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Abstract: The goal of the work was to investigate the possible application of factor analysis methods
for processing X-ray Fluorescence (XRF) data acquired with a full-field XRF spectrometer employing
a position-sensitive and energy-dispersive Gas Electron Multiplier (GEM) detector, which provides
only limited energy resolution at a level of 18% Full Width at Half Maximum (FWHM) at 5.9 keV. In
this article, we present the design and performance of the full-field imaging spectrometer and the
results of case studies performed using the developed instrument. The XRF imaging data collected
for two historical paintings are presented along with the procedures applied to data calibration and
analysis. The maps of elemental distributions were built using three different analysis methods:
Region of Interest (ROI), Non-Negative Matrix Factorisation (NMF), and Principal Component
Analysis (PCA). The results obtained for these paintings show that the factor analysis methods NMF
and PCA provide significant enhancement of selectivity of the elemental analysis in case of limited
energy resolution of the spectrometer.

Keywords: XRF spectral imaging; image processing; micropattern gaseous detectors

1. Introduction

The X-ray Fluorescence (XRF) spectroscopy is a well-established technique used for
the investigation of the elemental composition of various materials including geological
and biological samples as well as various types of artworks. As long as the intensity of
X-rays is kept within certain limits, this can be considered as a noninvasive technique,
and, as such, it is suitable for the investigation of surface layers of valuable art objects.
The technique is widely used for the investigation of paintings [1–6].

The macro-XRF technique utilises a focused X-ray microbeam for excitation of flu-
orescence radiation, a mechanical scanning system, and a high energy resolution X-ray
detector, typically a silicon drift detector. Thus, the spatial resolution in this method is
determined primarily by the spot size of the exciting beam. The technique is very suitable
for detailed investigation of small area samples like fragments of large paintings. When
applied to the investigation of large area painting, it becomes quite time consuming, al-
though much progress has been made recently in various aspects of this method, including
X-ray tubes, radiation detectors, mechanical scanning systems, and software. There is a
commercially available instrument from Bruker Nano GmbH known as M6-Jetstream [7],
which is used nowadays for investigation of flat cultural heritage objects, like paintings,
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icons, manuscripts, and stained glass [6,8–12]. It is worth noting that the instrument has
been developed addressing specific requirements of cultural heritage studies. It uses a state-
of-the-art silicon drift X-ray detector providing the energy resolution at the level of about
2.5% Full Width at Half Maximum (FWHM) at 5.9 keV. In parallel, custom-designed in-
struments are being developed, e.g., [13–17]. Applications of the macro-XRF technique are
limited to flat objects like paintings. For nonflat objects, the spatial resolution gets degraded
if the investigated surface is not precisely in the focal plane of the microbeam [18,19].

An alternative technique called full-field imaging has been proposed recently, and
several projects are under development [20–22]. The full-field imaging technique requires
a position-sensitive and energy-dispersive X-ray detector. The investigated object is illu-
minated by a broad X-ray beam, and the fluorescence radiation is projected onto a 2-D
position-sensitive detector through an optical system like, for example, a multihole colli-
mator or a pin-hole camera, as shown in Figure 1. There is no obvious choice for the type
of detector for such applications as typically the energy resolution of position-sensitive
detectors is compromised by physical effects, like charge division [23], and by techni-
cal constraints. Different types of detectors have been tried by other groups for such
applications: a detector based on a Charge Coupled Device (CCD) used in a special spectro-
scopic mode [21,24–26], a pixel detector [27,28], a gaseous Micro Hole Strip Plate (MHSP)
detector [29], and a gaseous detector based on the technology of Thick Gas Electron Multi-
plier (THGEM) [22], called THCOBRA. Application of the Gas Electron Multiplier (GEM)
detector with the resistive divider readout has also been tried [30].

We developed a system employing a gaseous detector based on the standard (thin
foil) GEM technology. The proof of principle of full-field imaging has been demonstrated
using a three-stage GEM chamber with a sensitive area of 10 × 10 cm2 and a 2-D strip-like
readout working with an Ar/CO2 (70/30) gas mixture [20]. Following this step, further
improvements in the GEM detector by introducing Cr-clad foils have been worked out [31].
Despite improvements in the GEM detector and the readout system, the energy resolution
of GEM detectors working in the proportional counter mode is moderate and limited to
about 18% FWHM at 5.9 keV due to fluctuation of the charge generated in the detector.
Therefore, the interpretation of the XRF spectra measured with the GEM detectors is not
as straightforward as in the case of high energy resolution silicon detectors used typically
in macro-XRF instruments. In addition, the measured XRF spectra include escape peaks
specific for given gas mixtures, which further complicate the interpretation of the spectra
with multiple characteristic energy lines.

