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Relaxation in nuclear magnetic resonance is a powerful method for obtaining spatially
resolved, timescale-specific dynamics information about molecular systems. However,
dynamics in biomolecular systems are generally too complex to be fully characterized
based on NMR data alone. This is a familiar problem, addressed by the Lipari-Szabo
model-free analysis, a method that captures the full information content of NMR relaxation
data in case all internal motion of a molecule in solution is sufficiently fast. We investigate
model-free analysis, as well as several other approaches, and find that model-free, spectral
density mapping, LeMaster’s approach, and our detector analysis form a class of analysis
methods, for which behavior of the fitted parameters has a well-defined relationship to the
distribution of correlation times of motion, independent of the specific form of that
distribution. In a sense, they are all “model-free.” Of these methods, only detectors are
generally applicable to solid-state NMR relaxation data. We further discuss how detectors
may be used for comparison of experimental data to data extracted from molecular
dynamics simulation, and how simulation may be used to extract details of the dynamics
that are not accessible via NMR, where detector analysis can be used to connect those
details to experiments. We expect that combined methodology can eventually provide
enough insight into complex dynamics to provide highly accurate models of motion, thus
lending deeper insight into the nature of biomolecular dynamics.

Keywords: solid-state NMR, dynamics detectors, model-free analysis, NMR relaxation, molecular dynamics
simulation

INTRODUCTION

Study of biomolecular function requires understanding the dynamics of the biological system.
Nuclear magnetic resonance (NMR), despite many recent technological advances in other
techniques, remains a premier method for detailed dynamics characterization. In NMR, one
may measure a variety of site-specific relaxation experiments, which provide timescale sensitive
information about the motion. By varying the type of experiment (T1, T1ρ, NOE, etc.) or
experimental conditions (external magnetic field, applied field strength, magic-angle spinning
(MAS) frequency, etc.), the timescale sensitivity of the measurement is modified. Then, one may
resolve the dynamics both in space, via site resolution, and in timescale, via multiple experiments
(Palmer, 2004; Schanda and Ernst, 2016).

However, is it possible to fully characterize the motions leading to the observed relaxation
behavior? Many relaxation experiments in NMR are sensitive to the reorientational motion of
anisotropic NMR interaction tensors (NMR relaxation can also be sensitive to change in scalar terms,
e.g., isotropic chemical shift). For a given spin, relaxation is usually dominated by only one to two
interactions. For example, relaxation of 15N in a protein backbone is determined almost entirely by
the reorientation of the one-bond 1H–15N dipole coupling and the 15N chemical shift anisotropy
(CSA). But, multiple sources of motion lead to reorientation of the bond. For example, if we suppose
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the H–N bond to be in a protein, within a helix, then we would
have local distortion of the peptide plane (one-bond libration),
motion of the peptide plane within the helix, motion of the helix
within the protein, andmotion of the protein either in solution, in
a crystal, a fibril, a membrane, etc.

This degree of complexity is illustrated in Figure 1. For a
given bond in a molecule, and a given motion acting on that
bond, a distribution of orientations is sampled as illustrated in
Figure 1A. The orientational distribution determines the
contribution of that motion to the total order parameter, S2.
However, not only are there many orientations sampled by a
bond due to a motion, but those orientations are sampled at
some rate, such that the motion has an associated correlation

time or distribution of correlation times (denoted
(1 − S2)θ(z)). We illustrate this in Figure 1B; note that not
only is the width of such a distribution variable, but also the
functional form of the distribution itself. This results in a
correlation function that decays from 1 to S2, where integrating
over the distribution of correlation times yields the total
amplitude of the decay. Already, a single bond with just one
motion acting on it yields potentially a high degree of
complexity; however, we must still consider that multiple
motions act on each bond, where the total correlation
function is the product of the correlation functions of each
individual motion (if those motions are independent from one
another, Figure 1C). Finally, motion varies throughout a

FIGURE 1 | Complexity of reorientational dynamics. For each bond in a molecule, multiple types of motion result in orientational sampling, where the distribution of
angles for each motion result in a generalized order parameter, S2. Therefore, in (A)we plot a possible distribution of Euler angles for a single type of motion (population is
plotted as a function of angles β and c, where α is not required for a symmetric interaction tensor). A single motion is furthermore described by a correlation time, andmay
be distributed over a range of correlation times. In (B) we plot a possible distribution of correlation times (1 − S2)θ(z), that is, amplitude of motion as a function of
the log-correlation time, z � log10(τc/s). Each distribution is characterized by an amplitude, center, and width. Note that the integral of the distribution is (1 − S2), S2

being determined by the distribution of angles in (A). While (A,B) illustrate aspects of a single motion, multiple motions influence a given bond, where the total correlation
function is the product of individual correlation functions. In (C), we plot four distributions of motion (color). Above each motion, we plot the distribution resulting from the
product of that motion and all motions below it (black), eventually resulting in the total distribution seen at the top. Finally, we note that the total distribution varies as a
function of position in the molecule, resulting in the 3D plot of the distribution as a function of correlation time and position in the molecule observed in (D). While this is just
an illustration, one could imagine that motion in (D) results from three α-helices in a protein, each having a slightly different behavior, and varying dynamics as one
approaches the end of each helix.
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molecule, as a function of position, resulting in a complex,
multi-dimensional description as illustrated in Figure 1D.

