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This paper presents a systematic design methodology for neural-network- (NN-) based secure communications in multiple time-
delay chaotic (MTDC) systems with optimal 𝐻

∞
performance and cryptography. On the basis of the Improved Genetic Algorithm

(IGA), which is demonstrated to have better performance than that of a traditional GA, a model-based fuzzy controller is then
synthesized to stabilize the MTDC systems. A fuzzy controller is synthesized to not only realize the exponential synchronization,
but also achieve optimal 𝐻

∞
performance byminimizing the disturbance attenuation level. Furthermore, the error of the recovered

message is stated by using the 𝑛-shift cipher and key. Finally, a numerical example with simulations is given to demonstrate the
effectiveness of our approach.

1. Introduction

Stability and stabilization are particularly important factors
in time-delay systems, and these factors have, to date, been
the focus of many studies. Furthermore, engineering systems
[1], such as the structure control of tall buildings, hydraulics,
and electronic networks, often involve time delays. Notably,
the introduction of a time-delay factor tends to complicate
analysis. For this reason, a great deal of research has been
focused on developing convenient stability checking meth-
ods. The stability criteria of time-delay systems have been
traditionally approached from twomain directions according
to the dependence on the size of the delay. Moreover, since
Mackey and Glass [2] first identified chaos phenomena in
time-delay systems, time delays have received increasing
interest in chaotic systems. Chaotic phenomena have been
observed in numerous physical systems and can lead to
irregular performance and potentially catastrophic failures
[3]. Chaos is a well-known nonlinear phenomenon; it is
the seemingly random behavior of a deterministic system
characterized by sensitive dependence on initial conditions
[4]. Because of these properties, chaos has received a great
deal of interest from scientists in various research fields
[5, 6]. One particular communication research field, chaotic
synchronization, has been extensively investigated.

The chaotic synchronization of identical systems with
different initial conditions was first introduced by Pecora and
Carroll in 1990 [7]; it aims to lock one chaotic system to
another, so that both follow the same path. Based on this con-
cept, various synchronization approaches have been widely
developed in the past two decades. Chaotic synchronization
can be applied in the vast areas of physics and engineering
science and especially in secure communication [8].Themost
acceptable synchronization method is the masking method
which contains messages in a chaotic system and recovers
the original messages from the synchronization [9]. In chaos
secure communications, two identical chaotic oscillators
called transmitter (master) and receiver (slave) are required.
Consequently, chaotic synchronization has become a popular
study [10, 11]. However, most synchronization methods are
focused on synchronizing two identical chaotic systems with
different initial conditions [12]. In fact, experimental and
even real systems are often not fully identical; in particular,
there are mismatches in the parameters of the systems [12].

In general, there will always be some noise or distur-
bances that may cause instability. An external disturbance
will negatively affect the performance of chaotic systems.
Therefore, how to reduce the effect of external disturbances in
the synchronization process is an important issue for chaotic
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systems [13, 14]. The 𝐻
∞ control has been conferred for

synchronization in chaotic systems over the last few years
[13–16], and the 𝐻

∞ synchronization problem for time-delay
chaotic systems has been extensively investigated (see, e.g.,
[14, 17–19]). Accordingly, the purpose of this study is to
realize the exponential synchronization of identical multiple
time-delay chaotic (MTDC) systems and to simultaneously
attenuate the effect of external disturbances on the control
performance to a minimum level.

Due to the unique merits in solving complex nonlinear
system identification and control problems, neural-network-
based modeling has become an active research field in the
past few years. Neural networks (NN) consist of simple
elements operating in parallel; these elements are inspired
by biological nervous systems. As in nature, the connections
between elements largely determine the network function.
A neural network can be trained to perform a particular
function by adjusting the values of the connections (weights)
between elements. Therefore, a nonlinear system can be
approximated as closely as desired by an NN model via
repetitive training (Figure 3). Some examples of successful
applications of NN in recent years can be found in [20–25].
For instance, Limanond et al. [20] applied neural networks
to optimal etch time control design for a reactive ion
etching process. Enns and Si [22] advanced an NN-based
approximate dynamic programming control mechanism for
helicopter flight control. Despite several promising empirical
results and their nonlinear mapping approximation prop-
erties, the rigorous closed-loop stability results for systems
using NN-based controllers are still difficult to establish.
Therefore, an LDI state-space representation was introduced
to deal with the stability analysis of NN models [26].

In the past few years, much research effort has been
devoted to fuzzy control, which has attracted a great deal
of attention from both the academia and industry, and it
has been successfully used in wide variety of applications.
For example, Wang et al. [27] presented a new measurement
system that comprises a model-based fuzzy logic controller,
an arterial tonometer, and a micro syringe device for the
noninvasive monitoring of the continuous blood pressure
wave form in the radial artery. A good tracking performance
control scheme, a hybrid fuzzy neural-network control for
nonlinear motor-toggle servomechanisms, was provided by
Wai [28]; Hwang et al. [29] developed a network-based
fuzzy decentralized sliding-mode control for the trajectory
tracking of a car-like mobile robot; a hybrid fuzzy-PI speed
controller for permanent magnet synchronous motors was
proposed by Sant [30]; and Spatti et al. [31] introduced a
fuzzy control strategy for voltage regulation in electric power
distribution systems: this real-time controller would act on
power transformers equipped with underload tap changers.

Despite the successes of fuzzy control, it still has many
basic problems that have yet to be solved. Stability analysis
and systematic design are certainly among the most impor-
tant issues for fuzzy control systems. Recently, significant
research efforts have been devoted to these issues [32, 33].
All of these studies, however, ignored the modeling errors
between nonlinear systems and fuzzy models. In fact, the
existence of modeling errors may be a potential source of

instability for control designs based on the assumption that
the fuzzy model exactly matches the nonlinear plant [34]. In
recent years, novel approaches to overcome the influence of
modeling errors in the field of model-based fuzzy control for
nonlinear systems have been offered by Kiriakidis [34], Chen
et al. [35], and Cao and Frank [36].

The genetic algorithm (GA) is a global optimal search
tool. By working with a population of solutions, the GA can
seek many local minima and thus increase the likelihood
of finding the global minimum [37]. The GA employs
the Darwinian survival-of-the-fittest theory to yield better
characteristics for the individuals in a population and to
perform a random information exchange to produce superior
individuals [38]. During the evolution, GAs work with a
population of individuals called chromosomes represented
by binary or real-numbered strings and modify the popula-
tion through three genetic operations: (1) reproduction, (2)

crossover, and (3) mutations.Themodified new population is
called offspring. The crossover operation is used to combine
the information of the selected chromosomes (parents) and
generate the offspring. The mutation operation is used to
change the offspring genes [39]. Recently, numerous reports
on the success of GA applications in control systems have
appeared in the literature (see [40–42]). For instance, Navale
and Nelson [41] developed an adaptive fuzzy logic controller
and made use of GAs to improve the fuzzy rule matrix and
fuzzy membership functions for the air handling unit in
heating, ventilating, and air conditioning systems. Mart́ınez
et al. [40] developed a tracking controller for the dynamic
model of a unicycle mobile robot by integrating a kinematic
and a torque controller based on type-2 fuzzy logic theory
and GAs. Kim and Kang [42] proposed a multiobjective
optimal fuzzy control system for the building structure
response reduction of a wind-excited tall building by using
multiobjective GAs. In this paper, the Improved Genetic
Algorithm (IGA) is adopted due to its better performance
compared to that of a traditional GA [39, 43].

Cryptography has always been very important inmilitary
and business applications for maintaining the secrecy of mes-
sages and to prevent information tampering and eavesdrop-
ping. This is especially true since the number of transactions
being made via the Internet continues to increase at a pace
[44]. In this regard, a direct solution to protect messages is
to use symmetric encryption. Symmetric encryption uses the
same key for both encryption and decryption [45]. There are
two basic types of symmetric encryption algorithms, theData
Encryption Standard (DES) and the Advanced Encryption
Standard (AES) algorithms [46]. There have been numerous
recent reports on the success of symmetric encryption [47–
50]. Therefore, the security problem of master-slave systems
based on chaotic circuits needs to develop a high secure
communication system, which is the other subject of this
study.

Almost all existing research on controlling chaos has
used fuzzy models to approximate chaotic systems. Although
using fuzzy models to approximate the chaotic systems is
simpler than using neural networks (NN), the NN models
better approach the chaotic systems by iterative training and
weight adjustment. That is to say, NN models will have fewer
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modeling errors which will be much less than fuzzy models.
In addition, this study combines the concepts of chaotic
synchronization and cryptography to achieve a more secure
communication system. First, we use the 𝑛-shift cipher and
key to the original message of transmission for encryption.
The encrypted message is reencrypted using chaotic syn-
chronization. Consequently, an effective method is proposed
via a neural-network- (NN-) based technique to realize the
optimal 𝐻

∞ exponential synchronization of multiple time-
delay chaotic (MTDC) systems, so that the trajectories of
slave systems can approach those of master systems and
the effect of external disturbance on control performance is
attenuated to a minimum level. The MTDC systems are first
approximated by the NN model approach. Next, in terms
of Lyapunov’s direct method, a delay-dependent criterion is
derived to guarantee the exponential stability of the error sys-
tem between the master and the slave systems. Subsequently,
the stability conditions are reformulated into linear matrix
inequalities (LMIs). On the basis of the LMIs, a model-based
fuzzy controller is then synthesized to stabilize the MTDC
systems. Because of the GA capability in random search for
global optimization, the lower bound and upper bound of
the search space can be set so that the GA will seek better
feedback gains of fuzzy controllers in order to speed up the
synchronization based on the feedback gains via LMI-based
approach. Furthermore, the Improved Genetic Algorithm
(IGA) is adopted due to its better performance compared
to that of a traditional GA. Based on the IGA, a fuzzy
controller is synthesized not only to realize the exponential
synchronization but also to achieve optimal𝐻

∞ performance
by minimizing the disturbance attenuation level. Finally, the
error of the recovered message is stated using the 𝑛-shift
cipher and key.

The remainder of this paper is organized as follows.
In Section 2, we establish NN models representing chaotic
systems and a model-based fuzzy controller. In Section 3, a
robust fuzzy control design is proposed to realize the expo-
nential optimal 𝐻

∞ synchronization. The design algorithm
is shown in Section 4. In Section 5, the effectiveness of the
proposed approach is illustrated by a numerical simulation.
Finally, the paper is concluded in Section 6.

2. Problem Formulation
Consider two multiple time-delay chaotic (MTDC) systems
in master-slave configuration. The dynamics of the master
system (𝑁

𝑚
) and slave system (𝑁

𝑠
) are described as follows:

𝑁
𝑚
: 𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1
𝐻
𝑘

(𝑋 (𝑡 − 𝜏
𝑘
))

𝑌 (𝑡) = 𝑓 (𝑋 (𝑡)) ,

(1)

𝑁
𝑠
: ̇
𝑋̂ (𝑡) =

̂
𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1
𝐻̂
𝑘

(𝑋 (𝑡 − 𝜏
𝑘
)) + 𝐵𝑈 (𝑡)

+ 𝐷 (𝑡)

𝑌̂ (𝑡) =
̂

𝑓 (𝑋 (𝑡)) ,

(2)

where 𝑓(⋅), ̂
𝑓(⋅), 𝐻

𝑘
(⋅), and 𝐻̂

𝑘
(⋅) are the nonlinear vector-

valued functions, 𝜏
𝑘
(𝑘 = 1, 2, . . . , 𝑔) are the time delays,

𝑈(𝑡) is the control output, and 𝐷(𝑡) denotes the external
disturbance.

In this section, we first use the 𝑛-shift cipher and key
to the original message of transmission for encryption. The
encrypted message is reencrypted by using chaotic synchro-
nization. A neural network (NN) model is then established
to approximate the MTDC system. The dynamics of the NN
model are then converted into a linear differential inclusion
(LDI) state-space representation. Finally, based on the LDI
state-space representation, a fuzzy controller is synthesized
to realize the synchronization of the MTDC systems.

2.1. Chaotic Cryptosystem. A chaotic synchronization cryp-
tosystem is shown in Figure 1. It consists of the encrypter (the
master system and an encryption function 𝜁(⋅)) and decrypter
(the slave system and a decryption function 𝜋(⋅)). First, the
message 𝑠(𝑡) and encryption key 𝜗(𝑡) form an encrypted
message 𝜄(𝑡) via an encryption function. The encrypted
message 𝜄(𝑡) is then combined in the master system. When
the chaotic systems are synchronized in the decrypter and
encrypter, we can obtain the message 𝜄(𝑡) in the encrypter.
Next, the message 𝜄(𝑡) can be decrypted by decryption key
𝜗(𝑡) in the decryption function 𝜋(⋅). A decryption function is
then used to reveal the message.

We use an 𝑛-shift cipher for encryption [47]. The 𝑛-shift
cipher is defined by

𝜄 (𝑡) = 𝜁 (𝑠 (𝑡))

= 𝐹 (⋅ ⋅ ⋅ 𝐹 (𝐹⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

(𝑠 (𝑡) , 𝜗 (𝑡)) , 𝜗 (𝑡)) , . . . , 𝜗 (𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

,

(3)

where ℎ is chosen such that message 𝑠(𝑡) and encryption key
𝜗(𝑡) lie within (−ℎ, ℎ). Here, 𝜄(𝑡) denotes the encrypted signal,
and 𝐹(⋅) is the following nonlinear function:

𝐹 (𝑠 (𝑡) , 𝜗 (𝑡))

=

{
{
{
{

{
{
{
{

{

(𝑠 (𝑡) + 𝜗 (𝑡)) + 2ℎ, −2ℎ ≤ (𝑠 (𝑡) + 𝜗 (𝑡)) ≤ −ℎ

(𝑠 (𝑡) + 𝜗 (𝑡)) , −ℎ < (𝑠 (𝑡) + 𝜗 (𝑡)) < ℎ

(𝑠 (𝑡) + 𝜗 (𝑡)) − 2ℎ, ℎ ≤ (𝑠 (𝑡) + 𝜗 (𝑡)) ≤ 2ℎ.