Using the developed instrument, we investigated about 20 different paintings so
far. To obtain data of the best possible quality, the specific calibration and measurement
procedures discussed later in this article were worked out. The analysis and interpretation
of the data is as equally important and challenging as the optimisation of the hardware and
measurement procedures. In this article, we discuss the application of factor analysis meth-
ods, Principal Component Analysis (PCA) and Non-Negative Matrix Factorisation (NMF),
for analysis of the data delivered by our instrument. Both methods use an orthogonal
transformation to convert a set of possibly correlated data into a set of linearly uncorrelated
data. They are widely employed in various fields of science from biology, neuroscience,
medicine, astronomy, and X-ray computed tomography, using various types of physical
data. In particular, applications of these two methods to analysis of XRF-imaging data
for historical paintings obtained with different detection techniques are reported in the
literature [32–34]. The PCA is sometimes criticised by the lack of direct interpretability
of the basis vectors as they can comprise negative values, while the input data comprise
only non-negative values. The NMF method constrains the results of factorisation to non-
negative values, and the interpretation of the resulting basis vectors can be more intuitive.
It is worth noting that the interpretation of the measurement and decomposition data is
specific for each particular object and requires some level of a priori knowledge about
it. In this work, we present the analysis for two selected objects and discuss the results
obtained by the two factorisation methods.
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Figure 1. Conceptual view of the full-field XRF imaging spectrometer [31].

2. Materials and Methods
2.1. Overview of the Full-Field XRF Imaging Spectrometer

In our work, we used a custom-developed full-field XRF imaging spectrometer.
The conceptual design of the spectrometer is described elsewhere [35]. The key com-
ponents of the instrument are: two X-ray tubes (Varian VF-50J 50 W with molybdenum
anode), a custom-designed pin-hole camera with the possibility of selecting different hole
diameters from 1 mm to 2 mm, GEM position-sensitive detector, and a custom-designed
readout system of the detector including Application Specific Integrated Circuits (ASICs).
Two X-ray tubes were used to illuminate the area of 10 × 10 cm2 as uniformly as possible.
The details of the X-ray optics system are described in [35]. In the basic configuration,
the system was set up with the optical magnification of 1, the pin-hole diameter of 2 mm,
and a 65 mm distance between the pin-hole and the investigated object. Thus, for the
detector with the active area of 10 × 10 cm2, we obtained an image from the area of the
same size. The spatial resolution was determined by the pin-hole diameter. According
to the model presented in [36], for the pin-hole diameter of 2 mm, the spatial resolution
due to the pin-hole was 1.7 mmrms in the central part of the detector, while the intrinsic
spatial resolution of the detector with a 0.8 mm readout pitch was 0.23 mmrms (pitch/

√
12).

The spectrometer head was mounted on the arm of an industrial robot, which allows one
to position the head precisely in front of an investigated object and move it to take multiple
images with steps of 10 cm. A schematic view of the system is shown in Figure 2a, and
a photo of the measurement head mounted on the robot arm is shown in Figure 2b.
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(a) (b)
Figure 2. Set-up of the full-field XRF spectrometer. (a) Schematic view of the set-up using an industrial robot arm. (b) Photo
of the spectrometer head mounted on the robot arm.

2.2. GEM Detector

Development of detectors based on the GEM technology is primarily driven by their
applications in high energy physics experiments where they are used as position-sensitive
detectors in particle tracking systems. In such applications, the primary goal is to obtain the
best possible spatial resolution for relativistic charge particles. To achieve good detection
efficiency and a low noise count rate, a good signal-to-noise ratio is required. Further-
more, given that the collected charge is spread over several readout electrodes, strips, or
pixels, one can obtain a significant improvement in the spatial resolution by utilising the
amplitudes of signals recorded at individual electrodes within the cluster. The centre of
gravity of such a cluster points to the most probable position of particle interaction with
the detector’s active volume.

Detectors based on the GEM technology have been proven to be also suitable for
simultaneous spectral and position-sensitive measurements of low-energy X-rays, up to
about 20 keV. For higher energies, the detection efficiency of such detectors would be too
low for various practical applications, although one can extend the usable energy range
by using gas mixtures based on heavier gases like krypton or xenon instead of commonly
used cheap argon. One can also increase the detection efficiency by operating the detectors
at a higher gas pressure, above the atmospheric pressure, but this would require a more
advanced construction of the entrance window instead of the commonly used kapton foil.

The energy resolution of such detectors is determined mainly by fluctuations in the
charge produced in the impact ionisation processes, and they cannot compete with semi-
conductor detectors. However, the GEM detectors have other advantages that make them
attractive for some applications in the field of X-ray imaging. First of all, detectors with
large areas can be manufactured easily at low cost. Furthermore, they do not require cooling
and can be operated at room temperature. The geometry and technology of the readout elec-
trodes are decoupled from the GEM technology, and various types of readout structures can
be easily implemented according to a given requirement. Of course, the readout electronics
have to be based on ASICs like for any other high-granularity position-sensitive detector.

When aiming at the best possible energy resolution, approaching the physical limits
due to fluctuations of the generated charge, one has to pay attention to other effects, namely,
variation in the gas amplification factor across the detector and dependence of the gas
amplification factor on the radiation intensity. In the literature, one can find very different
numbers on the energy resolution of GEM detectors from 18% to 27% FWHM for X-ray
energy of 5.9 keV [37–40]. The energy at the level of 18% FWHM is usually measured
using a focused X-ray beam so that the gas amplification factor is constant over a small
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examined area of the detector. On the other hand, if the detector is illuminated with a broad
beam, the spatial variations of the gas amplification factor contribute to the spread of the
measured signal, which results in further worsening the energy resolution.