While NMR is powerful, obtaining a complete description of
the complex dynamics stretches beyond the limit of what is

possible based on experimental data alone, especially for large
molecules such as proteins. This problem is a familiar one,
addressed almost 40 years ago by Lipari and Szabo (Lipari and
Szabo, 1982a), who developed a method known as the model-free
approach. While we will discuss the details of this approach
below, the name tells us a critical advantage of such an approach:
model-free analysis allows the extraction of dynamics
information from NMR relaxation data without having
knowledge of the specific model of motion. Furthermore, the
resulting parameters have a well-defined relationship to the
distribution of orientations sampled and the distribution of
correlation times.

Lipari and Szabo described the internal motion of a molecule
with just two parameters: a generalized order parameter related to
the amplitude of motion, S2, and a mean effective correlation
time, 〈τe〉 (a third parameter, τM, gives the correlation time of the
molecule tumbling in solution). While only two parameters
suggests a simple analysis, it is important to note that Lipari
and Szabo did not intend to only describe simple motions having
just a single correlation time and amplitude: theoretical tests of
their model were performed on a wobbling-on-a-cone model
(Kinosita et al., 1977) that results in a weighted sum of correlation
times, and experimental work was performed on methyl groups
in a protein, for which the total motion is determined by the
product of methyl rotation and by reorientation of the methyl
group’s C–C bond. Rather, the two parameters contain the
aggregated information describing all motions that is available
from the set of relaxation experiments alone.

The advantage of model-free analysis is that it does not require
knowing the model of motion. For example, for relatively low
fields (∼90 MHz, as used by Lipari and Szabo), all distributions of
orientations and correlation times shown in Figure 2 should yield
identical relaxation rate constants for the set of experiments. If we
do not know which model is the correct model, the best we can do
is to parameterize the results in a way that does not depend on the
model of motion, as can be done with the model-free parameters
S2 and 〈τe〉.

When analyzing data, a model provides a framework for
understanding the data, and by using a model we are always
adding some information to the experimental data. In some cases,
we add further information depending on how we interpret a
model. A model is advantageous if that information is correct,
and disadvantageous if that information is wrong. Suppose, for
example, we know that the correct model in Figure 2 is a
symmetric two-site hop, shown in Figure 2C; then we may
extract the hop angle and exchange rates from S2 and 〈τe〉,
resulting in θhop � 39° and k1→2

ex � k2→1
ex � 5 × 109/s. However, if

the true model is an asymmetric two-site hop, shown in
Figure 2D, the true angle and exchange rates may be
significantly different (for Figure 2D, these are θhop � 70° with
k1→2
ex � 1.3 × 109/s and k2→1

ex � 8.7 × 109/s). Then, a model-free
approach is the more reliable method when the correct model
cannot be independently determined.

In this review, we will first discuss the original model-free
approach, and then examine methods descended from it,
including discussion of our own detector analysis, a relatively
new approach that also provides a model-free analysis in the spirit

FIGURE 2 | Five distributions of orientations and correlation times that
yield the samemodel-free parameters ((1 − S2) � 0.3, 〈τe〉 � 0.1 ns). In (A–E),
we plot a distribution of orientations (sphere, right); on the axes, we plot the
distribution of correlation times resulting from exchange among that set
of orientations. Models of motion are wobbling-on-a-cone (θcone � 19°),
wobbling-in-a-cone (θcone � 28°), symmetric two-site hop (θhop � 39°),
asymmetric two-site hop (θhop � 70°), and 6-site asymmetric exchange. Insets
in (A,B) show correlation times with small amplitudes. S2

resid. refers to the order
parameter from residual couplings (see Supplementary Section S3), which
deviates from the generalized order parameter for asymmetric motion.
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of the original Lipari-Szabo approach, but can extract the full
information content of relaxation data sets in instances where the
model-free approach cannot. We discuss analysis of microsecond
motions using R1ρ relaxation, and finally consider how other
methods, in particular molecular dynamics (MD) simulation,
may be used to supply the information that NMR lacks, thus
improving the interpretation of NMR parameters.

MODEL-FREE

While dynamics analysis methods have existed for application to
solid-state NMR for some years now (Chevelkov et al., 2009b;
Schanda et al., 2010; Zinkevich et al., 2013; Lamley et al., 2015a;
Smith et al., 2016; Lakomek et al., 2017; Kurauskas et al., 2017),
most of the approaches applied have evolved from methodology
first developed for solution-state NMR. Probably the most
important advance in solution-state analysis was the
development of the model-free approach (Lipari and Szabo,
1982a; Lipari and Szabo, 1982b), and related two-step
techniques (Wennerström et al., 1979; Halle and
Wennerström, 1981; Brown, 1982). Then, we begin by
reviewing some of the existing methodology, to understand
advantages and disadvantages to various approaches.