(4)

This function is shown in Figure 2.
The corresponding decryption function is the same as the

encryption function

𝑠 (𝑡) = 𝜋 (𝜄 (𝑡))

= 𝐹 (⋅ ⋅ ⋅ 𝐹 (𝐹⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

(𝜁 (𝜄 (𝑡) , − 𝜗 (𝑡)) , −𝜗 (𝑡))) , . . . , −𝜗 (𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

,

(5)

where 𝜄(𝑡) is the recovered decryption signal, and 𝜋(⋅) is the
decryption function. In the 𝑛-shift cipher, the key signal 𝜗(𝑡)

is used 𝑛 times to encrypt the plain signal.
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Figure 1: Block diagram of the chaotic synchronization cryptosystem.
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ẋ1(t)
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Figure 3: An NN model.

The encrypted message 𝜄(𝑡) is then combined in the
master system. The dynamics of the master system (𝑁

𝑚
) and

slave system (𝑁
𝑠
) are then described as follows:

𝑁
𝑚
: 𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1
𝐻
𝑘

(𝑋 (𝑡 − 𝜏
𝑘
)) + 𝐵𝑆𝜄 (𝑡)

𝑌 (𝑡) = 𝑓 (𝑋 (𝑡)) + 𝑆𝜄 (𝑡) ,

(6)

𝑁
𝑠
: ̇
𝑋̂ (𝑡) =

̂
𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1
𝐻̂
𝑘

(𝑋 (𝑡 − 𝜏
𝑘
)) + 𝐵𝑈 (𝑡)

+ 𝐷 (𝑡)

𝑌̂ (𝑡) =
̂

𝑓 (𝑋 (𝑡)) .

(7)

2.2. Neural-Network (NN) Model. TheMTDC system can be
approximated by an NNmodel, as shown in Figure 1, that has
𝑆 layers with 𝐽

𝜎 (𝜎 = 1, 2, . . . , 𝑆) neurons for each layer, in
which 𝑥

1
(𝑡) ∼ 𝑥

𝛿
(𝑡) are the state variables and 𝑥

1
(𝑡 − 𝜏

1
) ∼

𝑥
1
(𝑡 − 𝜏

𝑔
), 𝑥

2
(𝑡 − 𝜏

1
) ∼ 𝑥

𝛿
(𝑡 − 𝜏

𝑔
) are the state variables with

delays.
Superscripts are used to distinguish the layers and the

number of the layers as a superscript to the names for each
of these variables. Thus, the weight matrix for the 𝜎th layer
is written as 𝑊

𝜎. Moreover, it is assumed that V𝜎
𝜍

(𝑡) (𝜍 =

1, 2, . . . , 𝐽
𝜎

; 𝜎 = 1, 2, . . . , 𝑆) is the net input and 𝑇(V𝜎
𝜍

(𝑡)) is
the transfer function of the neuron. Subsequently, the transfer
function vector of the 𝜎th layer is defined as

Ψ
𝜎

(V𝜎
𝜍

(𝑡))

≡ [𝑇 (V𝜎1 (𝑡)) 𝑇 (V𝜎2 (𝑡)) ⋅ ⋅ ⋅ 𝑇 (V𝜎
𝐽
𝜎 (𝑡))]

𝑇

,

𝜎 = 1, 2, . . . , 𝑆,

(8)

where 𝑇(V𝜎
𝜍

(𝑡)) (𝜍 = 1, 2, . . . , 𝐽
𝜎

) is the transfer function of
the 𝜍th neuron. The final output of NN model can then be
inferred as follows:

𝑋̇ (𝑡) = Ψ
𝑆

(𝑊
𝑆

Ψ
𝑆−1

(𝑊
𝑆−1

Ψ
𝑆−2

(⋅ ⋅ ⋅ Ψ
2

(𝑊
2
Ψ

1
(𝑊

1
Λ (𝑡)))

⋅ ⋅ ⋅))) ,

(9)

where

Λ
𝑇

(𝑡) = [𝑋
𝑇

(𝑡) 𝑋
𝑇

(𝑡 − 𝜏
𝑘
)] (10)
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with

𝑋 (𝑡) = [𝑥
1

(𝑡) 𝑥
2

(𝑡) ⋅ ⋅ ⋅ 𝑥
𝛿

(𝑡)]

𝑇

,

𝑋 (𝑡 − 𝜏
𝑘
)

= [𝑥
1

(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ 𝑥

1
(𝑡 − 𝜏

𝑔
) 𝑥

2
(𝑡 − 𝜏

𝑔
) ⋅ ⋅ ⋅ 𝑥

𝛿
(𝑡 − 𝜏

𝑚
)]

𝑇

for 𝑘 = 1, 2, . . . , 𝑔.

(11)

2.3. Linear Differential Inclusion (LDI). To deal with the
synchronization problem ofMTDC systems, this study estab-
lishes the following LDI state-space representation for the
dynamics of the NN model, described as [26, 51]

𝑂̇ (𝑡) = 𝐴 (𝑎 (𝑡)) 𝑂 (𝑡) ,

𝐴 (𝑎 (𝑡)) =

𝜙

∑

𝑖=1
ℎ
𝑖

(𝑎 (𝑡)) 𝐴
𝑖
,

(12)

where 𝜙 is a positive integer, 𝑎(𝑡) is a vector signifying the
dependence of ℎ

𝑖
(⋅) on its elements, 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝜙) are

constant matrices, and 𝑂(𝑡) = [𝑜
1
(𝑡) 𝑜

2
(𝑡) ⋅ ⋅ ⋅ 𝑜

ℵ
(𝑡)]

𝑇

.

Furthermore, it is assumed that ℎ
𝑖
(𝑎(𝑡)) ≥ 0 and

∑
𝜙

𝑖=1
ℎ
𝑖
(𝑎(𝑡)) = 1. Based on the properties of LDI, without

loss of generality, we can use ℎ
𝑖
(𝑡) instead of ℎ

𝑖
(𝑎(𝑡)). The

following procedure represents the dynamics of the NN
model (4) by LDI state-space representation [26].

First, the output 𝑇(V𝜎
𝜍

(𝑡)) satisfies

𝑔
𝜎

𝜍0
V𝜎
𝜍

(𝑡) ≤ 𝑇 (V𝜎
𝜍

(𝑡)) ≤ 𝑔
𝜎

𝜍1
V𝜎
𝜍

(𝑡) , V𝜎
𝜍

(𝑡) ≥ 0,

𝑔
𝜎

𝜍1
V𝜎
𝜍

(𝑡) ≤ 𝑇 (V𝜎
𝜍

(𝑡)) ≤ 𝑔
𝜎

𝜍0
V𝜎
𝜍

(𝑡) , V𝜎
𝜍

(𝑡) < 0,

(13)

where 𝑔
𝜎

𝜍0
and 𝑔

𝜎

𝜍1
denote the minimum and the maximum

of the derivative of 𝑇(V𝜎
𝜍

(𝑡)), respectively, and are given in the
following:

𝑔
𝜎

𝜍𝜑
=

{
{
{
{
{

{
{
{
{
{

{

min
V

𝑑𝑇 (V𝜎
𝜍

(𝑡))

𝑑V𝜎
𝜍

(𝑡)

when 𝜑 = 0

max
V

𝑑𝑇 (V𝜎
𝜍

(𝑡))

𝑑V𝜎
𝜍

(𝑡)

when 𝜑 = 1.

(14)

Then, the min-max matrix 𝐺
𝜎 of the 𝜎th layer is defined as

follows:

𝐺
𝜎

≡ diag [𝑔
𝜎

𝜍 𝜑
𝜍

] =

[

[

[

[

[

[

[

[

[

[

[

[

𝑔
𝜎

1 𝜑
1

0 0 ⋅ ⋅ ⋅ 0

0 𝑔
𝜎

2 𝜑2
0 d 0

0 0 𝑔
𝜎

3 𝜑3
0

.

.

.

.

.

. d 0 d 0
0 0 ⋅ ⋅ ⋅ 0 𝑔

𝜎

𝐽
𝜎

𝜑
𝐽

]

]

]

]

]

]

]

]

]

]

]

]

. (15)

Based on the interpolation method, the transfer function
𝑇(V𝜎

𝜍
(𝑡)) can be represented as follows [26]:

𝑇 (V𝜎
𝜍

(𝑡)) = (ℎ
𝜎

𝜍0 (𝑡) 𝑔
𝜎

𝜍0 + ℎ
𝜎

𝜍1 (𝑡) 𝑔
𝜎

𝜍1) V𝜎
𝜍

(𝑡)

= (

1
∑

𝜑=0
ℎ
𝜎

𝜍𝜑
(𝑡) 𝑔

𝜎

𝜍𝜑
) V𝜎

𝜍
(𝑡) ,

(16)

where the interpolation coefficients ℎ
𝜎

𝜍𝜑
(𝑡) ∈ [0, 1] and

∑
1

𝜑=0
ℎ
𝜎

𝜍𝜑
(𝑡) = 1. Equations (8) and (16) show that

Ψ
𝜎

(V𝜎
𝜍

(𝑡)) ≡ [𝑇 (V𝜎1 (𝑡)) 𝑇 (V𝜎2 (𝑡)) ⋅ ⋅ ⋅ 𝑇 (V𝜎
𝐽
𝜎 (𝑡))]

𝑇

=
[

[

(

1
∑

𝜑1=0
ℎ
𝜎

1𝜑1 (𝑡) 𝑔
𝜎

1 𝜑
1

) V𝜎1 (𝑡) (

1
∑

𝜑2=0
ℎ
𝜎

2𝜑2 (𝑡) 𝑔
𝜎

2 𝜑
2

) V𝜎2 (𝑡) ⋅ ⋅ ⋅ (

1
∑

𝜑
𝐽
=0

ℎ
𝜎

𝐽
𝜎

𝜑
𝐽

(𝑡) 𝑔
𝜎

𝐽
𝜎

𝜑
𝐽

) V𝜎
𝐽
𝜎 (𝑡)]

]

𝑇

.

(17)

Therefore, the final output of the NN model (9) can be
reformulated as follows:

𝑋̇ (𝑡) =

1
∑

𝑝=0
ℎ
𝑆

𝜍𝑝

(𝑡) 𝐺
𝑆

(𝑊
𝑆

[⋅ ⋅ ⋅ [

1
∑

𝑛=0
ℎ
2
𝜍 𝑛

(𝑡) 𝐺
2

(𝑊
2

[

1
∑

𝑏=0
ℎ
1
𝜍 𝑏

(𝑡) 𝐺
1

(𝑊
1
Λ (𝑡))])] ⋅ ⋅ ⋅])

=

1
∑

𝑝=0
⋅ ⋅ ⋅

1
∑

𝑛=0

1
∑

𝑏=0
ℎ
𝑆

𝜍𝑝

(𝑡) ⋅ ⋅ ⋅ ℎ
2
𝜍 𝑛

(𝑡) ℎ
1
𝜍 𝑏

(𝑡) 𝐺
𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2
𝑊

2
𝐺
1
𝑊

1
Λ (𝑡) = ∑

Ω

ℎ
𝜎

𝜍 Ω

(𝑡) 𝐶
𝜎

Ω
Λ (𝑡) ,

(18)
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where

1

∑

𝑏=0

ℎ
1

𝜍 𝑏

(𝑡) ≡

1

∑

𝑏
1
=0

ℎ
1

1𝑏
1

(𝑡)

1

∑

𝑏
2
=0

ℎ
1

2𝑏
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑏
𝐽
=0

ℎ
1

𝐽
1

𝑏
𝐽

(𝑡)

1

∑

𝑛=0

ℎ
2

𝜍 𝑛

(𝑡) ≡

1

∑

𝑛
1
=0

ℎ
2

1𝑛
1

(𝑡)

1

∑

𝑛
2
=0

ℎ
2

2𝑛
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑛
𝐽
=0

ℎ
2

𝐽
2

𝑛
𝐽

(𝑡)

.

.

.