The map of the gas amplification factor for the detector used in the spectrometer,
extracted from the measurements of the characteristic radiation of copper projected on the
entire detector area, is shown in Figure 3a. The gas gain map after off-line correction is
shown in Figure 3b. It is worth noting that the spread of the gas gain was suppressed from
the initial ±30% min–max to the ±1‰min–max after correction. Correction of the gas gain
spread across the detector area is a key step towards application of the GEM detector to
spectral imaging of X-rays. After off-line correction of the gas amplification factor, the X-ray
spectrum summed over all pixels shows essentially the same energy resolution as one
could obtain from the measurement with a focused beam. An example of the cumulative
spectrum of the copper characteristic radiation is shown in Figure 4. The energy resolution
was 18% FWHM.
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Figure 3. Maps of gas amplification factor across entire detector area: (a) extracted from measurements of the characteristic
copper radiation of 8.05 keV; (b) after off-line correction.

In addition, when aiming at the best possible energy resolution, one also needs to pay
attention to variation in the gas amplification factor due to charging-up effects. Although in
general the effect is understood as caused by the charge accumulated on the high-resistance
kapton foils, which modify the electric field inside the holes, the details depend on many
factors. Therefore, the results available in the literature are not always consistent. Most
studies suggest that the charging-up saturates and that the gas gain remains stable after
initial exposure to radiation on the time scale of hundreds of seconds [41]. However, our
observations indicate that, in addition to this global charging-up effect, there is another
level of gas gain variation caused by short-term variation in the rate of incident radiation.
This observation is consistent with other reported studies [42]. Furthermore, this rate effect
is local and contributes to the spatial spread of the gas gain only if the intensity of incident
photons varies across the detector area.

Another issue to be addressed is the measurement of X-rays with energies above the
copper absorption edge. Since the typical GEM detector is built of copper-clad kapton foils,
X-rays of higher energy excite X-ray fluorescence radiation of copper in the active detector
volume. This copper fluorescence background limits the detection levels of the elements
with characteristic X-ray lines close to the copper Kα line of 8.05 keV and Kβ line of 8.90 keV.
To overcome this serious limitation in the application of GEM detectors to full-field XRF
imaging, an additional technology step in production of GEM foils was applied to remove
the copper cladding layer from standard GEM foil, leaving only the adhesive chromium
layer on the kapton foil and narrow copper stripes. Such a relatively simple modification
results in a very significant reduction in the Cu fluorescence background, by a factor of 7 for
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the Ar/CO2 (70/30) gas mixture [31]. The results of detailed studies of such copperless
detectors have been reported elsewhere [43,44].
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Figure 4. Cumulative spectrum of 8.05 keV X-rays for the GEM detector flushed with Ar/CO2 (75/25)
gas mixture and irradiated over the full area of 10 × 10 cm2.

2.3. Readout Electronics and Data Acquisition System

As mentioned above, the energy resolution of large-area GEM detectors is affected
strongly by variation in the gas amplification factor across the detector area and in time
due to charging-up and count rate effects. To cope with these effects, one needs a versatile
readout system capable of measuring the maps of gas gain to be used for correction of the
effective signal gain pixel by pixel. In the standard Cartesian detector readout plane, the
X- and Y-readout strips are laid out with a pitch of 400µm; however, the effective readout
pitch may be changed by the pitch of the electronic readout channels. The results presented
in this article are based on the measurements taken with a readout pitch of 800µm, i.e., for
pairs of neighbouring strips connected to individual channels of the front-end electronics.
Such a scheme results in 128 readout channels for each coordinate and 128× 128 pixels for
the entire detector, each of 800µm× 800µm.

The key component of our readout system is the low-noise ASIC, called ARTROC,
capable of simultaneous measurement of signal amplitude and hit time [45]. The time
stamps associated with each hit are used for: (i) merging the signals within the clusters
spread over multiple strips and (ii) identification of coincidences of the signal recorded
on X- and Y-strips to determine 2-D positions. The photon positions are assigned to the
pixels resulting from crossing of the X- and Y-strips with the highest signals within the
reconstructed clusters for each coordinate. The ARTROC ASIC comprises derandomising
buffers, analogue memory to store signal amplitudes, and digital memory to store encoded
time stamps, which are read out through the token-ring based multiplexers. Such a readout
scheme results in derandomisation with full zero suppression and allows us to save
resources and use only one data acquisition board serving 128 channels for each coordinate.

A simplified block diagram of the readout system is shown in Figure 5. The details of
the readout system and event reconstruction software are described elsewhere [46].
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Figure 5. Simplified block diagram of the readout system.

2.4. Measurement Procedures and Building Data Sets

The ultimate goal of the measurements performed using the developed instrument
was to obtain the spatial distribution of elements in the investigated objects. This requires
recording and analysing of XRF spectra for individual pixels. However, due to the detector
effects related to nonuniformity of the gas amplification factor across the detector, charging-
up effects, and variation in the gas amplification factor with the radiation rate, careful
measurement procedures should be applied to minimise these effects, and furthermore the
recorded raw data needs to be carefully calibrated.