Model-Free Theory
Typical solution-state NMR data sets consist of relaxation rate
constants for R1 (1/T1), R2 (1/T2), and nuclear Overhauser effect
(NOE, σIS), acquired at one or more magnetic fields. The rate
constants describe the signal decay (I(t) � I0e−Rζ t) or recovery
(I(t) � Ieq + (I0 − Ieq)e−Rζ t). In solid-state NMR, this behavior
can be multi-exponential, whereas we use the rate constant that
describes the powder-averaged value (Krushelnitsky et al., 2018).
Relaxation is often driven by reorientation of a few anisotropic
interactions, for example, for backbone 15N relaxation, a one-
bond H–N dipole coupling and CSA are responsible for
relaxation. For these experiments, the relaxation rate constants
may be calculated from the spectral density, J(ω):

RI
1 � (δIS

4
)2

(J(ωI − ωS) + 3J(ωI) + 6J(ωI + ωS))︸�������������������︷︷�������������������︸
dipolar relaxation

+ 1
3
(ωIΔσI)2 J(ωI)︸������︷︷������︸

CSA relaxation

RI
2 �

1
2
RI
1 + (δIS

4
)2

(3J(ωS) + 2J(0))︸����������︷︷����������︸
dipolar relaxation

+ 2
9
(ωIΔσI)2J(0)︸������︷︷������︸
CSA relaxation

σIS � (δIS
4
)2

(− J(ωI − ωS) + 6J(ωI − ωS))︸���������������︷︷���������������︸
dipolar relaxation

(1)

Here, ωI is the Larmor frequency (in radians/s) of the nucleus
being relaxed, ωS the Larmor frequency of the coupled spin
(usually 1H), and δIS and ΔσIωI are the anisotropies of the
dipolar coupling and CSA, respectively (δIS � −2μ04π hcIcS

r2IS
, with

μ0 the vacuum permeability in T2m3/J, cI, cS the gyromagnetic

ratios of the two spins in radians/s, h is Planck’s constant in J·s,
and rIS the distance between the spins in meters, resulting in δIS,
which is the full breadth of the dipolar powder pattern in radians/s.
ΔσIωI is similarly the full breadth (ΔσI�3

2(σzz−σ iso)) of the CSA powder
pattern in radians/s when the Larmor frequency of spin I is given by
ωI, also in radians/s (Schanda and Ernst, 2016)). The spectral density
may be obtained from the Fourier transform of the correlation
function of motion. The correlation function itself is the rank-2
tensor correlation function, and describes the reorientational
behavior of an NMR interaction tensor in time. If we assume the
correlation function is symmetric in time, we may replace eiωt with
cos(ωt) in the Fourier transform.We can also change the integration
bounds from (−∞,∞) to (0,∞), andmust multiply the integral by
two in order to compensate for only integrating over half the space.

J(ω) � ∫
∞

−∞
C(t)eiωtdt

� ∫
∞

−∞
C(t) cos(ωt)︸�����︷︷�����︸
symmetric in time

dt + i∫
∞

−∞
C(t) sin(ωt)︸�����︷︷�����︸

antisymmetric in time→ 0

dt

J(ω) � 2∫
∞

0

C(t) cos(ωt)dt (2)

Then, model-free analysis makes a few assumptions about the
correlation function:

1) The total motion of a given bond is the result of overall
tumbling of the molecule in solution and internal motion of
the bond within the molecule, and these two motions are
statistically independent.

2) Decay of the correlation function due to internal motion
is fast compared to all ω sampled by the set of
experimental relaxation rate constants (i.e., the extreme
narrowing limit).

The decay of the correlation due to internal motion does not
need to be mono-exponential (or even multi-exponential,
although we will later apply this assumption). Instead of the
second assumption, we may assume that the correlation
function due to internal motion is mono-exponential, in
which case we do not require its decay to be fast (we will
visit this case only briefly, as it is less likely to occur in
practice). We also assume tumbling is isotropic, although
this is not necessarily required. Note that separate methods
exist in case overall tumbling and internal motion are coupled
(Tugarinov et al., 2001), although we will not consider these
here. As a set of equations, this yields

C(t) � Cintern.(t) · Crot.(t)
Crot.(t) � 1

5
e−t/τM

Cintern.(t) � S2 + (1 − S2)G(t)
G(0) � 1, lim

t→∞
G(t) � 0

(3)
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The first equation is the result of statistical independence of
internal and overall motion, such that we may write the total
correlation function, C(t), as a product of a correlation function
resulting from the internal motion (Cintern.(t)), and a correlation
function resulting from the overall rotational tumbling (Crot.(t)).
The overall motion may be described by a single decaying
exponential, with correlation time τM if that overall motion is
isotropic (occurring if the molecule is approximately spherical).
For internal motion, Cintern.(t) has an initial value of 1, and
equilibrates at S2. S2 is referred to as the generalized order
parameter, and is related to, but not always equal to order
parameters that may be extracted from measurement of
residual couplings, as will be discussed in Determining S2. G(t)
is simply the decaying part of Cintern.(t), normalized such that its
initial value is 1, and final value is 0. If the second assumption, fast
decay of the correlation function due to internal motion is
fulfilled, we may calculate J(ω) using the parameters τM, S2,
and 〈τe〉, where

〈τe〉 � ∫
∞

0

e−t/τMG(t)dt (4)

We calculate J(ω) in order to see how it is a function of the
parameters τM, S2, and 〈τe〉.