1

∑

𝑝=0

ℎ
𝑆

𝜍𝑝

(𝑡) ≡

1

∑

𝑝
1
=0

ℎ
𝑆

1𝑝
1

(𝑡)

1

∑

𝑝
2
=0

ℎ
𝑆

2𝑝
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑝
𝐽
=0

ℎ
𝑆

𝐽
𝑆

𝑝
𝐽

(𝑡)

∑

Ω

ℎ
𝜎

𝜍 Ω

(𝑡) ≡

1

∑

𝑝=0

⋅ ⋅ ⋅

1

∑

𝑛=0

1

∑

𝑏=0

ℎ
𝑆

𝜍𝑝

(𝑡) ⋅ ⋅ ⋅ ℎ
2

𝜍 𝑛

(𝑡) ℎ
1

𝜍 𝑏

(𝑡) ,

𝜍 = 1, 2, . . . , 𝐽
𝜎

;

𝐶
𝜎

Ω
≡ 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

(19)

and 𝑏
𝜍
, 𝑛

𝜍
, and 𝑝

𝜍
(𝜍 = 1, 2, . . . , 𝐽

𝜎) represent the variables
𝜑 of the 𝜍th neuron of the first, second, and the 𝑆th layer,
respectively. Finally, according to (12), the dynamics of the
NN model (18) can be rewritten as the following LDI state-
space representation:

𝑋̇ (𝑡) =

𝜙

∑

𝑖=1
ℎ
𝑖

(𝑡) 𝐶
𝑖
Λ (𝑡) , (20)

where ℎ
𝑖
(𝑡) ≥ 0, ∑

𝜙

𝑖=1
ℎ
𝑖
(𝑡) = 1, 𝜙 is a positive integer, and 𝐶

𝑖

is a constant matrix with appropriate dimension associated
with 𝐶

𝜎

Ω
. Moreover, the LDI state-space representation (20)

can be rearranged as follows:

𝑋̇ (𝑡) =

𝜙

∑

𝑖=1
ℎ
𝑖

(𝑡) {𝐴
𝑖
𝑋 (𝑡) +

𝑔

∑

𝑘=1
𝐴
𝑖𝑘

𝑋 (𝑡 − 𝜏
𝑘
)} , (21)

where𝐴
𝑖
and𝐴

𝑖𝑘
are the partitions of𝐶

𝑖
corresponding to the

partitions of Λ
𝑇

(𝑡).

2.4. Fuzzy Controller. On the basis of the state-feedback
control scheme, a model-based fuzzy controller is able to
ensure that the slave system can synchronize with the master
system.The output error is defined as 𝑌

𝑒
(𝑡) ≡ 𝑌̂(𝑡) − 𝑌(𝑡) and

the fuzzy controller is in the following form:

Control Rule 𝑙: IF 𝑒1 (𝑡) is 𝑀
𝑙1 and ⋅ ⋅ ⋅ and 𝑒

𝛿
(𝑡) is 𝑀

𝑙𝛿

THEN 𝑈 (𝑡) = − 𝐾
𝑙
𝑌
𝑒

(𝑡) ,

(22)

where 𝑙 = 1, 2, . . . , 𝑚, and 𝑚 is the number of IF-THEN rules
of the fuzzy controller, and 𝑀

𝑙𝜂
(𝜂 = 1, 2, . . . , 𝛿) are the fuzzy

sets.Therefore, the final output of this fuzzy controller can be
inferred as follows:

𝑈 (𝑡) =

− ∑
𝑚

𝑙=1
𝑤
𝑙
(𝑡) 𝐾

𝑙
𝑌
𝑒

(𝑡)

∑
𝑚

𝑙=1
𝑤
𝑙
(𝑡)

= −

𝑚

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝑌
𝑒

(𝑡) (23)

with 𝑤
𝑙
(𝑡) ≡ ∏

𝛿

𝜂=1
𝑀

𝑙𝜂
(𝑒
𝜂
(𝑡)), and 𝑀

𝑙𝜂
(𝑒
𝜂
(𝑡)) is the grade

of membership of 𝑒
𝜂
(𝑡) in 𝑀

𝑙𝜂
. Furthermore, ℎ

𝑙
(𝑡) ≡ 𝑤

𝑙
(𝑡)/

∑
𝑚

𝑙=1
𝑤
𝑙
(𝑡) and ∑

𝑚

𝑙=1
ℎ
𝑙
(𝑡) = 1 for all 𝑡.

In the past, solving the feedback gains 𝐾
𝑙
(𝑙 = 1, 2, . . . , 𝑚)

was based on experience and the trial and error. It will
therefore be advantageous to develop a powerful tool for
solving suitable 𝐾

𝑙
(𝑙 = 1, 2, . . . , 𝑚). Hence, the solving

algorithm is constructed by GA in this paper [43].
From the above, the NN models of the master and slave

chaotic systems are described by the following LDI state-
space representation and a model-based fuzzy controller is
designed by the state-feedback control scheme.Therefore, the
master and slave chaotic systems can be rewritten as follows,
respectively:

Master: 𝑋̇ (𝑡)

=

𝜙

∑

𝑖=1
ℎ
𝑖

(𝑡) {𝐴
𝑖
𝑋 (𝑡) +

𝑔

∑

𝑘=1
𝐴
𝑖𝑘

𝑋 (𝑡 − 𝜏
𝑘
)}

+ 𝐵𝑆

𝑚

∑

𝑙=1
𝑤
𝑙
(𝑡) 𝐾

𝑙
𝜄 (𝑡) ,

𝑌 (𝑡) = 𝐶𝑋 (𝑡) + 𝑆𝜄 (𝑡) ,

(24)

Slave: ̇
𝑋̂ (𝑡)

=

𝜙

∑

𝑗=1

̂
ℎ
𝑗

(𝑡) [𝐴
𝑗
𝑋 (𝑡) +

𝑔

∑

𝑘=1

̂
𝐴
𝑗𝑘

𝑋 (𝑡 − 𝜏
𝑘
)]

+ 𝐵𝑈 (𝑡) ,

𝑌̂ (𝑡) = 𝐶𝑋 (𝑡) .

(25)

2.5. Improved Genetic Algorithm. To obtain a better perfor-
mance of the proposed method, for the GA-based control
gain design, this paper adopts the IGAwhose superiority over
standard GAs has been proposed and verified in [39, 43].
The key point of the IGA is that the chromosomes after
crossover are averagely arranged in the central and boundary
regions of the search domain. This crossover gives the next
generationmore potential to find the global optimal solution.
The improved crossover is stated as follows [43, 52]:

os1
𝑐

= [os1
1
os1

2
⋅ ⋅ ⋅ os1no vars] =

𝑃
1

+ 𝑃
2

2

, (26)

os2
𝑐

= [os2
1
os2

2
⋅ ⋅ ⋅ os2no vars]

= 𝑃max (1− 𝑤) +max (𝑃
1
, 𝑃

2
) 𝑤,

(27)
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os3
𝑐

= [os3
1
os3

2
⋅ ⋅ ⋅ os3no vars]

= 𝑃min (1− 𝑤) +min (𝑃
1
, 𝑃

2
) 𝑤,

(28)

os4
𝑐

= [os4
1
os4

2
⋅ ⋅ ⋅ os4no vars]

=

(𝑃max + 𝑃min) (1 − 𝑤) + (𝑃
1

+ 𝑃
2
) 𝑤

2

(29)

in which

𝑃max = [𝑝𝑎𝑟𝑎
1
max 𝑝𝑎𝑟𝑎

2
max ⋅ ⋅ ⋅ 𝑝𝑎𝑟𝑎

no vars
max ] ,

𝑃min = [𝑝𝑎𝑟𝑎
1
min 𝑝𝑎𝑟𝑎

2
min ⋅ ⋅ ⋅ 𝑝𝑎𝑟𝑎

no vars
min ]

(30)

os1
𝑐

∼ os4
𝑐
are the chromosomes of the next generation, 𝑃

1

and 𝑃
2
are the two chromosomes chosen from the parent,

and max(𝑃
1
, 𝑃

2
) and min(𝑃

1
, 𝑃

2
) are the new chromosomes

in which the genes are the maximum and minimum, respec-
tively, of the genes in the two chromosomes 𝑃

1
and 𝑃

2
.

𝑝𝑎𝑟𝑎
𝜗

max, 𝑝𝑎𝑟𝑎
𝜗

min are the upper bound and lower bound of
the 𝜗th genes, respectively, in the search space.The parameter
𝑤 ∈ [0, 1] is arbitrarily chosen. Equations (26) and (29)
produce two new chromosomes distributed in the central
region of the search domain, whereas (27) and (28) produce
two new chromosomes distributed in the boundary region.

The fitness function for the application in this paper is
defined as follows:

Fit (Λ) =

1
1 + ∑

𝑡
𝑓

𝑡=0 ∑
𝛿

𝜂=1
󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
Λ

𝜂
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑝 (𝑠
Λ

) (31)

in which Fit(Λ) is the fitness value of the Λth chromosome in
a population, 𝑒

Λ

𝜂
(𝑡) is the error of the Λth chromosome in a

population, and

𝑝 (𝑠
Λ

) =

{

{

{

0, 𝑠
Λ

< 0

pv, 𝑠
Λ

≥ 0,

(32)

where 𝑠
Λ
is a variable for evaluating the stability of the systems

and pv is a punishing value and will be set in the experiment.

Themutation operation is to change the genes of the chro-
mosomes. Consequently, the features of the chromosomes
inherited from their parents can be changed [43]. Three new
offspring will be generated by the mutation operation:

nos
𝑗

= [os
1
os

2
⋅ ⋅ ⋅ osno vars]

+ [𝑏1Δnos
1

𝑏2Δnos
2

⋅ ⋅ ⋅ 𝑏no varsΔnosno vars] ,

𝑗 = 1, 2, 3,

(33)

where 𝑏
𝑖
, 𝑖 = 1, 2, 3, . . . , no vars, can only take the value of 0

or 1; Δnos
𝑖
, 𝑖 = 1, 2, 3, . . . , no vars, are randomly generated

numbers such that 𝑝𝑎𝑟𝑎
𝑖

min ≤ os
𝑖

+ Δnos
𝑖

≤ 𝑝𝑎𝑟𝑎
𝑖

max. These
three new offspring will then be evaluated using the fitness
function of (31). A real number will be generated randomly
and compared with a user-defined number 𝑝

𝑎
∈ [0 1]. If

the real number is smaller than 𝑝
𝑎
, the one with the largest

fitness value among the three new offspring will replace the
chromosome with the smallest fitness 𝑓

𝑠
in the population.

If the real number is larger than 𝑝
𝑎
, the first offspring nos1

will replace the chromosome with the smallest fitness value
𝑓
𝑠
in the population if 𝑓(nos1) > 𝑓

𝑠
; the second and the third

offspring will do the same. 𝑝
𝑎
is effectively the probability of

accepting a bad offspring in order to reduce the chance of
converging to a local optimum.

3. Stability Analysis and Chaotic
Synchronization via Fuzzy Control

In this section, the synchronization of multiple time-delay
chaotic (MTDC) systems is examined under the influence of
modeling error. The exponential synchronization scheme of
the MTDC systems is described below.

3.1. Error Systems. From (1) and (2), the dynamics of the
error system under the fuzzy control (5) can be described as
follows:

𝐸̇ (𝑡) = Ψ̂ − Ψ + 𝐷 (𝑡)

+

𝜙

∑

𝑖=1

𝜙

∑

𝑗=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡)
̂
ℎ
𝑗

(𝑡) ℎ
𝑙
(𝑡) {𝐺

𝑖𝑙
𝐸 (𝑡) + (𝐴

𝑗
− 𝐴

𝑖
) 𝑋 (𝑡) +

𝑔

∑

𝑘=1
(

̂
𝐴
𝑗𝑘

− 𝐴
𝑖𝑘

) 𝑋 (𝑡 − 𝜏
𝑘
) +

𝑔

∑

𝑘=1
𝐴
𝑖𝑘

𝐸 (𝑡 − 𝜏
𝑘
)} + 𝐷 (𝑡)

−

𝜙

∑

𝑖=1

𝜙

∑

𝑗=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡)
̂
ℎ
𝑗

(𝑡) ℎ
𝑙
(𝑡) {𝐺

𝑖𝑙
𝐸 (𝑡) + (𝐴

𝑗
− 𝐴

𝑖
) 𝑋 (𝑡) +

𝑔

∑

𝑘=1
(

̂
𝐴
𝑗𝑘

− 𝐴
𝑖𝑘

) 𝑋 (𝑡 − 𝜏
𝑘
) +

𝑔

∑

𝑘=1
𝐴
𝑖𝑘

𝐸 (𝑡 − 𝜏
𝑘
)} − 𝐷 (𝑡)

=

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) {𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑘=1
𝐴
𝑖𝑘

𝐸 (𝑡 − 𝜏
𝑘
)} + 𝐷 (𝑡) + Φ (𝑡) ,

(34)



8 The Scientific World Journal

where

𝐺
𝑖𝑙

≡ 𝐴
𝑖

− 𝐵𝐶𝐾
𝑙
,

Ψ̂ ≡
̂

𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1
𝐻̂
𝑘

(𝑋 (𝑡 − 𝜏
𝑘
)) + 𝑈 (𝑡) ,

Ψ ≡ 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1
𝐻
𝑘

(𝑋 (𝑡 − 𝜏
𝑘
))

(35)

with

𝑈 (𝑡) = −

𝑚

∑

𝑙=1
ℎ
𝑙
(𝑡) 𝐾

𝑙
𝑌
𝑒

(𝑡) ,

Φ (𝑡) ≡ Ψ̂ − Ψ − {

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡)

⋅ [𝐺
𝑖𝑙

𝐸 (𝑡) +

𝑔

∑

𝑘=1
𝐴
𝑖𝑘

𝐸 (𝑡 − 𝜏
𝑘
)]} .

(36)

Suppose that there exists a bounding matrix Θ𝑅
𝑖𝑙
such that

‖Φ (𝑡)‖ ≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) Θ𝑅

𝑖𝑙
𝐸 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(37)

for the trajectory 𝐸(𝑡), and the bounding matrix Θ𝑅
𝑖𝑙
can be

described as follows:

Θ𝑅
𝑖𝑙

= 𝜀
𝑖𝑙

𝑅, (38)

where 𝑅 is the specified structured bounding matrix and
‖𝜀

𝑖𝑙
‖ ≤ 1, for 𝑖 = 1, 2, . . . , 𝜙; 𝑙 = 1, 2, . . . , 𝑚. Equations (37)

and (38) show that

Φ
𝑇

(𝑡) Φ (𝑡) ≤

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) ‖𝑅𝐸 (𝑡)‖

󵄩
󵄩
󵄩
󵄩

𝜀
𝑖𝑙

󵄩
󵄩
󵄩
󵄩

⋅

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡)

󵄩
󵄩
󵄩
󵄩

𝜀
𝑖𝑙

󵄩
󵄩
󵄩
󵄩

‖𝑅𝐸 (𝑡)‖ ≤ [𝑅𝐸 (𝑡)]
𝑇

⋅ [𝑅𝐸 (𝑡)] .