The standard measurement sequence consists of the following steps:

• Apply the high voltage detector bias for at least 10 h before the planned measurement.
This step ensures the stabilisation of the gas amplification factor with respect to the
polarisation effects of the kapton inside GEM foils.

• Measurement of XRF radiation from a dummy copper layer. A single-sided Printed
Circuit Board (PCB) with a copper layer of 35 µm thickness was used. The PCB is
illuminated for 15 min before starting collecting data, and then the data are recorded
during a period of 4 min. There is a twofold aim of this step: (i) stabilisation of the gas
amplification factor for a given rate of X-rays and (ii) collecting the data for building
the map of the gas amplification factor across the detector.

• Measurement of the object under investigation. After positioning the tested object,
the first frame is illuminated again for 15 min before collecting the data. Because the
average intensity of the fluorescence radiation from the object will usually be lower
than from the dummy copper foil, it is desirable to let the gas gain to stabilise at
different count rates. Of course, we will encounter further small variation of the
gas amplification factor when moving from one frame to another one as there are
different compositions of elements in different quantities in different regions of the
object. Furthermore, since the charging-up effect due to varying X-ray intensity is local,
we have to take into account that the gas gain will vary locally across the detector.
After the initial stabilisation step, the spectrometer head scans automatically the
investigated area frame by frame according to a predefined route, and the apparatus
does not require any assistance of the operator.

Processing of the raw collected data is divided into two stages: (i) initial calibration of
data and merging data from individual frames and (ii) local calibration of the energy scale
to cope with the local charging-up effects. The initial calibration of the data and building
of a common dataset for the whole investigated object is performed in three steps:

• Calculation of the gain map based on data for the dummy copper layer.
• Correction of the count rates for the vignetting effects introduced by the pin-hole

camera. This correction is performed using the same data collected for the dummy
copper layer as used for calculation of the gain map.
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• Merging data from all frames into one dataset for the whole investigated area. In this
step, the overlapping edges of adjacent frames are removed. Scanning of the spec-
trometer head across the investigated area is programmed with small overlaps of
individual frames.

It should be noted that, at this stage, the data are not corrected for the local count
rate effects related to charging-up effects, due to variation in X-ray intensity from different
regions of the investigated object. Therefore, another level of energy calibration needs to
be performed for much smaller detector regions. This is achieved in an iterative procedure
including the following steps:

• The cumulative energy spectrum is built for the whole investigated area using the data
after initial calibration and summing the spectra for individual pixels. Comparing
such a spectrum with the spectrum obtained for the dummy copper layer, one can
make preliminary assignments of the spectrum peaks to the characteristic energy lines,
which are expected in the XRF radiation. At this point, we can utilise other information
about the investigated object like, for example, an expected set of pigments associated
with the edge of the object. Based on this initial qualitative analysis, we define the list
of elements expected to be found in the investigated object.

• Local energy scale is calibrated for small cells, each one comprising 4 × 4 pixels.
The area of the basic cell used at this stage was selected as a compromise between
the accuracy of energy calibration and the statistics. The data from 16 pixels are
summed up, and the spectrum for such a cell is created. Since the count statistics
within individual cells are rather low, the spectra are smoothed by applying a low-pass
filter imported from the Python statsmodels library [47]. Then, for such smoothed
spectra, the find_peaks() function is applied [48], which returns some number of peaks
depending on the spectra composition in the given cell. An example of such spectra
from four different cells for a particular painting is shown in Figure 6. One can easily
notice that because of low statistics, the analysis of such spectra may be non-trivial.

• A key point in the analysis is the association of the peaks with the specific energy lines.
We assume that not all peaks found in the initial analysis of non-corrected data may be
present in the data for the given cell. To find the correct or most probable assignment of
the peaks, all possible combinations are checked, and the one with the best matching
is selected. For example, if the peak finding procedure identifies three peaks in the
spectrum and we have six potential candidates, the procedure tries to assign the three
peaks to different patterns of the three peaks in the cumulative spectrum. The best
matching pattern is then assigned to the given cell and used for the local calibration of
the energy scale. It is worth noting that the local energy calibration is associated with the
region of the investigated object and not with the specific region of the GEM detector.

• The calibration coefficients obtained for the given cell are then applied to all 16 pixels of
that cell. The energy spectra of all pixels within the cell are then corrected, and the new
corrected energy spectrum for the entire investigated area is built. In such a spectrum,
an ROI is defined for each distinguished peak. For each pixel, the total number of counts
within the given ROI is calculated, and the intensity map is built for this particular ROI
corresponding to the distribution of the given element in the investigated object.

• The above described procedure of peak findings is error prone due to low statistics
and a lack of specific energy lines in some cells. The wrong assignment of the peaks
will result in wrong energy calibration. The cells with wrong calibration occurred
in the ROI maps as sticking out from the surrounding area. Thus, the calibration
factors for such pixels can be replaced by the ones derived from the neighbouring
pixels. An automated procedure was worked out and implemented to perform such
corrections. It may happen that the automatic procedure does not work because of
very low statistics in several adjacent pixels or some noisy channels. In such a case,
one can still perform manual correction after inspection of the spectra in the suspected
cells. Usually, the percentage of such problematic cells is very low, and the manual
intervention in the data calibration procedure is not required.
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Figure 6. Examples of four different cell spectra with the results of peaks searching.