J(ω) � 2
5
∫
∞

0

[S2e−t/τM + (1 − S2)e−t/τMG(t)] cos(ωt)dt

� 2
5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ S2τM
1 + (ωτM)2 + (1 − S2) ∫

∞

0

e−t/τMG(t) cos(ωt)︸���︷︷���︸
≈1

dt
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 2
5
[ S2τM
1 + (ωτM)2 + (1 − S2)〈τe〉]

(5)

We see that if e−t/τMG(t) decays quickly compared to ω, then
we may replace cos(ωt) with 1, since the exponential approaches
zero more quickly than the cosine term can evolve away from 1.
Then, regardless of the precise form of G(t), J(ω)may always be
calculated from the parameters S2, 〈τe〉, and τM. Furthermore, if
τM is known (usually from the analysis of R1 and R2 throughout a
molecule (Kay et al., 1989)), J(ω) becomes a linear function of the
parameters S2 and (1 − S2)〈τe〉.

Instead of assuming fast decay of G(t), one may alternatively
assume that it is mono-exponential (G(t) � e−t/τ), yielding

J(ω) � 2
5
∫
∞

0

[S2e−t/τM + (1 − S2)e−t/τMe−t/τ] cos(ωt)dt
〈τe〉−1 � τ−1M + τ−1

J(ω) � 2
5
[ S2τM
1 + (ωτM)2 + (1 − S2) 〈τe〉

1 + (ω〈τe〉)2]
(6)

In the extreme narrowing limit, where decay of the correlation
function is fast, we have ω〈τe〉≪ 1 such that this result equals the
result in Eq. 5. The expression in Eq. 6 is equivalent to Eq. 1 in

(Lipari and Szabo, 1982a), and is valid either in the case of mono-
exponential decay or fast decay of the internal correlation
function. However, we find the case of fast, multi-exponential
decay the more likely scenario, and so focus on this assumption.

The notation 〈τe〉 is used to indicate the average of the
effective correlation time. To understand how the integral of
e−t/τMG(t) is related to this average, we must assume that G(t) is
the sum of decaying exponentials. This may be achieved with a
sum over a discrete number of correlation times, weighted with
Ai, or a continuous distribution, defined by the function θ(z).

G(t) � ∑
i

Aie
−t/τi

whereΣiAi � 1

–or–

G(t) � ∫
∞

−∞
θ(z)e−t/(10z ·1 s)dz

where ∫
∞

−∞
θ(z)dz � 1

(7)

SinceG(0) � 1, it is clear that the sum of amplitudes (Ai) must
be 1. For the former equation, we take a simple sum, and for the
latter form, we use a distribution of correlation times, θ(z), given
on a logarithmic scale, such that z � log10(τc/s). The distribution
must similarly integrate to 1. The two forms can be treated
equivalently. We have recently re-introduced the latter form
(Smith et al., 2018), which was previously used to describe a
variety of continuous correlation time distributions, e.g., see
Beckmann (1988). We may insert this expression for G(t)
(Eq. 7) into Eq. 4 in order to obtain the relationship between
θ(z) and 〈τe〉.

〈τe〉 � ∫
∞

0

e−t/τM ∫
∞

−∞
θ(z)e−t/(10z ·1 s)dz

︸��������︷︷��������︸
G(t)

dt

� ∫
∞

0

∫
∞

−∞
θ(z)e−t(τ−1M +(10z ·1 s)−1)dzdt

(τe(z))−1 � τ−1M + (10z · 1 s)−1

〈τe〉 � ∫
∞

0

∫
∞

−∞
θ(z)e−t/τe(z)dzdt � ∫

∞

−∞
θ(z)(−τe(z)e−t/τe(z))∣∣∣∣∞t�0dz

〈τe〉 � ∫
∞

−∞
θ(z)τe(z)dz

equivalently: 〈τe〉 � ∑
i

Aiτ
i
e, for(τ ie)−1 � τ−1M + τ−1i (8)

(τie)−1 � τ−1M + (10z · 1 s)−1 is the effective correlation time,
resulting from decay of both the correlation function due to
the internal correlation time, z � log10(τc/s) and correlation time
of the overall motion, τM. Since θ(z) integrates to 1,∫∞
−∞ θ(z)τe(z)dz yields the weighted average of the effective

correlation time, 〈τe〉. Then, one fits experimental data to a
correlation function having the following model:
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C(t) � 1
5
(S2e−t/τM + (1 − S2)e−t/〈τe〉) (9)

Applying this model does not require that the true correlation
function has exactly this form, but rather, the model correlation
function simply must have the same values of S2 and 〈τe〉 as the
true correlation function. In this sense, the analysis itself remains
model-free, although equating 〈τe〉 with the averaged effective
correlation time requires the true correlation function to be a sum
of decaying exponentials, as in Eq. 7.

A Few Notes on Linearity
We will later note that many of the methods used for
analyzing relaxation rate constants result in parameters
that are linear functions of the distribution of correlation
times, (1 − S2)θ(z). Specifically, we mean that any parameter,
Pm, is linear to (1 − S2)θ(z) if it can be written as

Pm � (1 − S2) ∫
∞

−∞
θ(z)pm(z)dz (10)

That is, for every correlation time, z � log10(τc/s), P increases
proportionally to (1 − S2)θ(z) at that correlation time, where the
proportionality is defined by pm(z). Furthermore, any linear
combination of parameters, Pm, is then also linear to
(1 − S2)θ(z), as we can see by integrating a sum of parameters,
Pm, and swapping the order of the integration and the summation.