(39)

Namely, Φ(𝑡) is bounded by the specified structured bound-
ing matrix 𝑅.

Remark 1 (see [35]). The following simple example de-
scribes the procedures for determining 𝜀

𝑖𝑙
and 𝑅. First,

assume that the possible bounds for all elements in Θ𝑅
𝑖𝑙

are

Θ𝑅
𝑖𝑙

=

[

[

[

[

Θ𝑟
11
𝑖𝑙

Θ𝑟
12
𝑖𝑙

Θ𝑟
13
𝑖𝑙

Θ𝑟
21
𝑖𝑙

Θ𝑟
22
𝑖𝑙

Θ𝑟
23
𝑖𝑙

Θ𝑟
31
𝑖𝑙

Θ𝑟
32
𝑖𝑙

Θ𝑟
33
𝑖𝑙

]

]

]

]

, (40)

where −𝑟
𝑞𝑠

≤ Θ𝑟
𝑞𝑠

𝑖𝑙
≤ 𝑟

𝑞𝑠 for some 𝑟
𝑞𝑠

𝑖𝑙
with 𝑞, 𝑠 = 1, 2, 3; 𝑖 =

1, 2, . . . , 𝜙, and 𝑙 = 1, 2, . . . , 𝑚.
A possible description for the bounding matrix Θ𝑅

𝑖𝑙
is

Θ𝑅
𝑖𝑙

=

[

[

[

[

𝜀
11
𝑖𝑙

0 0

0 𝜀
22
𝑖𝑙

0

0 0 𝜀
33
𝑖𝑙

]

]

]

]

[

[

[

[

𝑟
11

𝑟
12

𝑟
13

𝑟
21

𝑟
22

𝑟
23

𝑟
31

𝑟
32

𝑟
33

]

]

]

]

= 𝜀
𝑖𝑙

𝑅, (41)

where −1 ≤ 𝜀
𝑞𝑞

𝑖𝑙
≤ 1 for 𝑞 = 1, 2, 3. Notice that 𝜀

𝑖𝑙
can be

chosen by other forms as long as ‖𝜀
𝑖𝑙

‖ ≤ 1. The validity of
(37) is then checked in the simulation. If it is not satisfied, we
can expand the bounds for all elements in Θ𝑅

𝑖𝑙
and repeat the

design procedure until (37) holds.

3.2. Delay-Dependent Stability Criterion for Exponential 𝐻
∞

Synchronization. In this subsection, a delay-dependent cri-
terion is proposed to guarantee the exponential stability of
the error system described in (34). Moreover, in general,
there will always be some noise or disturbances that may
cause instability. The effect of the external disturbance 𝐷(𝑡)

will negatively affect the performance of chaotic systems. To
reduce the effect of the external disturbance, an optimal 𝐻

∞

scheme is used to design a fuzzy control such that the effect
of the external disturbance on control performance can be
attenuated to a minimum level. In other words, the fuzzy
controller (5) simultaneously realizes exponential synchro-
nization and achieves the optimal 𝐻

∞ control performance
in this study.

Before examining the stability of the error system, some
definitions and lemma are given below.

Lemma 2 (see [53]). For the real matrices 𝐴 and 𝐵 with
appropriate dimension,

𝐴
𝑇

𝐵 + 𝐵
𝑇

𝐴 ≤ 𝜆𝐴
𝑇

𝐴 + 𝜆
−1

𝐵
𝑇

𝐵, (42)

where 𝜆 is a positive constant.

Definition 3 (see [54]). The slave system (2) can exponentially
synchronize with the master system (1) (i.e., the error system
(38) is exponentially stable) if there exist two positive num-
bers 𝛼 and 𝛽 so that the synchronization error satisfies

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡0)) , ∀𝑡 ≥ 0, (43)

where the positive number 𝛽 is called the exponential
convergence rate.
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Definition 4 (see [13–16]). The master system (1) and slave
system (2) are said to be in exponential 𝐻

∞ synchronization
if the following conditions are satisfied:

(i) With zero disturbance (i.e., 𝐷(𝑡) = 0), the error sys-
tem (34) with the fuzzy controller (5) is exponentially
stable.

(ii) Under the zero initial conditions (i.e., 𝐸(𝑡) = 0 for 𝑡 ∈

[−𝜏max, 0], in which 𝜏max is the maximal value of 𝜏
𝑘
’s)

and a given constant 𝜌 > 0, the following condition
holds:

Θ (𝑌
𝑒

(𝑡) , 𝐷 (𝑡)) = ∫

∞

0
𝑌
𝑇

𝑒
(𝑡) 𝑌

𝑒
(𝑡) 𝑑𝑡

− 𝜌
2

∫

∞

0
𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡 ≤ 0,

(44)

where the parameter 𝜌 is called the 𝐻
∞-norm bound or the

disturbance attenuation level. If the minimum 𝜌 is found to
satisfy the above conditions (i.e., the error system can reject
the external disturbance as strongly as possible), the fuzzy
controller (5) is an optimal 𝐻

∞ synchronizer [14].

Theorem 5. For given positive constants 𝑎 and 𝑛, if there
exist two symmetric positive definite matrices 𝑃 and 𝜓

𝑘
, as

well as two positive constants 𝜉 and 𝜌, so that the following
inequalities hold, then the exponential 𝐻

∞ synchronization

with the disturbance attenuation 𝜌 is guaranteed via the fuzzy
controller (5):

Δ
𝑖𝑙

≡

𝑔

∑

𝑘=1
𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1
𝜏
𝑘
𝐺
𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1
𝜓
𝑘

+ 𝑛𝑔𝑅
𝑇

𝑅

+ 𝐶
𝑇

𝐶 + 𝐼 +

𝑔

∑

𝑘=1
𝜏
2
𝑘

𝑃
2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) < 0,

(45a)

∇
𝑖𝑘

≡ 𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘

< 0, (45b)

𝜌 > √𝜉𝑔, (45c)

where 𝐺
𝑖𝑙

≡ 𝐴
𝑖

− 𝐵𝐶𝐾
𝑙
, for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, . . . , 𝑔, and

𝑙 = 1, 2, . . . , 𝑚.

Proof. Let the Lyapunov function for the error system (34) be
defined as

𝑉 (𝑡) =

𝑔

∑

𝑘=1
𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡)

+

𝑔

∑

𝑘=1
∫

𝜏
𝑘

0
𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋,

(46)

where the weighting matrices 𝑃 = 𝑃
𝑇

> 0 and 𝜓
𝑘

=

𝜓
𝑇

𝑘
> 0. We then evaluate the time derivative of 𝑉(𝑡) on the

trajectories of (34) to obtain

𝑉̇ (𝑡) =

𝑔

∑

𝑘=1
𝜏
𝑘

[𝐸̇
𝑇

(𝑡) 𝑃𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃𝐸̇ (𝑡)] +

𝑔

∑

𝑘=1
[𝐸

𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑔

∑

𝑘=1
𝜏
𝑘

{

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑑=1
𝐴
𝑖𝑑

𝐸 (𝑡 − 𝜏
𝑑

)] + 𝐷 (𝑡) + Φ (𝑡)}

𝑇

𝑃𝐸 (𝑡)

+

𝑔

∑

𝑘=1
𝜏
𝑘
𝐸
𝑇

(𝑡) 𝑃 {

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑑=1
𝐴
𝑖𝑑

𝐸 (𝑡 − 𝜏
𝑑

) + 𝐷 (𝑡) + Φ (𝑡)]}

+

𝑔

∑

𝑘=1
[𝐸

𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺
𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1
ℎ
𝑖

(𝑡) [𝐸
𝑇

(𝑡 − 𝜏
𝑑

) 𝜏
𝑘
𝐴

𝑇

𝑖𝑑
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+

𝑔

∑

𝑘=1
[𝐷

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐷 (𝑡) + Φ

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃Φ (𝑡)] −

𝑔

∑

𝑘=1
[𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] .

(47)



10 The Scientific World Journal

According to Lemma 2 and (47), we have

𝑉̇ (𝑡) ≤

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺
𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
]

⋅ 𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1
ℎ
𝑖

(𝑡)

⋅ [𝑎𝐸
𝑇

(𝑡 − 𝜏
𝑑

) 𝐴

𝑇

𝑖𝑑
𝐴
𝑖𝑑

𝐸 (𝑡 − 𝜏
𝑑

) + 𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2
𝑘

𝑃
2
𝐸 (𝑡)]

+

𝑔

∑

𝑘=1
[𝜉𝐷

𝑇

(𝑡) 𝐷 (𝑡) + 𝜉
−1

𝐸
𝑇

(𝑡) 𝜏
2
𝑘

𝑃
2
𝐸 (𝑡) + 𝑛Φ

𝑇

(𝑡)

⋅ Φ (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2
𝑘

𝑃
2
𝐸 (𝑡)] −

𝑔

∑

𝑘=1
[𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡

− 𝜏
𝑘
)]

(48)

≤

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺
𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1
ℎ
𝑖

(𝑡)

⋅ [𝑎𝐸
𝑇

(𝑡 − 𝜏
𝑑

) 𝐴

𝑇

𝑖𝑑
𝐴
𝑖𝑑

𝐸 (𝑡 − 𝜏
𝑑

) + 𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2
𝑘

𝑃
2
𝐸 (𝑡)]

+

𝑔

∑

𝑘=1
[𝜉𝐷

𝑇

(𝑡) 𝐷 (𝑡) + 𝜉
−1

𝐸
𝑇

(𝑡) 𝜏
2
𝑘

𝑃
2
𝐸 (𝑡) + 𝑛𝐸

𝑇

(𝑡)

⋅ 𝑅
𝑇

𝑅𝐸 (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2
𝑘

𝑃
2
𝐸 (𝑡)] −

𝑔

∑

𝑘=1
[𝐸

𝑇

(𝑡 − 𝜏
𝑘
)

⋅ 𝜓
𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] (by Equation (39))

(49)

=

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) 𝐸

𝑇

(𝑡) [

𝑔

∑

𝑘=1
𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1
𝜏
𝑘
𝐺
𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1
𝜓
𝑘

+ 𝑛𝑔𝑅
𝑇

𝑅 +

𝑔

∑

𝑘=1
𝜏
2
𝑘

𝑃
2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

)] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1
ℎ
𝑖

(𝑡) 𝐸
𝑇

(𝑡 − 𝜏
𝑘
) [𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘
] 𝐸 (𝑡 − 𝜏

𝑘
)

+ 𝜉𝑔𝐷
𝑇

(𝑡) 𝐷 (𝑡) .

(50)

From (50), we have

𝑉̇ (𝑡) + 𝑌
𝑇

𝑒
(𝑡) 𝑌

𝑒
(𝑡) − 𝜌

2
𝐷
𝑇

(𝑡) 𝐷 (𝑡)

≤

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) 𝐸

𝑇

(𝑡) Δ
𝑖𝑙

𝐸 (𝑡)

+

𝜙

∑

𝑖=1

𝑔

∑

𝑘=1
ℎ
𝑖

(𝑡) 𝐸
𝑇

(𝑡 − 𝜏
𝑘
) ∇

𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝜉𝑔 − 𝜌
2
) 𝐷

𝑇

(𝑡) 𝐷 (𝑡)

≤

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) 𝜆max (Δ

𝑖𝑙
) 𝐸

𝑇

(𝑡) 𝐸 (𝑡)

+

𝜙

∑

𝑖=1

𝑔

∑

𝑘=1
ℎ
𝑖

(𝑡) 𝜆max (∇
𝑖𝑘

) 𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝜉𝑔 − 𝜌
2
) 𝐷

𝑇

(𝑡) 𝐷 (𝑡) < 0,

(51)

where

Δ
𝑖𝑙

≡

𝑔

∑

𝑘=1
𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1
𝜏
𝑘
𝐺
𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1
𝜓
𝑘

+ 𝑛𝑔𝑅
𝑇

𝑅 + 𝐶
𝑇

𝐶

+ 𝐼 +

𝑔

∑

𝑘=1
𝜏
2
𝑘

𝑃
2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

)

(see (45a))

∇
𝑖𝑘

≡ 𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴
𝑖𝑘

− 𝜓
𝑘

(see (45b)) .

(52)

Integrating (51) from 𝑡 = 0 to 𝑡 = ∞, the following
inequality is obtained:

𝑉 (∞) − 𝑉 (0) + ∫

∞

0
𝑌
𝑇

𝑒
(𝑡) 𝑌

𝑒
(𝑡) 𝑑𝑡

− 𝜌
2

∫

∞

0
𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡 ≤ 0.

(53)

With zero initial conditions, (i.e., 𝐸(𝑡) ≡ 0 for 𝑡 ∈ [−𝜏max, 0]),
we have

∫

∞

0
𝑌
𝑇

𝑒
(𝑡) 𝑌

𝑒
(𝑡) 𝑑𝑡 ≤ 𝜌

2
∫

∞

0
𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡. (54)

That is (44) and the𝐻
∞ control performance is achievedwith

a prescribed attenuation 𝜌.
Since
𝑔

∑

𝑘=1
𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡) ≤

𝑔

∑

𝑘=1
𝜏
𝑘
𝐸
𝑇

(𝑡) 𝑃𝐸 (𝑡)

= 𝑉 (𝑡) −

𝑔

∑

𝑘=1
∫

𝜏
𝑘

0
𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋 < 𝑉 (𝑡)

(from (46)) ,

(55)

we can get the following inequality from (51):

𝑉̇ (𝑡) + 𝑌
𝑇

𝑒
(𝑡) 𝑌

𝑒
(𝑡) − 𝜌

2
𝐷
𝑇

(𝑡) 𝐷 (𝑡)

<

𝜙

∑

𝑖=1

𝑚

∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) [

𝜆max (Δ
𝑖𝑙

)

∑
𝑔

𝑘=1 𝜏
𝑘
𝜆min (𝑃)

] 𝑉 (𝑡) < 0.

(56)

Then, we can obtain

𝑉 (𝑡)|
𝐷(𝑡)=0 ≤ 𝑉 (𝑡0) exp𝛽 (𝑡 − 𝑡0) , (57)

where 𝛽 = ∑
𝜙

𝑖=1
∑
𝑚

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)[𝜆max(Δ

𝑖𝑙
)/ ∑

𝑔

𝑘=1
𝜏
𝑘
𝜆min(𝑃)].
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Equations (46) and (57) show that
𝑔

∑

𝑘=1
𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡) ≤

𝑔

∑

𝑘=1
𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡)

< 𝑉 (𝑡0) exp𝛽 (𝑡 − 𝑡0)

−

𝑔

∑

𝑘=1
∫

𝜏
𝑘

0
𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡0) exp𝛽 (𝑡 − 𝑡0) .

(58)

That is, ‖𝐸(𝑡)‖
2

≤ (𝑉(𝑡
0
)/ ∑

𝑔

𝑘=1
𝜏
𝑘
𝜆min(𝑃)) exp𝛽(𝑡 − 𝑡

0
).

Therefore, we conclude that
‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡0))

with 𝛼 ≡ √

𝑉 (𝑡0)

∑
𝑔

𝑘=1 𝜏
𝑘
𝜆min (𝑃)

> 0, 𝛽 ≡ −

1
2

𝛽 > 0.

(59)

Hence, on the basis of Definition 3, the error system (34) with
the fuzzy controller (5) is exponentially stable for 𝐷(𝑡) = 0.

Corollary 6. Equations (45a) and (45b) can be reformulated
into LMIs via the following procedure.

By introducing the new variables, 𝑄 = 𝑃
−1, 𝐹

𝑙
= 𝐾

𝑙
𝑄 and

𝜓
𝑘

= 𝑄𝜓
𝑘
𝑄, (45a) and (45b) can be rewritten as follows:

𝑔

∑

𝑘=1
𝜏
𝑘

{𝐴
𝑖
𝑄 − 𝐵𝐹

𝑙
+ 𝑄𝐴

𝑇

𝑖
− 𝐹

𝑇

𝑙
𝐵
𝑇

} +

𝑔

∑

𝑘=1
𝜓
𝑘

+ 𝑛𝑔𝑄𝑅
𝑇

𝑅𝑄 + 𝑄𝐶
𝑇

𝐶𝑄 + 𝑄𝐼𝑄

+

𝑔

∑

𝑘=1
𝜏
2
𝑘

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) 𝐼 < 0,

(60a)

𝑔𝑎𝑄𝐴

𝑇

𝑖𝑘
𝐴
𝑖𝑘

𝑄 − 𝜓
𝑘

< 0 (60b)

for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, . . . , 𝑔, and 𝑙 = 1, 2, . . . , 𝑚.
According to Schur’s complement [26], it is easy to show that
the linear matrix inequalities in (60a) and (60b) are equivalent
to the following LMIs in (61a) and (61b):

[

[

[

[

Ξ 𝑄𝑅
𝑇

𝑄

𝑅𝑄
𝑇

− (𝑛𝑔)
−1

𝐼 0
𝑄 0 −𝐼

]

]

]

]

< 0, (61a)

[

[

−𝜓
𝑘

𝑄𝐴

𝑇

𝑖𝑘

𝐴
𝑖𝑘

𝑄 − (𝑔𝑎)
−1

𝐼

]

]

< 0, (61b)

where

Ξ ≡

𝑔

∑

𝑘=1
𝜏
𝑘
𝐴
𝑖
𝑄 −

𝑔

∑

𝑘=1
𝜏
𝑘
𝐵𝐹

𝑙
+

𝑔

∑

𝑘=1
𝜏
𝑘
𝑄𝐴

𝑇

𝑖
−

𝑔

∑

𝑘=1
𝜏
𝑘
𝐹
𝑇

𝑙
𝐵
𝑇

+

𝑔

∑

𝑘=1
𝜓
𝑘

+

𝑔

∑

𝑘=1
𝜏
2
𝑘

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) 𝐼 + 𝑄𝐶
𝑇

𝐶𝑄.

(62)

Thus, Theorem 5 can be transformed into an LMI prob-
lem, and efficient interior-point algorithms are now available
in Matlab LMI Solver to solve this problem.

Corollary 7 (see [55]). In order to verify the feasibility of
solving the inequalities in (61a) and (61b) using the LMI Solver
(Matlab), interior-point optimization techniques are utilized to
compute feasible solutions. These techniques require that the
LMI systems are constrained to be strictly feasible; that is, the
feasible set has a nonempty interior. For feasibility problems,
the LMI Solver by feasp (feasp is the syntax used to test the
feasibility of a system of LMIs inMATLAB) is shown as follows:

𝐹𝑖𝑛𝑑 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝐿𝑀𝐼 𝐿 (𝑥) < 0 (63a)

(in this study, (63a) can be represented as (61a) and (61b)) as

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿 (𝑥) < 𝑡 × 𝐼, (63b)

where 𝐿(𝑥) is symmetric matrix and 𝐼 is identity matrix.

From the above, the LMI constraint is always strictly
feasible in 𝑥, 𝑡 and the original LMI (63a) is feasible if and
only if the global minimum 𝑡min (the global minimum 𝑡min
is the scalar value returned as the output argument by feasp)
of (63b) satisfies 𝑡min < 0. In other words, if 𝑡min < 0 will
satisfy (61a) and (61b), then the stability conditions (45a) and
(45b) inTheorem 5 can bemet.The obtained fuzzy controller
(5) can then exponentially stabilize the error system, and the
𝐻

∞ control performance is achieved at the same time.

Corollary 8. In order to achieve exponential optimal 𝐻
∞

synchronization, the fuzzy control design is formulated as the
following constrained optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜌 > √𝜉𝑔

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑄 = 𝑄
𝑇

> 0, 𝜓
𝑘

= 𝜓
𝑇

𝑘
> 0,

(61a) 𝑎𝑛𝑑 (61b) .

(64)

More details on searching for the minimum 𝜌 are given
as follows: the positive constant 𝜉 is minimized by the mincx
function of Matlab LMI Toolbox. Therefore, the minimum
disturbance attenuation level 𝜌min > √𝜉min𝑔 can be obtained.

Remark 9. In order to reduce the computational burden, this
study sets the positive constants 𝑎 and 𝑛 as unity.

Remark 10. It is important to reduce the effect of external
disturbances in the synchronization process. The 𝐻

∞-norm
bound 𝜌 is generally chosen as a positive small value less
than unity for the attenuation of the disturbance. A smaller
𝜌 is desirable as this yields better performance. However, a
smaller 𝜌 will result in a smaller 𝜉, making stability condition
(45a) more difficult to satisfy.

Remark 11. According to (37), Φ(𝑡) is assumed to be bounded
by the specified structured bounding matrix 𝑅, and a larger
Φ(𝑡) results in a larger 𝑅. Since the matrices Δ

𝑖𝑙
must be

negative definite to meet stability condition (45a), a larger 𝑅

will makeTheorem 5 more difficult to satisfy.
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Figure 4: (a) Chaotic behavior of the master system (65). (b) Chaotic behavior of the slave system (66) without control.

Remark 12. Since inequality (60a) must be negative definite
to meet the stability condition, the larger delay 𝜏

𝑘
will make

Theorem 5 more difficult to satisfy.

4. Algorithm

The complete design procedure can be summarized as fol-
lows.

Problem 1. Given two multiple time-delay chaotic systems
with different initial conditions and cryptography, the prob-
lem is centered on how to synthesize a fuzzy controller to
realize the exponential optimal 𝐻

∞ synchronization and
achieve a more secure communication system.

We can solve this problem based on the following steps.

Step 1.The inputmessage (plaintext) and encryption key form
an encrypted signal via an 𝑛-shift cipher.

Step 2.The encryptedmessage is then combined in themaster
system.

Step 3. Construct the neural network (NN) models of the
master system (6) and the slave system (7), respectively. On
the basis of the interpolationmethod, theNNmodels are then
converted into LDI state-space representations.

Step 4. On the basis of the state-feedback control scheme, the
feedback gains of the model-based fuzzy controller (23) are
synthesized to exponentially stabilize the error system by the
Matlab LMI Toolbox.

Step 5. Based on IGA process shown in Section 2.5, obtain the
feedback gains to stabilize the MTDC systems.

Step 6. Define the synchronization error 𝐸(𝑡) = 𝑋(𝑡) −

𝑋(𝑡), and the dynamics of the error system (34) can then be
obtained.

Step 7. Based on Corollary 8, the positive constant 𝜉 is
minimized by the mincx function of Matlab LMI Toolbox;
we then have the minimum disturbance attenuation level.

Step 8. The matrices 𝑄, 𝐹
𝑙
, and 𝜓

𝑘
can be obtained with the

minimum disturbance attenuation 𝜌min.

Step 9. Based on the decryption function, we can then retrieve
the original message from the encryption signal.

5. Numerical Example

The following example is given to illustrate the effectiveness
of the proposed algorithm.

Problem 2. The purpose of this example is to synthesize a
fuzzy controller and cryptography to achieve optimal 𝐻

∞

exponential synchronization and a more secure communi-
cation system. Consider a pair of modified multiple time-
delay Chen’s chaotic systems in master-slave configuration,
described as follows (Figure 4):

𝑥̇1 (𝑡) = 5 (𝑥2 (𝑡) − 𝑥1 (𝑡)) ,

𝑥̇2 (𝑡) = 20𝑥1 (𝑡) − 𝑥2 (𝑡 − 0.15) − 𝑥1 (𝑡) 𝑥3 (𝑡) ,

𝑥̇3 (𝑡) = 𝑥1 (𝑡) 𝑥2 (𝑡) − (

8
3

) 𝑥3 (𝑡 − 0.01) ,

𝑦 (𝑡) = 𝑥1 (𝑡) ,

(65)

̇
𝑥̂
1

(𝑡) = 5 (𝑥
2

(𝑡) − 𝑥
1

(𝑡)) + 𝐷 (𝑡) + 𝑢
1

(𝑡) ,

̇
𝑥̂
2

(𝑡) = 20𝑥
1

(𝑡) − 𝑥
2

(𝑡 − 0.15) − 𝑥
1

(𝑡) 𝑥
3

(𝑡) + 𝐷 (𝑡)

+ 𝑢
2

(𝑡) ,

̇
𝑥̂
3

(𝑡) = 𝑥
1

(𝑡) 𝑥
2

(𝑡) − (

8

3

) 𝑥
3

(𝑡 − 0.01) + 𝐷 (𝑡)

+ 𝑢
3

(𝑡) ,

𝑦 (𝑡) = 𝑥
1

(𝑡) ,

(66)

where [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 and [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 are the
state vectors of master and slave systems, respectively. Let
the different initial conditions of master and slave sys-
tems be [𝑥

1
(0) = −0.7 𝑥

2
(0) = 4 𝑥

3
(0) = 1] and
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Figure 5: (a) Original signal 𝑠(𝑡). (b) Encrypted signal 𝜄(𝑡).

[𝑥
1
(0) = 1.1 𝑥

2
(0) = −1 𝑥

3
(0) = −1.2], respectively, and

let the external disturbance be 𝐷(𝑡) = 0.1 sin(1.3𝑡).

Solution. We can solve the above problem according to the
following steps (Figure 5).

Step 1. Assuming a 6-shift cipher, the ciphertext is defined by

𝜄 (𝑡) = 𝜁 (𝑠 (𝑡))

= 𝐹 (𝐹 (𝐹 ⋅ ⋅ ⋅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6

(𝑠 (𝑡) , ⋅ ⋅ ⋅ 𝜗 (𝑡)) , 𝜗 (𝑡)) , 𝜗 (𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6

,
(67)

where 𝑠(𝑡) = 0.3 sin(2𝑡) is the input message, 𝜗 (𝑡) = 6 is the
encryption key, and

𝐹 (𝑠 (𝑡) , 𝜗 (𝑡))

=

{
{
{
{

{
{
{
{

{

(𝑠 (𝑡) + 𝜗 (𝑡)) + 1, −1 ≤ (𝑠 (𝑡) + 𝜗 (𝑡)) ≤ −0.5

(𝑠 (𝑡) + 𝜗 (𝑡)) , −0.5 < (𝑠 (𝑡) + 𝜗 (𝑡)) < 0.5

(𝑠 (𝑡) + 𝜗 (𝑡)) − 1, 0.5 ≤ (𝑠 (𝑡) + 𝜗 (𝑡)) ≤ 1.

