachidonic acid metabolites which have been
implicated in neuroinflammatory and amyloidogenesis processes in AD [82]. Pharmaco-
logical inhibition of FLAP in Tg2576 mice significantly reduced tau phosphorylation at
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multiple sites and increased post-synaptic density protein-95 and microtubule-associated
protein 2 [83]. Growth factor receptor-bound protein 2, encoded by GRB2, is an adaptor
protein that is involved in the trafficking of Aβ [84]. Although the inflammation pathway
was implicated in the eQTL analysis in both the brain and blood, our results showed that
the genes significantly contributing to pathway expression differed between the tissues.
This suggests that AD-related inflammatory processes may differ in the blood and brain.

We observed significant eQTLs involving 27 target genes, previously implicated in
AD through genetic and experimental approaches, which were paired with rare variants
identified in this study and previously reported common variants [26] (Table 5). HP was
the only gene in this group whose expression was influenced by rare and common eSNPs
in both the blood and brain, and thus, it has notable potential as a blood-based biomarker
reflecting AD-related gene expression changes in brain.

Although the set-based rare-eQTL method employed in this study has multiple
strengths in comparison to the analysis of individual rare eQTLs (e.g., higher power,
reduced multiple testing burden, and ability to detect the effects of variants with lower
frequency), our results should be interpreted cautiously in light of several limitations.
Comparisons between the brain and blood were not conducted using data from the same
subjects, and thus may underestimate similarities across tissues. Also, brain expression
patterns may reflect post-mortem changes unrelated to disease or cell-type specific expres-
sion [85]. The set-based method using SKAT-O allows for opposite effect directions of the
constituent SNPs in the test; however, closer scrutiny of the individual SNPs is necessary
to draw conclusions about the collective influence of rare variants on expression, as well
as consistency of the effect direction across tissues. Our results, which were generated
from analyses at the tissue level, do not account for patterns that are cell-type specific
within the blood and brain, as we recently demonstrated for common individual variant
eQTLs in these datasets [26]. In addition, it is unclear whether the set-based eQTL method
applied in this study would behave similarly for rare (MAF < 0.01) and low-frequency
(0.01 < MAF < 0.05) variants analyzed separately. Finally, although this investigation was
conducted using tissue obtained from participants enrolled in studies of AD, the direct
testing of the relevance of findings from the set-based tests of rare variants to AD status
was not feasible, because the sample size was insufficient to have representation of the
sentinel variants in both the case and control groups. This limitation is analogous to the
difficulty encountered in the replication of the aggregated rare variant test findings in AD
genetic association studies [7,8]. Thus, further studies of some genes are needed to establish
their role in AD. Nonetheless, our study provided evidence favoring specific genes under
previously established AD-association peaks whose expression may be differentially or
concordantly regulated in the blood and brain (Table 5).

5. Conclusions

This study of gene-based and pathway-level rare eQTLs implicated novel genes that
may have important roles in AD, found additional evidence supporting the contribution of
immune/inflammatory pathways in AD, and demonstrated the utility of a set-based eQTL
approach for assessing the role of rare variants in molecular mechanisms underlying the
disease. The relevance of these findings to AD should be validated in larger samples with
sufficient power for comparing patterns between AD cases and controls, as well as with
functional experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/3/419/s1, Table S1: Gene-level rare cis-eQTLs in the brain (p < 3.86 × 10−6), Table S2:
Individual SNP eQTLs in the brain (p < 1.83 × 10−6), Table S3: Gene-level rare cis-eQTLs in the blood
(p < 3.12 × 10−6), Table S4: Individual SNP eQTLs in the blood (p < 1.17 × 10−7), Table S5: eGene
targets of both rare and common eQTLs in the blood and brain.
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