∑
m
amPm � ∑

m
am(1 − S2) ∫

∞

−∞
pm(z)θ(z)dz

� (1 − S2) ∫
∞

−∞

⎡⎣∑
m

ampm(z)⎤⎦︸������︷︷������︸
�Σ(z)

θ(z)dz

� (1 − S2) ∫
∞

−∞
Σ(z)θ(z)dz (11)

We define the function Σ(z) to be the weighted sum of the
sensitivities, pm(z), which then defines the linear relationship of the
sum of the Pm to (1 − S2)θ(z). This principle is one of the basic
tenants of linear algebra.What can be less obvious is that a linear fit of
parameters,Pm, defined by amatrix,M, to a new set of parameters,Qn

is also linear to (1 − S2)θ(z). This is only the case if restrictions on the
fit parameters,Qn, are not applied (no priors are used). In this case, the
parameters Qn should minimize the following equation.

min[∑
m

∣∣∣∣Pm − [M]m,nQn

∣∣∣∣2⎤⎦
Qn � ∑

m

[M−1]n,mPm

(12)

Onemay determine theQn by computing the pseudoinverse of
M (denoted M−1) and multiplying by the Pm. Linearity of the Qn

to (1 − S2)θ(z) results from the fact that linear combinations
defined by M−1 remain unchanged regardless of the value of

the parameters being fit, Pm. However, if the allowed values
of the Qn are restricted with priors, then it can be that some
values of Pm will result in the latter formula in Eq. 12 yielding
Qn outside of the allowed range. In this case, a linear least
squares algorithm will search for a different solution than that
given by Eq. 12, such that the Qn are no longer defined byM−1,
and no longer have a consistent linear relationship to
(1 − S2)θ(z). Note that if priors are used, but Eq. 12 does
not yield Qn outside of the bounds defined by the priors, then
Eq. 12 still remains the best solution and linearity is
maintained. In general, we will find analysis methods that
rely on linear combination of data have more predictable
behavior than those that do not.

FIGURE 3 |Model-free fit parameters as a function of input parameters.
For each plot, a data set is calculated, using the experiments found in from
Table I of Lipari and Szabo (1982b), and the resulting rate constants are fit
using the model-free approach, with the resulting 〈τe〉fit and (1 − S2)
shown on the left and right, respectively. For all plots, the tumbling correlation
time is τM � 4 ns and (1 − S2) � 0.3. One correlation time of the internal motion
is varied, and we plot 〈τe〉in on the x-axis. In each plot, we fit using the full
spectral density (blue, solid, see Eq. 6) and using a linear approximation (red,
dashed, see Eq. 5). In (A), the input correlation function only has a single
correlation time. In (B), one correlation time is fixed to 10 ps, and the second
correlation time is swept. In (C), a log-Gaussian distribution (μ � 10 ps, σ �
0.75 order of magnitude) is combined with a correlation time that is varied (with
total amplitude equal). On the left plots, black dotted lines indicate where the
input value, 〈τe〉in, matches the fit, 〈τe〉fit. In all plots, vertical black dotted lines
indicate where ω〈τe〉in � 0.5 for ω/2π � 90 MHz, where this frequency
corresponds to the highest field used for the data set.
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Then, the model-free parameters S2 and (1 − S2)〈τe〉 are
linear to (1 − S2)θ(z), because one can fit experimental
relaxation rate constants with S2 and (1 − S2)〈τe〉 (see Eq. 5),
where the relaxation rate constants themselves are linear to the
spectral density (Eq. 1), the spectral density is linear to the
correlation function (via Fourier transform, Eq. 2), and the
correlation function is linear to the distribution of correlation
times, (1 − S2)θ(z) (Eqs. 3, 7)). Assuming the correlation
function decays quickly, this linear relationship is given by the
following, where τe(z) is defined in Eq. 8.

S2 � 1 − ⎡⎢⎢⎢⎢⎢⎣(1 − S2) ∫
∞

−∞
θ(z)dz⎤⎥⎥⎥⎥⎥⎦

(1 − S2)〈τe〉 � (1 − S2) ∫
∞

−∞
τe(z)θ(z)dz

(13)

Note that 〈τe〉 is not itself linear to (1 − S2)θ(z), but is easily
obtained from the above parameters.

Fitting With Model-Free
In Figure 3, we test the performance of model-free fitting under a
number of conditions. In Figure 3A, we calculate a number of
relaxation rate constants from motion having a single internal
correlation time and overall tumbling with τM � 4 ns, and then fit
the results, assuming the model-free correlation function (Eq. 9).
We may calculate the spectral density exactly, or we may assume
that the correlation function decays quickly, by using the spectral
density given in Eq. 5, resulting in a linear fit. The former method
is shown as a blue, solid line, where the input parameters always
exactly match the fit parameters, whereas using a linear fit (red,
dashed line) results in disagreement of input and fit parameters
when the correlation function does not decay quickly compared
to the frequencies sampled (ωτe ≪ 1); in this case, Eq. 5 is no
longer a good estimate of the spectral density whereas Eq. 6 has
the correct form.