(68)

Step 2.The encryptedmessage is then combined in themaster
system (65):

𝑥̇1 (𝑡) = 5 (𝑥2 (𝑡) − 𝑥1 (𝑡)) + 𝜄 (𝑡) ,

𝑥̇2 (𝑡) = 20𝑥1 (𝑡) − 𝑥2 (𝑡 − 0.15) − 𝑥1 (𝑡) 𝑥3 (𝑡) ,

𝑥̇3 (𝑡) = 𝑥1 (𝑡) 𝑥2 (𝑡) − (

8
3

) 𝑥3 (𝑡 − 0.01) ,

𝑦 (𝑡) = 𝑥1 (𝑡) + 𝜄 (𝑡) .

(69)

Figure 6 shows the chaotic behaviors of themaster system
(69) with encrypted signal.

Step 3. Establish the NN models for master and slave
systems via backpropagation algorithm, respectively. First,
the NN model to approximate the master chaotic system is
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Figure 6: Chaotic behavior of the master system (69).

constructed by 10-3, and the transfer functions of all hidden
neurons are chosen as follows:

𝑇 (V𝜎
𝜍

(𝑡)) = {

2
[1 + exp (−V𝜎

𝜍
(𝑡) /0.5)]

− 1} ,

for 𝜎 = 1.

(70)

On the other hand, the transfer functions of all output
neurons are chosen as follows:

𝑇 (V𝜎
𝜍

(𝑡)) = V𝜎
𝜍

(𝑡) , for 𝜎 = 2. (71)

After training, we can obtain the following connection
weights (the indices in 𝑊

𝜎

𝜍𝜗
state that the weight of the 𝜎th

layer in the NN model represents the connection to the 𝜍th
neuron from the 𝜗th source):
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𝑊
1

= [𝑊
1

𝜍𝜗
]

= 10
−3

×

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

8.7714091𝑒 − 003 −2.1432680𝑒 − 001 −5.4783536𝑒 − 003 −3.4036309𝑒 − 004 −6.5958213𝑒 − 001 −1.2521959𝑒 − 001 5.6825405𝑒 − 001 1.0610817𝑒 − 002 −2.2465803𝑒 − 001

1.9772389𝑒 − 001 −9.4814880𝑒 − 002 −5.8898813𝑒 − 002 −4.1181307𝑒 − 002 −3.9531890𝑒 − 001 7.1994769𝑒 − 001 −6.5921500𝑒 − 001 −1.6712053𝑒 − 002 −8.8650774𝑒 − 001

1.0790730𝑒 − 001 −6.8083483𝑒 − 002 6.3052680𝑒 − 003 6.5801078𝑒 − 003 9.2287922𝑒 − 001 −9.8220553𝑒 − 001 4.6258710𝑒 − 001 1.8580619𝑒 − 002 3.7914113𝑒 − 001

1.2013408𝑒 − 001 9.8531438𝑒 − 002 1.0514106𝑒 − 001 −6.9135511𝑒 − 002 5.6731487𝑒 − 001 9.9206224𝑒 − 001 −5.0675633𝑒 − 001 −3.1326839𝑒 − 002 4.0781812𝑒 − 002

−8.9482589𝑒 − 002 −1.2573226𝑒 − 001 −7.6654168𝑒 − 002 4.7803825𝑒 − 003 3.4651292𝑒 − 001 −4.4959788𝑒 − 001 −8.3631815𝑒 − 001 1.0700025𝑒 − 002 −8.4782708𝑒 − 001

−1.3163085𝑒 − 001 −8.2144422𝑒 − 002 7.5274052𝑒 − 002 1.3233985𝑒 − 002 6.8144453𝑒 − 001 −9.3296718𝑒 − 001 7.0581749𝑒 − 001 7.3608643𝑒 − 003 −1.8748051𝑒 − 001

7.4848662𝑒 − 002 1.9256864𝑒 − 002 1.2625220𝑒 − 001 1.0721699𝑒 − 001 −1.5829144𝑒 − 001 −6.9580009𝑒 − 001 3.7310432𝑒 − 001 −1.0482699𝑒 − 002 −1.3957425𝑒 − 001

1.9357555𝑒 − 001 −9.5554434𝑒 − 002 −8.9574546𝑒 − 002 1.7590151𝑒 − 002 4.0747470𝑒 − 001 −4.0807691𝑒 − 002 9.1622124𝑒 − 001 5.4631886𝑒 − 003 3.1862455𝑒 − 001

−7.0794887𝑒 − 002 7.7536327𝑒 − 003 6.7369172𝑒 − 005 2.1469056𝑒 − 002 −3.7426761𝑒 − 002 7.7768468𝑒 − 001 9.7011121𝑒 − 001 4.9788977𝑒 − 002 −5.6321765𝑒 − 001

−1.1580628𝑒 − 001 −5.0278312𝑒 − 002 1.2124851𝑒 − 001 −3.2706423𝑒 − 002 6.4115197𝑒 − 001 −4.3316178𝑒 − 001 6.9445237𝑒 − 002 1.7685594𝑒 − 003 −8.3782268𝑒 − 001

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑊
2

= [𝑊
2
𝜍𝜗

]

=

[

[

[

[

[

−6.6294858 −6.6776300 −4.4562609𝑒 + 001 1.7294853 −1.4800948𝑒 + 001 −1.8109610𝑒 + 001 −7.1386299 −2.2878551 1.5536343𝑒 + 001 5.2155766

7.8416966𝑒 + 001 −1.2984222𝑒 + 001 −6.4050250𝑒 + 001 3.9106047𝑒 + 001 −1.8872206𝑒 + 001 −9.6240081𝑒 + 000 3.5533925𝑒 + 001 1.5288375𝑒 + 001 5.2707791𝑒 + 001 −6.5129160𝑒 + 001

2.4699640𝑒 + 001 −4.9654509𝑒 + 001 2.3000181𝑒 + 001 −1.3126968𝑒 + 001 7.4740651𝑒 + 001 −1.1530781𝑒 + 002 1.7460551𝑒 + 001 −7.0901755𝑒 + 001 −2.2542391𝑒 + 001 1.8046003𝑒 + 001

]

]

]

]

]

.

(72)

Then, the net inputs of the 𝜎th (𝜎 = 1, 2) layer are (the symbol
V𝜎
𝜍
denotes the net input of the 𝜍th neuron of the 𝜎th layer in

theNNmodel, and the indices 𝜎 and 𝜍 shown in ℎ
𝜎

𝜍𝜑
(𝜑 = 1, 2)

indicate the same thing) as follows:

V1
𝜍

(𝑡) = 𝑊
1
𝜍1𝑥1 (𝑡) + 𝑊

1
𝜍2𝑥2 (𝑡) + 𝑊

1
𝜍3𝑥3 (𝑡)

+ 𝑊
1
𝜍4𝑥1 (𝑡 − 0.15) + 𝑊

1
𝜍5 ⋅ 0+ 𝑊

1
𝜍6 ⋅ 0

+ 𝑊
1
𝜍7 ⋅ 0+ 𝑊

1
𝜍8𝑥2 (𝑡 − 0.01) + 𝑊

1
𝜍9 ⋅ 0,

𝜍 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

(73a)

V2
𝜍

(𝑡) = 𝑊
2

𝜍1
𝑇 (V1

1
(𝑡)) + 𝑊

2

𝜍2
𝑇 (V1

2
(𝑡))

+ 𝑊
2

𝜍3
𝑇 (V1

3
(𝑡)) + 𝑊

2

𝜍4
𝑇 (V1

4
(𝑡))

+ 𝑊
2

𝜍5
𝑇 (V1

5
(𝑡)) + 𝑊

2

𝜍6
𝑇 (V1

6
(𝑡))

+ 𝑊
2

𝜍7
𝑇 (V1

7
(𝑡)) , 𝜍 = 1, 2, 3,

(73b)

𝑋̇ (𝑡) =

[

[

[

[

𝑥̇1 (𝑡)

𝑥̇2 (𝑡)

𝑥̇3 (𝑡)

]

]

]

]

=

[

[

[

[

[

𝑇 (V31 (𝑡))

𝑇 (V32 (𝑡))

𝑇 (V33 (𝑡))

]

]

]

]

]

. (74)

According to (14), the minimum and the maximum of the
derivative of each transfer function shown in (70) and (71)
can be obtained as follows:

𝑔
1

𝜍0
= 0,

𝑔
2

𝜍0
= 1,

𝑔
1

𝜍1
= 𝑔

2

𝜍1
= 1,

for 𝜍 = 1, 2, . . . , 𝐽
𝜎

.

(75)

To simplify the notation, we let 𝑔
1

𝜍0
= 𝑔

1

0
, 𝑔

1

𝜍1
= 𝑔

1

1
, 𝑔

2

𝜍0
=

𝑔
2

0
, and 𝑔

2

𝜍1
= 𝑔

2

1
. Then, based on the interpolation method,

we have

𝑥̇1 (𝑡) =

1
∑

𝑑=0
ℎ
2
1𝑑 (𝑡) 𝑔

2
𝑑

10
∑

𝜍=1
𝑊

2
1𝜍𝑇 (V1

𝜍
(𝑡)) =

1
∑

𝑑=0
ℎ
2
1𝑑 (𝑡) 𝑔

2
𝑑

10
∑

𝜍=1
𝑊

2
1𝜍 (ℎ

1
𝜍0 (𝑡) 𝑔

1
0 + ℎ

1
𝜍1 (𝑡) 𝑔

1
1) V1

𝜍
(𝑡) =

1
∑

𝑑=0
ℎ
2
1𝑑 (𝑡)

⋅ 𝑔
2
𝑑

1
∑

𝑐=0

1
∑

𝑙=0

1
∑

𝑘=0

1
∑

𝑚=0

1
∑

𝑛=0

1
∑

𝑜=0

1
∑

𝑠=0

1
∑

𝑝=0

1
∑

𝑟=0

1
∑

ℎ=0
ℎ
1
1𝑐 (𝑡) ℎ

1
2𝑙 (𝑡) ℎ

1
3𝑘 (𝑡) ℎ

1
4𝑚 (𝑡) ℎ

1
5𝑛 (𝑡) ℎ

1
6𝑜 (𝑡) ℎ

1
7𝑠 (𝑡) ℎ

1
8𝑝 (𝑡) ℎ

1
9𝑟 (𝑡) ℎ

1
10ℎ (𝑡)

⋅ (𝑔
1
𝑐

𝑊
2
𝜍1V

1
1 (𝑡) + 𝑔

1
𝑙

𝑊
2
𝜍2V

1
2 (𝑡) + 𝑔

1
𝑘

𝑊
2
𝜍3V

1
3 (𝑡) + 𝑔

1
𝑚

𝑊
2
𝜍4V

1
4 (𝑡) + 𝑔

1
𝑛

𝑊
2
𝜍5V

1
5 (𝑡) + 𝑔

1
𝑜

𝑊
2
𝜍6V

1
6 (𝑡) + 𝑔

1
𝑠

𝑊
2
𝜍7V

1
7 (𝑡) + 𝑔

1
𝑝

𝑊
2
𝜍8V

1
8 (𝑡)

+ 𝑔
1
𝑟

𝑊
2
𝜍9V

1
9 (𝑡) + 𝑔

1
ℎ

𝑊
2
𝜍10V

1
10 (𝑡)) ,

𝑥̇2 (𝑡) =

1
∑

𝑒=0
ℎ
2
2𝑒 (𝑡) 𝑔

2
𝑒

7
∑

𝜍=1
𝑊

2
2𝜍𝑇 (V1

𝜍
(𝑡)) =

1
∑

𝑒=0
ℎ
2
2𝑒 (𝑡) 𝑔

2
𝑒

7
∑

𝜍=1
𝑊

2
1𝜍 (ℎ

1
𝜍0 (𝑡) 𝑔

1
0 + ℎ

1
𝜍1 (𝑡) 𝑔

1
1) V1

𝜍
(𝑡) =

1
∑

𝑒=0
ℎ
2
2𝑒 (𝑡)

⋅ 𝑔
2
𝑒

1
∑

𝑐=0

1
∑

𝑙=0

1
∑

𝑘=0

1
∑

𝑚=0

1
∑

𝑛=0

1
∑

𝑜=0

1
∑

𝑠=0

1
∑

𝑝=0

1
∑

𝑟=0

1
∑

ℎ=0
ℎ
1
1𝑐 (𝑡) ℎ

1
2𝑙 (𝑡) ℎ

1
3𝑘 (𝑡) ℎ

1
4𝑚 (𝑡) ℎ

1
5𝑛 (𝑡) ℎ

1
6𝑜 (𝑡) ℎ

1
7𝑠 (𝑡) ℎ

1
8𝑝 (𝑡) ℎ

1
9𝑟 (𝑡) ℎ

1
10ℎ (𝑡)
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⋅ (𝑔
1
𝑐

𝑊
2
𝜍1V

1
1 (𝑡) + 𝑔

1
𝑙

𝑊
2
𝜍2V

1
2 (𝑡) + 𝑔

1
𝑘

𝑊
2
𝜍3V

1
3 (𝑡) + 𝑔

1
𝑚

𝑊
2
𝜍4V

1
4 (𝑡) + 𝑔

1
𝑛

𝑊
2
𝜍5V

1
5 (𝑡) + 𝑔

1
𝑜

𝑊
2
𝜍6V

1
6 (𝑡) + 𝑔

1
𝑠

𝑊
2
𝜍7V

1
7 (𝑡) + 𝑔

1
𝑝

𝑊
2
𝜍8V

1
8 (𝑡)