2.5. Factor Analysis

The outcome of the data preparation and calibration procedures described above is
a 3-D dataset stored in the form of compressed numpy arrays (file type: npz) [49] compris-
ing X- and Y-coordinates of all pixels in the investigated object and the energy spectrum
associated with each pixel. Factor analysis was applied to such a dataset using two dif-
ferent factorisation methods: PCA and NMF. Although direct access to implementations
of these two methods in Python is possible by embedded scikit-learn functions [50], we
used an indirect approach instead and imported them from the hyperspy library [51]. This
open-source module also comprises scikit-learn solutions, but its advantage is that it reduces
significantly the time of all the necessary calculations associated with transformation of
datasets before and after the decomposition procedure, such as, for example, changing the
dimensions of input and output data matrices. Both factorisation techniques are based
on the assumption that the mixture model of individual spectra in a complex spectrum
and the spatial maps are linear. Each method provides us with the eigenvectors (basis
vectors) and the loadings, which describe how much each data point contributes to a par-
ticular component. Interpretation of such results for complex XRF spectra is, however, not
straightforward. In particular, the PCA returns basis vectors with positive and negative
values, while the XRF spectra comprise only positive values. The NMF method overcomes
this limitation by introducing non-negative constraints.

When analysing the spectra measured with the GEM detector, one has to take into
account the escape peaks associated with each characteristic energy line. These escape peaks
are not always easy to identify, particularly when the energy resolution is limited. On the other
hand, they are associated with a given element in the same way as the main characteristic
peak, and one may expect that the factorisation analysis will handle this correlation properly.

A critical parameter to be specified for each analysis is the number of basis vectors
(components or factors) that should be equal to the number of elements, for which XRF
signals are expected to be present in the measured spectra. Usually, an optimum number
for a given dataset can be established by observation of the results for different trials and
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comparing these results with the measured spectra. If the number is too small, some significant
components can be lost. On the other hand, introducing a high number may result in assigning
particular eigenvectors to some artefacts related to the non-perfect operation of the apparatus.
In the case of our detector, the discussed earlier problems with the charging-up effects and
energy calibration may also result in some distortion of the measured spectra.

2.6. Investigated Objects

To demonstrate the capabilities of our detection system and different data analysis
techniques, two historical oil paintings, shown in Figure 7, were investigated. Both objects
are part of the collection of the National Museum in Krakow. They were selected to repre-
sent two different historical periods and to investigate performance of the spectrometer for
different complexities of the pigments used by the artists. The first painting “Portrait of
Jan III Sobieski in Karacena Scale Armour” is dated around the year 1700, but its author
remains unknown. Its dimensions are 65 cm × 81 cm. The edge of the painting implies
a rather simple and limited set of pigments used.

The second object “Portrait of Mieczysław Gąsecki” is a modern Polish painting dated
to 1923, and one may expect a larger set of the used pigments. The author of this object
is Polish painter Jacek Malczewski. The painting has dimensions of 71 cm × 50 cm. For
each painting, only a part of the total area was investigated. The investigated regions
are indicated by the white dashed lines, and their zoomed views are shown in Figure 7.
The measurement settings for the two paintings are summarised in Table 1.

Figure 7. Photographs of the investigated historical paintings. The investigated areas are marked
with white line rectangles and shown on the right-hand side pictures. (a) “Portrait of Jan III Sobieski
in Karacena Scale Armour”. (b) “Portrait of Mieczysław Gąsecki”.
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Table 1. Measurement settings.

Painting No. of
Frames

Acquisition Time for One Frame
(min)

Measured Area
(cm2)

“Portrait of Jan III
Sobieski in Karacena

Scale Armour”
15 20 43 × 26

“Portrait of Mieczysław
Gąsecki” 12 20 23 × 29

3. Results and Discussion

The measurement data collected for the two paintings were processed and analysed
following the procedures described in Sections 2.4 and 2.5. For each painting, the cu-
mulative spectrum and the results of factor analysis are presented. For each cumulative
spectrum, we defined the ROIs and then we built the maps corresponding to each ROI.
The factor analysis yields the maps of identified components representing the maps of
elemental distributions.

3.1. “Portrait of Jan III Sobieski in Karacena Scale Armour”

Figure 8 shows the cumulative XRF spectrum and the results of the NMF and PCA
analysis for the painting “Portrait of Jan III Sobieski in Karacena Scale Armour”. Figure 8a
shows the total cumulative spectrum collected from the whole investigated area with
the selected ROIs. Each ROI corresponds to characteristic energy assigned to the specific
element. A particular feature of the GEM detectors that has to be taken into account when
analysing the spectrum are the escape peaks. In the case of our detector flushed with the
Ar/CO2 gas mixture, the energy of the escape peak is 2.96 keV lower than the main peak
for each characteristic energy line. Usually, the escape peak of the lowest measured energy
peak is well distinguished from the background. For complex spectra, the escape peaks of
higher energy peaks are not always easy to identify. In case of the presented spectrum, the
escape peak of the iron line can be easily identified, and an ROI is defined for it as well.
In addition, an ROI corresponding to the mercury characteristic line of 10 keV was added,
although no clear signature of such a signal is visible in the spectrum. However, both factor
analyses indicate the presence of such a signal.