In Figure 3B, we include two correlation times in the input,
each with equal amplitude, where one correlation time is fixed
(10 ps), and a second correlation time is swept. We calculate the
mean effective correlation time directly on the x-axis (〈τe〉in), and
compare this to the fitted parameters on the y-axis (〈τe〉fit, left
plot, 1 − S2, right plot). As expected, if the assumption that
ωτe ≪ 1 holds for all frequencies sampled and all correlation
times present, the fit parameters are in good agreement with their
input values, but when ωτe ≪/ 1, 〈τe〉fit and S2 no longer reproduce
the correct values. Note that performing this fit with the full
spectral density (blue, solid line) and using just a linear fit (red,
dashed line) produces very similar results. In Figure 3C, we
perform the same tests, but instead of fixing a correlation time
to 10 ps, we have a log-Gaussian distribution of correlation times,
centered at 10 ps, with a standard deviation of 0.75 orders of
magnitude. Results are similar to those found in Figure 3B.

Determining S2

For model-free analysis, 〈τe〉 is the average effective correlation
time, and can be calculated from the distribution of correlation
times. S2, on the other hand, is determined from the distribution

of orientations sampled by internal motion. By definition, it is
equal to the correlation function of internal motion, taken as the
limit of t goes to infinity. We may obtain S2 by first considering
the formula for the correlation function.

Cintern.(t) � 〈P2( �μ(τ) · �μ(t + τ))〉
τ

(14)

P2(x) is the second Legendre polynomial (P2(x) � (3x2 − 1)/2),
and �μ(τ) is a normalized vector that gives the direction of the
principal component of an NMR interaction as a function of time,
due to internal motion only (without tumbling). The dot product
( �μ(τ) · �μ(t + τ)) yields the cosine of the angle between the two
vectors. The correlation function itself may take on a variety of
complex forms, depending on the correlation times present, but
S2, its value as t→∞, depends only on the distribution of
orientations sampled by the internal motion. This may be
obtained by taking a weighted average over all possible
starting orientations (p) and all possible final orientations (q),
and calculating P2( �μp · �μq) for each pair. Defining peq( �μp) to be
the fraction of orientation �μp at thermal equilibrium, we obtain

S2 � ∑
p

∑
q

peq( �μp)peq( �μq)P2( �μp · �μq) (15)

Then, if we have a precise description of the internal dynamics, we
may calculate parameters 〈τe〉 and S2 using Eqs. 8, 15. We may not
easily go backwards, to obtain a precise description of the dynamics
from only these parameters. However, this is not a limitation of the
method of analysis, but rather of the information content of the data.

In solid-state NMR, we no longer have overall tumbling
motion, so the term e−t/τM vanishes from the correlation
function and Eq. 5 becomes simply

J(ω) � 2
5
(1 − S2)〈τ〉 (16)

This prevents us from separating S2 and 〈τ〉 via relaxation
data alone (we drop the subscript e from τ, since it is no longer an
effective correlation time); however, one may measure the size of
residual couplings in NMR (Chevelkov et al., 2009a; Schanda
et al., 2011), often via DIPSHIFT (Munowitz et al., 1981) or
REDOR (Gullion and Schaefer, 1989). In this case, the ratio of the
anisotropies of the rigid interaction (δrigid.) to the motionally
averaged interaction (δresid.) defines Sresid..

Sresid. � δresid./δrigid (17)

One usually equates S2 and S2resid., although for motion that does
not have at least a three-fold symmetry axis, these terms are not
necessarily equal (Supplementary Section S3). Examples are found
in Figures 2C-E, although we see the deviation is actually quite small
(e.g., S2resid. � 0.69, vs. S2 � 0.7), so that this approach may be used to
obtain good separation of S2 and 〈τ〉.

ALTERNATIVE METHODS

In the case that all internal motion is fast, such that the correlation
function decays quickly, model-free analysis is an ideal approach
for extracting dynamics information from relaxation data: the full
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information content of the relaxation data is captured in the
parameters S2 and 〈τe〉, where these parameters have simple
relationships to the distribution of correlation times,
(1 − S2)θ(z) (parameters S2 and (1 − S2)〈τe〉 are furthermore
linearly related to (1 − S2)θ(z)). In case the correlation function
does not decay quickly compared to the sampled frequencies, our
formula for the spectral density becomes significantly more
complex. To obtain it, we begin from Eq. 5 (first expression),
and insert the assumed form of G(t), found in Eq. 7, yielding the
equation for the solution-state spectral density.

J(ω) � 2
5
∫
∞

0

⎡⎢⎢⎢⎢⎢⎣S2e−t/τM + (1 − S2)e−t/τM ∫
∞

−∞
θ(z)e−t/(10z ·1 s)dz⎤⎥⎥⎥⎥⎥⎦ cos(ωt)dt

(τe(z))−1 � τ−1M + (10z · 1 s)−1
ze(z) � log10(τe(z)/s)

J(ω) � 2
5
∫
∞

0

⎡⎢⎢⎢⎢⎢⎣S2e−t/τM + (1 − S2) ∫
∞

−∞
θ(z)e−t/(10ze(z) ·1 s)dz⎤⎥⎥⎥⎥⎥⎦ cos(ωt)dt

� 2
5
⎡⎢⎢⎢⎢⎢⎣ S2τM
1 + (ωτM)2 + (1 − S2) ∫

∞

−∞
θ(z) 10ze(z) · 1 s

1 + (ω · 10ze(z) · 1 s)2 dz⎤⎥⎥⎥⎥⎥⎦

(18)

The first step is to combine the two exponential terms, where
we define the log-effective correlation time, ze(z), as a function of
the log-internal correlation time, z, and also the rotational
correlation time, τM. Subsequently, each exponential term is
Fourier transformed to yield the familiar Lorentzian function.
The spectral density for solid-state NMR can be similarly
calculated, where the overall motion is omitted.