+ 𝑔
1
𝑟

𝑊
2
𝜍9V

1
9 (𝑡) + 𝑔

1
ℎ

𝑊
2
𝜍10V

1
10 (𝑡)) ,

𝑥̇
3

(𝑡) =

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

10

∑

𝜍=1

𝑊
2

2𝜍
𝑇 (V1

𝜍
(𝑡)) =

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

10

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V1

𝜍
(𝑡) =

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡)

⋅ 𝑔
2

𝑓

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

1

∑

𝑚=0

1

∑

𝑛=0

1

∑

𝑜=0

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

ℎ=0

ℎ
1

1𝑐
(𝑡) ℎ

1

2𝑙
(𝑡) ℎ

1

3𝑘
(𝑡) ℎ

1

4𝑚
(𝑡) ℎ

1

5𝑛
(𝑡) ℎ

1

6𝑜
(𝑡) ℎ

1

7𝑠
(𝑡) ℎ

1

8𝑝
(𝑡) ℎ

1

9𝑟
(𝑡) ℎ

1

10ℎ
(𝑡)

⋅ (𝑔
1

𝑐
𝑊

2

𝜍1
V1
1

(𝑡) + 𝑔
1

𝑙
𝑊

2

𝜍2
V1
2

(𝑡) + 𝑔
1

𝑘
𝑊

2

𝜍3
V1
3

(𝑡) + 𝑔
1

𝑚
𝑊

2

𝜍4
V1
4

(𝑡) + 𝑔
1

𝑛
𝑊

2

𝜍5
V1
5

(𝑡) + 𝑔
1

𝑜
𝑊

2

𝜍6
V1
6

(𝑡) + 𝑔
1

𝑠
𝑊

2

𝜍7
V1
7

(𝑡) + 𝑔
1

𝑝
𝑊

2

𝜍8
V1
8

(𝑡)

+ 𝑔
1

𝑟
𝑊

2

𝜍9
V1
9

(𝑡) + 𝑔
1

ℎ
𝑊

2

𝜍10
V1
10

(𝑡)) .

(76)

Based on (15), let

𝐺
1

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑔
1
𝑐

0 0 0 0 0 0 0 0 0
0 𝑔

1
𝑙

0 0 0 0 0 0 0 0
0 0 𝑔

1
𝑘

0 0 0 0 0 0 0
0 0 0 𝑔

1
𝑚

0 0 0 0 0 0
0 0 0 0 𝑔

1
𝑛

0 0 0 0 0
0 0 0 0 0 𝑔

1
𝑜

0 0 0 0
0 0 0 0 0 0 𝑔

1
𝑠

0 0 0
0 0 0 0 0 0 0 𝑔

1
𝑝

0 0
0 0 0 0 0 0 0 0 𝑔

1
𝑟

0
0 0 0 0 0 0 0 0 0 𝑔

1
ℎ

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐺
2

=
[

[

[

𝑔
2
𝑑

0 0
0 𝑔

2
𝑒

0
0 0 𝑔

2
𝑓

]

]

]

(77)

and then,

𝐸defclkmnosprh ≡ 𝐺
2

𝑊
2

𝐺
2

𝑊
1

= [ΥRℵ
]
3×9

,

R = 1, 2, 3; ℵ = 1, 2, . . . , 9.

(78)

Plugging (73a)–(73b) into (76) leads to

𝑋̇ (𝑡) =

1
∑

𝑑=0

1
∑

𝑒=0

1
∑

𝑓=0

1
∑

𝑐=0

1
∑

𝑙=0

1
∑

𝑘=0

1
∑

𝑚=0

1
∑

𝑛=0

1
∑

𝑜=0

1
∑

𝑠=0

1
∑

𝑝=0

1
∑

𝑟=0

1
∑

ℎ=0
ℎ
2
1𝑑 (𝑡) ℎ

2
2𝑒 (𝑡) ℎ

2
3𝑓 (𝑡) ℎ

1
1𝑐 (𝑡) ℎ

1
2𝑙 (𝑡) ℎ

1
3𝑘 (𝑡) ℎ

1
4𝑚 (𝑡) ℎ

1
5𝑛 (𝑡) ℎ

1
5𝑜 (𝑡) ℎ

1
5𝑛 (𝑡)

⋅ ℎ
1
5𝑜 (𝑡) ℎ

1
6𝑠 (𝑡) ℎ

1
7𝑝 (𝑡) ℎ

1
6𝑟 (𝑡) ℎ

1
7ℎ (𝑡) {𝐴defclkmnosprh𝑋 (𝑡) + 𝐴defclkmnosprh 1𝑋 (𝑡 − 0.15) + 𝐴defclkmnosprh 2𝑋 (𝑡 − 0.01)} ,

(79)

where

𝐴defclkmnosprh =
[

[

[

Υ
11

Υ
12

Υ
13

Υ
21

Υ
22

Υ
23

Υ
31

Υ
32

Υ
33

]

]

]

,

𝐴defclkmnosprh 1 =
[

[

[

Υ
14

Υ
15

Υ
16

Υ
24

Υ
25

Υ
26

Υ
34

Υ
35

Υ
36

]

]

]

,

𝐴defclkmnosprh 2 =
[

[

[

Υ
17

Υ
18

Υ
19

Υ
27

Υ
28

Υ
29

Υ
37

Υ
38

Υ
39

]

]

]

,

𝐴defclkmnosprh 3 =
[

[

[

Υ
110

Υ
111

Υ
112

Υ
210

Υ
211

Υ
212

Υ
310

Υ
311

Υ
312

]

]

]

,

𝑋 (𝑡) = [𝑥
1

(𝑡) 𝑥
2

(𝑡) 𝑥
3

(𝑡)]

𝑇

,

𝑋 (𝑡 − 0.15) = [𝑥
1

(𝑡 − 0.15) 0 0]

𝑇

,

𝑋 (𝑡 − 0.01) = [0 𝑥
2

(𝑡 − 0.01) 0]

𝑇

.

(80)

Next, by renumbering thematrices shown in (79), theNN
model of the master system can be rewritten as the following
LDI state-space representation:

𝑋̇ (𝑡) =

8192
∑

𝑖=1
ℎ
𝑖

(𝑡) {𝐴
𝑖
𝑋 (𝑡) +

2
∑

𝑘=1
𝐴
𝑖𝑘

𝑋 (𝑡 − 𝜏
𝑘
)}

+

2
∑

𝑙=1
ℎ
𝑙
(𝑡) 𝐾

𝑙
𝜄 (𝑡) ,

(81)
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where 𝜏1 = 0.15, 𝜏2 = 0.01,

𝐴
1

= 𝐴0000000000000,

.

.

.

𝐴8191 = 𝐴111111111110,

𝐴8192 = 𝐴111111111111,

(82)

𝐴11 = 𝐴00000000000001,

.

.

.

𝐴81911 = 𝐴1111111111101,

𝐴81921 = 𝐴1111111111111,

(83)

𝐴12 = 𝐴00000000000002,

.

.

.

𝐴81912 = 𝐴1111111111102,

𝐴81922 = 𝐴1111111111112.

(84)

Similarly, the connectionweights of theNNmodel for the
slave system are obtained as follows:

𝑊̂
1

= [𝑊̂
1
𝜍𝜗

] =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

2.4713686𝑒 − 001 −3.0873522𝑒 − 001 1.6977105𝑒 − 001 6.5698629𝑒 − 002 1.6178668𝑒 − 001 −6.0969982𝑒 − 001 3.5915859𝑒 − 002 −1.8111705𝑒 − 002 6.4712538𝑒 − 001
−1.8969547𝑒 − 001 1.0139282𝑒 − 001 −6.0311174𝑒 − 002 −7.8923714𝑒 − 003 4.0241437𝑒 − 001 −3.3863660𝑒 − 001 4.2566211𝑒 − 001 7.2843460𝑒 − 003 −1.4564854𝑒 − 001
−1.0230625𝑒 − 002 −8.8366795𝑒 − 002 1.8096272𝑒 − 002 1.1770676𝑒 − 002 6.0932885𝑒 − 001 2.8566680𝑒 − 001 −4.8026195𝑒 − 001 1.6563875𝑒 − 003 8.4068937𝑒 − 001
1.6600415𝑒 − 001 −9.6492814𝑒 − 002 −5.5198137𝑒 − 002 −1.2825869𝑒 − 002 7.0397048𝑒 − 001 −5.6519214𝑒 − 001 −7.7062799𝑒 − 001 4.9030004𝑒 − 003 5.6024318𝑒 − 002

−1.4090278𝑒 − 001 −7.5299891𝑒 − 002 −8.6495006𝑒 − 002 2.1861200𝑒 − 002 −7.6455809𝑒 − 001 −8.4618038𝑒 − 001 9.9338993𝑒 − 002 1.7591530𝑒 − 002 7.4166928𝑒 − 001
−1.3065389𝑒 − 001 −5.2074922𝑒 − 002 7.4934025𝑒 − 002 7.3742288𝑒 − 003 3.1452731𝑒 − 001 9.6117871𝑒 − 001 −5.6219647𝑒 − 001 5.0882539𝑒 − 003 −2.9437838𝑒 − 001
−7.6055610𝑒 − 002 3.9602127𝑒 − 002 1.0621393𝑒 − 002 4.4253325𝑒 − 003 5.0590294𝑒 − 001 −5.8648208𝑒 − 001 −3.7564883𝑒 − 001 −2.3599752𝑒 − 003 −1.9969518𝑒 − 001
1.5420998𝑒 − 003 −1.3874284𝑒 − 001 −4.2628186𝑒 − 003 −2.1456260𝑒 − 002 4.0425758𝑒 − 001 9.6650668𝑒 − 001 9.4626617𝑒 − 001 2.2598171𝑒 − 002 1.9584578𝑒 − 001
8.4329089𝑒 − 001 −1.2688275𝑒 − 001 −2.7435840𝑒 − 001 −2.7278306𝑒 − 002 2.1023691𝑒 − 001 2.2074203𝑒 − 001 −3.8161902𝑒 − 001 7.4287260𝑒 − 003 8.2303586𝑒 − 001
1.5620488𝑒 − 001 −5.7361088𝑒 − 002 −1.2988081𝑒 − 002 −7.2140131𝑒 − 002 −9.2346675𝑒 − 001 −5.0404289𝑒 − 001 8.9249501𝑒 − 001 −2.5432600𝑒 − 002 −7.3402596𝑒 − 001

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑊̂
2

= [𝑊̂
2

𝜍𝜗
]

=
[

[

[

7.1167622 2.4986619𝑒 + 001 −2.9511365𝑒 + 001 −1.1455117𝑒 + 001 −1.3176084𝑒 + 001 −1.3399712𝑒 + 001 4.7317790𝑒 + 001 9.1917232 −1.0844077 2.0799232

−4.4085886𝑒 + 001 −1.7671468 8.9441073𝑒 + 001 4.3305624 −7.7237907𝑒 + 001 −1.3811334𝑒 + 002 7.9006596𝑒 + 001 7.0464382𝑒 + 001 −4.0850421𝑒 + 001 −4.8963191𝑒 + 001

3.0846126 −1.0679094𝑒 + 002 −5.5259515𝑒 + 001 −7.6873004𝑒 + 001 8.6275474𝑒 + 001 −6.3383982𝑒 + 001 5.8722604𝑒 + 001 3.4088533𝑒 + 001 1.8616124𝑒 + 001 7.7770786𝑒 − 001

]

]

]

.

(85)

Step 4. The procedures of constructing the NN model for the
slave system are similar to those of for that themaster system,
and we then have the NN model of the slave system

̇
𝑋̂ (𝑡) =

8192
∑

𝑗=1

̂
ℎ
𝑗

(𝑡) {𝐴
𝑗
𝑋 (𝑡) +

2
∑

𝑘=1

̂
𝐴
𝑗𝑘

𝑋 (𝑡 − 𝜏
𝑘
)}

+ 𝐵𝑈 (𝑡)

(86)

with 𝜏
1

= 0.15, 𝜏
2

= 0.01, and 𝐵 is a identity matrix. The
responses of 𝑋̇(𝑡) and ̇

𝑋̂(𝑡) for the original systems and the
NN models are shown in Figures 7(a) and 7(b).

Step 5. To synchronize the master and slave systems, a fuzzy
controller is synthesized as follows:

Control Rule 1: IF 𝑒1 (𝑡) is 𝑀1, THEN 𝑈 (𝑡)

= − 𝐾1𝑌
𝑒

(𝑡) ,

Control Rule 2: IF 𝑒
1

(𝑡) is 𝑀2, THEN 𝑈 (𝑡)

= − 𝐾
2
𝑌
𝑒

(𝑡) ,

(87)

where 𝑀
1
and 𝑀

2
are the membership functions for each 𝑒

1

(see Figure 8):

𝑀1 (𝑒1) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(−𝑒1/15) + 1
(14𝑒1/15)

, 𝑒1 ≥ 1

1, −1 < 𝑒1 < 1,

(−𝑒1/15) − 1
(14𝑒1/15)

, 𝑒1 ≤ −1,

(88a)

𝑀2 (𝑒1) = 1− 𝑀1 (𝑒1) . (88b)

According to (18), we have the overall fuzzy controller:

𝑈 (𝑡) = −

∑
2
𝑙=1 𝑤

𝑙
(𝑡) 𝐾

𝑙
𝑌
𝑒

(𝑡)

∑
2
𝑙=1 𝑤

𝑙
(𝑡)

= −

2
∑

𝑙=1
ℎ
𝑙
(𝑡) 𝐾

𝑙
𝑌
𝑒

(𝑡) (89)

with 𝑤
𝑙
(𝑡) ≡ 𝑀

𝑙
(𝑒1(𝑡)), ℎ

𝑙
(𝑡) ≡ 𝑤

𝑙
(𝑡)/ ∑

2
𝑙=1 𝑤

𝑙
(𝑡).