Figures 8b,c show the factors obtained from the NMF and PCA analysis, respectively.
Both factorisation analyses reveal signals assigned to the same set of elements: iron, copper,
mercury, and lead. It should be noted that the positive values of the NMF components allow
one to link directly the dominating peaks of the factor distributions with the characteristic
peaks in the cumulative spectrum. The relative intensities of the factors are different
compared to what one could expect from the cumulative spectrum. This is not surprising
as, by definition, the factorisation techniques do not provide quantitative results.

The intensity maps for all ROIs and the maps of loadings obtained from factor anal-
yses are shown Figure 9. Careful visual inspection of these maps allowed us to make
several observations:

• The ROI maps show identical distributions of lead and mercury, which is not sur-
prising given some overlap of the Hg and PbLα ROIs. The PbLβ

maps confirmed that
lead is indeed present in the painting, but the question about the presence of mercury
would remain open if we had only the ROI map. The employment of factor analysis
clearly helped us to resolve this particular question. In particular, the NMF loading
shows a very well distinguished mercury signal in the lower left-hand side area of
the picture. This signal is also visible in the PCA map, but it was negative, and the
intensity of its map is inverted with respect to the NMF map.

• The limitation of the ROI method is also visible in the case of the copper distribution.
The map suggested a uniform distribution of copper, which is not expected in the
painting, but it is present in a small amount in the form of a grid on the GEM foils.
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This fake uniform copper distribution can be explained if one notices that the escape
peak associated with the PbLα line has an energy of 7.59 keV, which is close to the
copper line of 8.05 keV. However, based on the ROI analysis alone, we cannot assume
a priori that the selected copper ROI is dominated by the escape peak of the lead line.
The copper grid structure is very clearly visible on the map obtained from the NMF
analysis. It is worth noting that the copper grid is visible also on the lead maps as
stripes with reduced intensity, which are due to absorption of the lead characteristic
radiation in the copper stripes.

• For the iron distribution, all three techniques gave similar results; however, one can
notice that the best selectivity (contrast) is delivered by the NMF factor analysis.
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Figure 8. Results for the painting “Portrait of Jan III Sobieski in Karacena Scale Armour”: (a) cumulative spectrum for the
whole measured area with marked six ROIs; (b) factor composition obtained from the NMF analysis; (c) factor composition
obtained from the PCA analysis.
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Figure 9. Comparison of the elemental distribution maps obtained for the “Portrait of Jan III Sobieski in Karacena Scale
Armour” painting by three different analysis methods: ROI, NMF, and PCA.

3.2. “Portrait of Mieczysław Gąsecki”

Figure 10 shows the cumulative XRF spectrum and the compositions of factors
returned by the NMF and PCA factorisation algorithms for the painting “Portrait of
Mieczysław Gąsecki”. Figure 10a shows the cumulative spectrum collected from the
whole investigated area with the selected ROIs. Because of the limited energy resolution,
there are two possible candidates for the highest peak in the middle of the spectrum. We
expect some background copper signal from the detector structure; however, the peak posi-
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tion does not match exactly the CuKα line. Thus, the peak can be assigned either to copper
or to zinc. Therefore, we introduced two ROIs, for copper and for zinc, to be considered for
further investigation. Consequently, we also introduced two ROIs corresponding escape
peaks of the copper and the zinc lines. They match well with the broad peak in the range of
4.5 to 5.5 keV, although the intensity of this peak is rather low compared to the background.
The iron ROI needs an additional comment. In the cumulative spectrum, there is no sign
of the iron signal; however, such a signal occurs in the outputs of the factor analyses.
Therefore, this ROI is taken into account in further analysis. The escape peak of the Fe
line is also hardly distinguished from the background, and the ROIs for this peak was
added only in the second iteration, after observation of the factorisation analyses results.
Figures 10b,c show the factors obtained from the NMF and PCA analysis, respectively.
Both factorisation techniques reveal signals assigned to the same set of elements: iron,
copper, zinc, and lead.
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Figure 10. Results for the painting “Portrait of Mieczysław Gąsecki”: (a) total cumulative spectrum for the whole measured
area with marked eight ROIs, (b) factor composition obtained from the NMF analysis, and (c) factor composition obtained
from the PCA analysis.

The maps for all ROIs and the maps of loadings obtained from factor analyses are shown
in Figure 11. It is worth noting a few particular effects observed after careful examination and
comparison of the presented maps:
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Figure 11. Comparison of the elemental distribution maps obtained for the “Portrait of Mieczysław Gąsecki” painting by
three different analysis methods: ROI, NMF, and PCA.