J(ω) � 2
5
∫
∞

0

(1 − S2) ∫
∞

−∞
θ(z)e−t/(10z ·1 s) dz cos(ωt)dt

� 2
5
(1 − S2) ∫

∞

−∞
θ(z) 10z · 1 s

1 + (ω · 10z · 1 s)2 dz (19)

The integral has a complex dependence on ω, and depends on
the specific form of (1 − S2)θ(z), so that by using multiple
relaxation experiments, we can extract more than two
parameters describing the internal motion. However, we
require a different approach to extract that information. We
discuss four approaches developed for treating this case: the
extended model-free approach (EMF), spectral density
mapping (SDM), LeMaster’s approach, and IMPACT. Another
approach that bears mentioning is the slowly relaxing local
structure model (SRLS), which accounts for coupling of local
motional modes to overall motion of a molecule in solution
(Polimeno and Freed, 1992; Tugarinov et al., 2001; Mendelman
and Meirovitch, 2021; Shapiro and Meirovitch, 2012). SRLS
reduces to the model-free approach as coupling between local
and overall motion vanishes. However, we do not include further
comparison to the analytically simpler methods discussed here.

Extended Model-Free
Clore and coworkers found that when measuring relaxation data
at higher fields (up to 600 MHz) that not all backbone motion
could be well fit using the model-free approach for staphylococcal

nuclease and interleukin-1β (Clore et al., 1990). They found that
the simplest correlation function that could fit the data was
obtained by adding another decaying exponential term,
yielding the EMF correlation function.

Cintern.(t) � (1 − S2f)e−t/τf + S2f(1 − S2s )e−t/τs + S2fS
2
s (20)

In this correlation function, the total internal motion is
separated into fast and slow components, with order
parameters S2f and S2s , and effective correlation times, τf and
τs, respectively. The product S2fS

2
s should yield the total order

parameter, S2. Also note that the faster motion’s order parameter
scales the influence of the slower motion, as seen in the term
S2f(1 − S2s )e−t/τs . Data analysis with EMF in solid- and solution-
state NMR involves simply varying the parameters, S2f, S

2
s , τf, and

FIGURE 4 | EMFparameters as a function of input correlation time (solution-
state). For each plot, a data set is calculated, using the set of experiments from
Clore et al. (1990), and the resulting rate constants are fitted using the EMF
approach. For all plots, τM � 8.3 ns, and the input (1 − S2) � 0.3. In each
subplot, the fitted correlation times (left) and amplitudes (right) are shown, as a
function of an input correlation time (x-axis). In (A), the input correlation function
has two correlation times (with equal amplitudes), with one fixed at 10 ps, and
the other swept. In (B), the input correlation function has three correlation times,
two fixed at 10 ps and 1 ns, and the third is swept. In (C), a log-Gaussian
distribution of correlation times is used (μ � 100 ps, σ � 0.75 orders of
magnitude), and a single correlation time is swept. Black dotted lines show the
input correlation times (left plots).
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τs, to find an optimal fit to experimental data. Often, one also
performs a model selection step, where one may determine how
many parameters should be included in the fit (Mandel et al.,
1995; d’Auvergne and Gooley, 2003; Zinkevich et al., 2013; Gill
et al., 2016). In Figure 4, the behavior of EMF parameters is
shown for several correlation functions. In each subplot, all terms
except one correlation time are fixed, and we observe the model
behavior as we sweep through the variable correlation time. In
Figure 4A, two correlation times are used, so that the input
correlation function has the same form as the correlation function
used for fitting; as expected, the fitted parameters perfectly match
the input parameters, since the input and fit models match. In
Figure 4B, three correlation times are input, where the fast and
slow correlation times are fixed at 10 ps and 1 ns, and the
intermediate correlation time is swept. In this case, when the

intermediate correlation time is fast, the fitted τf falls in
between the fast and intermediate correlation times, and the
fitted amplitude for the fast motion is the sum of the input
amplitudes for the fast and intermediate motions. However,
for longer correlation times, the fitted τf again gets shorter,
eventually equaling 10 ps, so that the fitted τs takes over the
role of fitting the intermediate correlation time. This is
especially well illustrated in Figure 4(B, right), where the
amplitude corresponding to the slow motion increases from
0.1 to 0.2, indicating that the slow motion in the model fits
both the input intermediate and slow motions. Similar
behavior is observed in Figure 4C, where a distribution of
correlation times is combined with a single correlation time
that is swept.

To the best of our knowledge, the behavior of the fit
parameters has no well-defined relationship to the distribution
of correlation times, (1 − S2)θ(z): if we know (1 − S2)θ(z)
precisely, our only way to obtain the EMF parameters from it
would be to explicitly calculate a set of relaxation rate constants,
and then fit the results to Eq. 20. This is in sharp contrast to the
original model-free parameters. Similar limitations arise for the
EMF approach in solid-state NMR, as seen in Figure 5. Note that
typical solution-state data sets are fairly continuous in their
sensitivity to motion as a function of correlation time (Smith
et al., 2019a), whereas solid-state NMR has a “blind-spot” in
sensitivity centered around ∼100 ns (Schanda, 2019), which
results in some of the more unusual behavior for EMF in
solids (see Case 1: Extended Model-Free for a detailed
discussion of the behavior of typical model-free parameters in
solid-state NMR).