According to (34), the dynamics of the error system is
obtained as follows:

𝐸̇ (𝑡) =

8192
∑

𝑖=1

2
∑

𝑙=1
ℎ
𝑖

(𝑡) ℎ
𝑙
(𝑡) {𝐷

𝑖𝑙
𝐸 (𝑡) +

2
∑

𝑘=1
𝐴
𝑖𝑘

𝐸 (𝑡 − 𝜏
𝑘
)}

+ 𝐷 (𝑡) + Φ (𝑡) ,

(90)
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Figure 7: (a) The responses of 𝑋̇(𝑡) for original system and NN model. (b) The responses of ̇
𝑋̂(𝑡) for original system and NN model.
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Figure 8: Membership functions of the fuzzy controller.

where𝐷
𝑖𝑙

≡ 𝐴
𝑖
−𝐵𝐶𝐾

𝑙
, Γ̂ ≡ 𝑓(𝑋(𝑡))+∑

2
𝑘=1 𝐻

𝑘
(𝑋(𝑡−𝜏

𝑘
))+𝑈(𝑡)

with 𝑈(𝑡) = − ∑
2
𝑙=1 ℎ

𝑙
(𝑡)𝐾

𝑙
𝑌
𝑒
(𝑡), Γ ≡ 𝑓(𝑋(𝑡)) + ∑

2
𝑘=1 𝐻

𝑘
(𝑋(𝑡 −

𝜏
𝑘
)), Φ(𝑡) ≡ Γ̂ − Γ − {∑

8192
𝑖=1 ∑

2
𝑙=1 ℎ

𝑖
(𝑡)ℎ

𝑙
(𝑡)[𝐷

𝑖𝑙
𝐸(𝑡) +

∑
2
𝑘=1 𝐴

𝑖𝑘
𝐸(𝑡 − 𝜏

𝑘
)]}.

Step 6. Design the feedback gains. Based on IGA, obtain the
performance of the feedback gains in this paper.

The Improved GA (IGA) is adopted for its better per-
formance over traditional GA [39, 43]. Before executing the
search process of the IGA, some specifications are given in
Table 1. Note that parameters 𝑤 and 𝑃

𝑚
are determined by

repeating the experiments with various 𝑤 and 𝑃
𝑚
as shown

in Table 2. The values of 𝑤 and 𝑃
𝑚
with best fitness value are

selected.

Table 1: Specifications for IGA.

Population size 32
Number of generations 500
Coding of chromosome Real-numbered string

Fitness function Equation (31) with 𝑡
𝑓

= 600,
𝑠
𝑘

= 𝐿(𝑥) in (63a), and pv = −10
Method of reproduction Roulette wheel selection

Method of crossover Improved crossover equations
(26)–(29) with 𝑤 = 0.3

Probability of mutation (𝑃
𝑚
) 0.08

After executing the IGA search process, the resulting
feedback gains are obtained as follows:

𝐾
1

= 10
3

×
[

[

[

9.4701 −0.0034 −0.0018

0.0034 9.4701 0.0002

0.0018 −0.0002 9.4701

]

]

]

, (91a)

𝐾
2

= 10
3

×
[

[

[

9.4701 0.0006 0.0003

−0.0006 9.4701 0.0000

−0.0003 0.0000 9.4701

]

]

]

. (91b)

Evolution of the fitness values are shown in Figure 9.

Step 7. Based on (75) and (79)–(90), the LMI in (61a) and
(61b) can be solved via Matlab LMI Toolbox. In accordance
with Remark 1, the specified structured bounding matrices 𝑌

and 𝜅
𝑖𝑙
are set to be 𝑌 = [

12000 0 0

0 12000 0

0 0 12000

] and 𝜅
𝑖𝑙

= [

1 0 0

0 1 0

0 0 1

].
Based on Corollary 8, the positive constant 𝑐 is minimized by
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Table 2: IGA experiments with various 𝑤 and 𝑃
𝑚
.

𝑤

𝑃
𝑚

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.9 0.6631 0.6639 0.6645 0.623 0.6626 0.663 0.6628 0.6626 0.6619 0.663
0.8 0.6598 0.6633 0.6647 0.6641 0.6635 0.6643 0.6631 0.6633 0.659 0.6611
0.7 0.664 0.6643 0.6636 0.662 0.6638 0.6631 0.6599 0.6628 0.6627 0.6625
0.6 0.6623 0.6638 0.6617 0.6623 0.6619 0.6633 0.6595 0.661 0.6612 0.6592
0.5 0.6599 0.6631 0.6642 0.6632 0.6627 0.6621 0.6623 0.6634 0.6635 0.6633
0.4 0.6613 0.6625 0.6595 0.6644 0.6637 0.6629 0.6618 0.6593 0.6631 0.6614
0.3 0.6621 0.6643 0.6623 0.6634 0.6643 0.6635 0.6635 0.6644 0.6629 0.6618
0.2 0.6644 0.6637 0.6617 0.6613 0.6627 0.6643 0.6628 0.6618 0.6599 0.6628
0.1 0.6623 0.6644 0.6628 0.661 0.6611 0.662 0.6598 0.6621 0.6611 0.6635
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0.656
0.657
0.658
0.659

0.66
0.661
0.662
0.663
0.664
0.665
0.666

Generations

Fi
tn

es
s

Figure 9: Fitness value of IGA.

the mincx function of Matlab LMI Toolbox: 𝜉min = 1.315 ×

10−2; we then have the minimum disturbance attenuation
level 𝜌min = 0.11467.

Step 8. The common solutions, 𝑃, 𝐹
1
, 𝐹

2
, 𝜓

1
, and 𝜓

2
, of

stability conditions (45b) and (45c) can be obtained with the
best value 𝑡min of LMI Solver (Matlab) as −8.68953 × 10−7:

𝑃 = 10
5

×
[

[

[

5.4647 0.0001 0.0000

0.0001 5.4647 −0.0002

0.0000 −0.0002 5.4647

]

]

]

, (92)

𝐹
1

=
[

[

[

0.0133 0.0000 0.0000

0.0000 0.0133 0.0000

0.0000 0.0000 0.0133

]

]

]

, (93)

𝐹
2

=
[

[

[

0.0133 0.0000 0.0000

0.0000 0.0133 0.0000

0.0000 0.0000 0.0133

]

]

]

, (94)

𝜓
1

= 𝜓
2

=
[

[

[

2.0108 0.0000 0.0000

0.0000 2.0108 0.0000

0.0000 0.0000 2.0108

]

]

]

. (95)

Figure 10 displays the state responses of both the master
and slave systems. The chaotic behaviors of the master and
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Figure 10: State responses of both master and slave systems.

slave systems are shown in Figure 11. Moreover, Figure 12
illustrates the synchronization errors (𝑒

1
, 𝑒

2
and 𝑒

3
) which

converge to zero. Furthermore, the assumption of ‖Φ(𝑡)‖ ≤

‖ ∑
8192

𝑖=1
∑
2

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)Δ𝑅

𝑖𝑙
𝐸(𝑡)‖ is satisfied from the illustra-

tion shown in Figure 13.

Step 9. When the slave system synchronizes with the master
system, we can retrieve the original message (Figure 13) from
the output error signal and the decryption function.

The corresponding decryption function is the same as the
encryption function:

𝑠 (𝑡) = 𝜋 (𝜄 (𝑡))

= 𝐹 (⋅ ⋅ ⋅ 𝐹 (𝐹⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

(𝜁 (𝜄 (𝑡) , −𝜗 (𝑡)) , −𝜗 (𝑡))) , . . . , −𝜗 (𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

,

(96)
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Figure 11:The chaotic behaviors of themaster and the slave systems.
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Figure 12: State responses of the error system.

where 𝜄(𝑡) is the output message (output error 𝑌
𝑒
(𝑡)), 𝜗(𝑡) = 6

is the decryption key, and

𝐹 (𝑠 (𝑡) , 𝜗 (𝑡)) =

{
{
{
{

{
{
{
{

{

(𝑠 (𝑡) + 𝜗 (𝑡)) + 1, −1 ≤ (𝑠 (𝑡) + 𝜗 (𝑡)) ≤ −0.5

(𝑠 (𝑡) + 𝜗 (𝑡)) , −0.5 < (𝑠 (𝑡) + 𝜗 (𝑡)) < 0.5

(𝑠 (𝑡) + 𝜗 (𝑡)) − 1, 0.5 ≤ (𝑠 (𝑡) + 𝜗 (𝑡)) ≤ 1.

(97)

Figure 15 illustrates recovered error of the message 𝑠(𝑡).
Finally, the simulation results demonstrate that the exponen-
tial 𝐻

∞ synchronization of MTDC secure communication
systems can recover the transmitted message by the designed
fuzzy controller.

6. Conclusion

In this paper, exponential synchronization multiple time-
delay chaotic (MTDC) systems with optimal 𝐻

∞ perfor-
mance and cryptography were combined to achieve a more
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Figure 13: Plots of ‖Φ(𝑡)‖ (blue line) and
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Figure 14: Recovered message 𝑠(𝑡).

secure communication system. First, we applied the 𝑛-shift
cipher and key to the original message of transmission for
encryption. The encrypted message is reencrypted using
chaotic synchronization. The MTDC systems were then
approximated using an NN model-based approach. Next, a
robust model-based fuzzy control design was proposed to
overcome the effect of modeling error between the MTDC
systems and the NN models. In terms of Lyapunov’s direct
method, a delay-dependent stability criterion was derived to
ensure that the slave system was able to exponentially syn-
chronize with the master system. Subsequently, the stability
conditions of this criterion were reformulated into linear
matrix inequalities (LMIs).On the basis of the LMIs, amodel-
based fuzzy controller was then synthesized to stabilize the
MTDC systems. Due to the capability of GA in random
search for global optimization, the lower bound and upper
bound of the search space can be set so that the GA will seek
better feedback gains of fuzzy controllers in order to speed
up the synchronization based on the feedback gains via LMI-
based approach. Furthermore, according to the IGA which
is demonstrated to have better performance than that of a
traditional GA, we synthesized a fuzzy controller to realize
the exponential 𝐻

∞ synchronization of the chaotic master-
slave systems and reduce the 𝐻

∞-norm from disturbance
to synchronization error at the lowest level. On the other
hand, the output error of the recovered message was stated
using the 𝑛-shift cipher and key (Figure 14). Finally, the
simulation results demonstrated that the exponential 𝐻

∞
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Figure 15: Recovered error of the message 𝑠(𝑡).

synchronization of two different MTDC systems can be
achieved by the designed fuzzy controller.

Nomenclature

𝑁
𝑚
: Master system

𝑁
𝑠
: Slave system

𝑋(𝑡): State vector of the
master system

𝑋(𝑡): State vector of the
slave system

𝑋(𝑡 − 𝜏
𝑘
) (𝑘 = 1, 2, . . . , 𝑚): State vector with

delay
𝑠(𝑡): Plaintext
𝜁(⋅): Encryption

function
𝜋(⋅): Decryption

function
𝜗(𝑡): Decryption key
𝜄(𝑡): The encrypted

signal
𝜄(𝑡): The recovered

decryption signal
𝐸(𝑡): State vector of the

error system
𝐸(𝑡 − 𝜏

𝑘
) (𝑘 = 1, 2, . . . , 𝑚): State vector with

delay of the error
system

𝜏
𝑘

(𝑘 = 1, 2, . . . , 𝑚): Time delays
𝑊

𝜎: The weight matrix
for the 𝜎th layer

V𝜎
𝜍

(𝑡) (𝜍 = 1, 2, . . . , 𝐽
𝜎

; 𝜎 = 1, 2, . . . , 𝑆): Net input of the 𝜍th
neuron, 𝜎th layer

𝑇(V𝜎
𝜍

(𝑡)): The transfer
function of the 𝜍th
neuron, 𝜎th layer

𝐴
𝑖

(𝑖 = 1, 2, . . . , 𝜙): Constant matrices
𝑔
𝜎

𝜍1
: The minimum

derivative of
𝑇(V𝜎

𝜍
(𝑡))

𝑔
𝜎

𝜍2
: The maximum

derivative of
𝑇(V𝜎

𝜍
(𝑡))

𝐺
𝜎: The min-max

matrix

𝑏
𝜍

(𝜍 = 1, 2, . . . , 𝐽): The variables 𝜑 of the 𝜍th neuron of
the first layer

𝑛
𝜍

(𝜍 = 1, 2, . . . , 𝐽): The variables 𝜑 of the 𝜍th neuron of
the second layer

𝑝
𝜍

(𝜍 = 1, 2, . . . , 𝐽): The variables 𝜑 of the 𝜍th neuron of
the 𝑆th layer

os1
𝑐

∼ os4
𝑐
: The chromosomes of the next

generation
𝑃
1
and 𝑃

2
: The two chromosomes chosen from

the parents
Fit(Λ): The fitness value of the Λth

chromosome in a population
𝑒
Λ

𝜂
(𝑡): The error of the Λth chromosome in

a population
pv: A punishing value
𝑃: A symmetric positive definite matrix
𝑄: A symmetric positive definite matrix

satisfies 𝑄 = 𝑃
−1.
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