• The ROI maps obtained for copper and zinc are practically identical, and the ROI
analysis alone does not provide us with any hint regarding which one is true. Based
on the ROI analysis, one could also make a hypothesis that a mixture of pigments
comprising copper and zinc was used, although such a combination was not expected
given our knowledge regarding the techniques used by the author of the painting.
Both factorisation analyses NMF and PCA separate the two signals very clearly.
The particular pattern of small zinc reach shapes, like the one on the upper-left-hand
side corner, is clearly visible on the ROI map as well on the NMF and PCA maps.

• Both factor analyses indicate a uniform distribution of copper, which is not expected,
except the signal from the copper grid included in the GEM foils. However, in the case
of NMF maps, one can notice that the copper map is very similar to the lead one.
The shape of the factor associated with this map includes the two peaks, which match
well with the escape peaks of PbLα and PbLβ

lines. In this particular case, the almost
completely uniform copper PCA map seems to be more correct. On the other hand,
the PCA map for lead seems to also include the zinc signal. Thus, the PCA analysis
clearly failed to separate these two components.

• The advantage and usefulness of the factor analyses are very clear in the case of the
iron maps. As mentioned before, in the cumulative spectrum, there is no sign of
the iron signal, and, based only on the cumulative spectrum, there is no indication
to define an ROI in this energy range. However, both NMF and PCA analyses give
factors that can be associated with the iron energy line of 6.4 keV. Thus, we extracted
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the map for this ROI, which indeed confirmed the distribution of iron as obtained
from the factor analyses.

4. Conclusions

In the presented case studies, we demonstrated that the factor analysis methods NMF
and PCA are very effective tools for analysis and interpretation of the XRF images acquired
with a full-field imaging spectrometer at limited energy resolution. By combining these two
methods with the simple ROI analysis, one can remove ambiguities in the identification
of different elements due to the limited energy resolution of the GEM detector used for
simultaneous position-sensitive and energy-dispersive detection of X-rays.

Interpretation of the results given by the NMF and the PCA analysis, each one con-
sidered separately, is not straightforward and clearly may lead to wrong conclusions in
some particular cases. Therefore, one needs to start with the ROI analysis, which allows
one to link the shapes of the factors obtained from the factorisation with the characteristic
X-ray energy lines. The iterative use of the three methods can enhance significantly the
selectivity of the elemental analysis in case of employing an imaging spectrometer with
limited energy resolution. It is worth noting that each art object has its specificity and
represents a different problem from the point of view of heritage science. As underlined
by other studies, e.g., [52], usually a priori knowledge about the investigated object has to
be taken into account, and the factorisation methods should be considered as additional
supporting tools.

The comparison of the results obtained by the PCA and by the NMF analysis for
the object discussed in this article indicates clearly that the NMF is more robust and
provides correct factorisation even in the cases with low quality input data. The NMF
analysis provides a factor representation, which can be directly linked to the energy spectra,
although they cannot be interpreted quantitatively in terms of the concentration of elements
in the investigated objects. However, the intensity maps obtained from the ROI and the
NMF are qualitatively very similar. The PCA method returns basis vectors including
negative values, which cannot be linked directly to the intensity of X-rays given that the
spectra delivered by the spectrometer comprise only positive signals. Difficulties with
interpretation of the PCA results have been discussed also by other authors [32,53], but no
systematic approach was proposed. In our case, the maps produced with this factorisation
technique usually showed less contrast; however, in some particular cases, they may be
helpful for resolving ambiguities in the results obtained from the ROI and NMF analyses.
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Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application-specific integrated circuit
CCD Charge-coupled device
DAQ Data acquisition
FWHM Full width at half maximum
GEM Gas electron multiplier
MHSP Micro-hole strip plate
NMF Non-negative matrix factorization
PCA Principal component analysis
ROI Region of interest
THGEM Thick gas electron multiplier
XRF X-ray fluorescence

References
1. Dik, J.; Janssens, K.; Van Der Snickt, G.; Van der Loeff, L.; Rickers, K.; Cotte, M. Visualisation of a Lost Painting by Vincent van

Gogh Using Synchrotron Radiation Based X-ray Fluorescence Elemental Mapping. Anal. Chem. 2008, 80, 6436–6442. [CrossRef]
[PubMed]

2. Alfeld, M.; De Nolf, W.; Cagno, S.; Appel, K.; Siddons, D.; Kuczewski, A.; Janssens, K.; Dik, J.; Trentelman, K.; Walton, M. Revealing
hidden paint layers in oil paintings by means of scanning macro-XRF: A mock-up study based on Rembrandt’s “An old man in
military costume”. J. Anal. At. Spectrom. 2013, 28, 40–51. [CrossRef]

3. Alfeld, M.; Van Der Snickt, G.; Vanmeert, F.; Janssens, K.; Dik, J.; Appel, K.; Loeff, L.; Chavannes, M.; Meedendorp, T.; Hendriks,
E. Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kröller–Müller
Museum. Appl. Phys. A 2013, 111, 165–175. [CrossRef]

4. Ruberto, C.; Mazzinghi, A.; Massi, M.; Castelli, L.; Czelusniak, C.; Palla, L.; Gelli, N.; Betuzzi, M.; Impallaria, A.;
Brancaccio, R.; et al. Imaging study of Raffaello’s “La Muta” by a portable XRF spectrometer. Microchem. J. 2016, 126,
63–69. [CrossRef]

5. Favero, P.A.; Mass, J.; Delaney, J.K.; Woll, A.; Hull, A.; Dooley, K.A.; Finnefrock, A.C. Reflectance imaging spectroscopy and
synchrotron radiation X-ray fluorescence mapping used in a technical study of Blue Room Pablo Picasso. Herit. Sci. 2017, 5, 13.
[CrossRef]
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Dąbrowski, W. Modelling of vignetting effects in full-field X-ray fluorescence imaging system based on pinhole optics. Spectrochim.
Acta B 2020, 171, 105934. [CrossRef]

36. Silva, A.L.M.; Azevedo, C.D.R.; Oliveira, C.A.B.; Dos Santos, J.M.F.; Carvalho, M.L.; Veloso, J.F.C.A. Characterization of an energy
dispersive X-ray fluorescence imaging system based on a Micropattern Gaseous Detector. Spectrochim. Acta B 2011, 66, 308–313.
[CrossRef]

37. Zhang, Y.L.; Qi, H.R.; Wen, Z.W.; Wang, H.Y.; Ouyang, Q.; Chen, Y.B.; Zhang, J.; Hu, B.T. Spatial resolution measurement of triple
GEM detector and diffraction imaging test at synchrotron radiation. J. Instrum. 2017, 12, P04015. [CrossRef]

38. Varga, D. Analytic Approximation of Energy Resolution in Cascaded Gaseous Detectors. Adv. High Energy Phys. 2016,
2016, 8561743. [CrossRef]

39. Roy, S.; Rudra, S.; Shaw, S.; Chatterjee, S.; Chakraborty, S.; Adak, R.P.; Biswas, S.; Das, S.; Ghosh, S.K.; Prasad, S.K.; et al. Stability
study of gain and energy resolution for GEM detector. Nucl. Instrum. Methods Phys. Res. A 2019, 936, 485–487. [CrossRef]

40. Bressan, A.; De Oliveira, R.; Gandi, A.; Labbé, J.C.; Ropelewski, L.; Sauli, F.; Mörmann, D.; Müller, T.; Simonis, H.J. Two-dimensional
readout of GEM detectors. Nucl. Instrum. Methods Phys. Res. A 1999, 425, 254–261. [CrossRef]

41. Hauer, P.; Flöthner, K.; Schaab, D.; Ottnad, J.; Ratza, V.; Ball, M.; Ketzer, B. Measurements of the charging-up effect in Gas Electron
Multipliers. Nucl. Instrum. Methods Phys. Res. A 2020, 976, 164205. [CrossRef]

42. Azmoun, B.; Anderson, W.; Crary, D.; Durham, J.; Hemmick, T.; Kamin, J.; Karagiorgi, G.; Kearney, K.; Keeler, G.; Kornacki, E.; et al.
A Study of Gain Stability and Charging Effects in GEM Foils. In Proceedings of the 2006 IEEE Nuclear Science Symposium
Conference Record, San Diego, CA, USA, 29 October–1 November 2006. [CrossRef]

https://www.bruker.com/en/news-and-events/webinars/2020/new-horizons-of-micro-xrf-in-art-and-conservation.html
https://www.bruker.com/en/news-and-events/webinars/2020/new-horizons-of-micro-xrf-in-art-and-conservation.html
http://dx.doi.org/10.1063/1.4809583
http://dx.doi.org/10.1088/1748-0221/8/10/P10011
http://dx.doi.org/10.1021/ac503263h
http://www.ncbi.nlm.nih.gov/pubmed/25284509
http://dx.doi.org/10.1039/C4JA00301B
http://dx.doi.org/10.1088/1748-0221/13/04/P04003
http://dx.doi.org/10.1016/j.sab.2007.05.011
http://dx.doi.org/10.1021/ac102811p
http://dx.doi.org/10.1002/xrs.2841
http://dx.doi.org/10.1016/j.nima.2009.03.140
http://dx.doi.org/10.1109/TNS.2011.2173352
http://dx.doi.org/10.1016/j.sab.2010.03.006
http://dx.doi.org/10.1016/j.nima.2019.05.058
http://dx.doi.org/10.1088/1748-0221/11/12/C12025
http://dx.doi.org/http://dx.doi.org/10.1088/1742-6596/499/1/012013
http://dx.doi.org/http://dx.doi.org/10.1016/j.nimb.2017.03.123
http://dx.doi.org/10.1016/j.microc.2021.106112
http://dx.doi.org/10.1016/j.sab.2020.105934
http://dx.doi.org/10.1016/j.sab.2011.03.002
http://dx.doi.org/10.1088/1748-0221/12/04/P04015
http://dx.doi.org/10.1155/2016/8561743
http://dx.doi.org/10.1016/j.nima.2018.10.060
http://dx.doi.org/10.1016/S0168-9002(98)01405-3
http://dx.doi.org/10.1016/j.nima.2020.164205
http://dx.doi.org/http://dx.doi.org/10.1109/NSSMIC.2006.353830


Sensors 2021, 21, 7965 19 of 19
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