Spectral Density Mapping
In contrast to EMF, SDM is achieved by simple linear
combination of sets of relaxation data at a single magnetic
field (Peng and Wagner, 1992; Ishima et al., 1999). From a set
of R1, R2, and NOE relaxation rate constants, one calculates

J(0) � R2 − R1/2 − 0.454σIS
δ2IS/2 + 2(Δσ IωI)2

J(ωI) � R1 − 1.249σ IS

3(δIS/4)2 + (ΔσIωI)2/3
J(0.870ωS) � 16σ IS/(5δ2IS)

(21)

The above expressions yield very close approximations of the
spectral density at specific frequencies: 0, ωI, and 0.870ωS, where
ωI is the nuclear Larmor frequency of the spin being relaxed, and
ωS is a spin which is dipole coupled to that spin (usually a directly
bonded 1H). Differences in the representations of the anisotropies
(δIS, ΔσIωI) result in the different appearances of the
normalization factors (denominators). These terms may be
interpreted as being proportional to the amount of motion
near the given frequency (which corresponds to the
correlation time τ � 1/ω), but otherwise they do not provide a
more physical interpretation of the motion. One may
subsequently fit the spectral densities to model-free parameters
for better interpretation (Gill et al., 2016). If we have a precise

FIGURE5 | EMF parameters as a function of input correlation time (solid-
state). For each plot, a data set is calculated, including direct measurement of
Sresid. via residual couplings (Eq. 17),

15N T1 at 400, 500, and 850 MHz, and T2
with MAS of 60 kHz. The resulting rate constants are fitted using the
EMF approach. For all plots, (1 − S2) � 0.3. In each subplot, the fitted
correlation times (left) and amplitudes (right) are shown, as a function of an
input correlation time (x-axis). In (A), the input correlation function has two
correlation times (with equal amplitudes), with one fixed at 3.2 ps, and the
other swept. In (B), the input correlation function has three correlation times,
two fixed at 3.2 ps and 32 ns, and the third is swept. In (C), a log-Gaussian
distribution of correlation times is used (μ � 100 ps, σ � 0.75 orders of
magnitude), and a single correlation time is swept. Black dotted lines show the
input correlation times (left plots).
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description of the motion (e.g., (1 − S2)θ(z)), the terms J(ω) are
easily obtained:

J(ω) � 2
5
(1 − S2) ∫

∞

−∞
θ(z) 10z · 1 s

1 + (ω · 10z · 1 s)2 dz (22)

The parameters resulting from SDM always behave the same way
in response to a given correlation time, regardless of other correlation
times present, and is the consequence of properties of linearity
discussed in A Few Notes on Linearity. This is seen in Figure 6A,
where we calculate relaxation rate constants resulting from a single
correlation time and analyze with SDM. In Figure 6B, we split motion

over two correlation times, and observe how the terms respond to
sweeping one of them, and in Figure 6C, we split motion into a
distribution and a single, swept correlation time and determine how
the terms respond to the swept correlation time. The result is always
identical (scaling by 0.5 results from dividing the total amplitude into
two parts), a very useful property occurring when data is analyzed
strictly by linear combination of data. Unlike EMF analysis, behavior
of SDM is independent of the form of the distribution of
correlation times.

Note that this approach describes the total motion, and does
not separate out tumbling from internal motion in the case of
solution-state NMR, which has an especially strong influence on
J(0). The original approach only incorporates data from one
field, whereas later work has extended the method to include data

FIGURE 6 | Behavior of SDM as a function of correlation time. In each
subplot, we calculate 15N T1, T2, and σNH at 600 MHz, and analyze the results
using Eq. 21. In (A), the input total correlation function consists of a single
decaying exponential term (with amplitude 1), where the terms J(ω) are
plotted as the correlation time is varied (results are normalized). Black dotted
lines show the spectral densities, J(0), J(ωI), J(0.870ωS), calculated with Eq.
22, and colored lines show the results of the data analysis, yielding an almost
exact correspondence. In (B), the total correlation function now uses two
correlation times (equal amplitudes), with one fixed at 10 ps, and the second
swept (x-axis). On the y-axis, we plot contribution to the terms, ΔJ(ω), from
the correlation time being varied. The resulting behavior is identical to that in
(A), except that the amplitude is half as large, since we have split the total
amplitude between the fixed and variable correlation time (dashed line marks
0.5). In (C), the same information is plotted, but the total correlation function
includes a log-Gaussian distribution (μ � 630 ps, σ � 1 order of magnitude),
and a single, variable correlation time.

FIGURE 7 |Behavior of LeMaster’s approach as a function of correlation
time. In each subplot, we calculate 15N T1, T2, and σNH at 600 MHz for motion
with (1 − S2) � 0.3 and tumbling correlation time of τM � 4 ns, and analyze the
results using Eq. 24. In (A) the internal correlation function consists of a
single decaying exponential term (with amplitude 0.3), where the fitted
amplitudes are plotted as the correlation time is varied. In (B) the internal
correlation function uses two correlation times (both amplitudes are 0.15), with
one correlation time fixed at 10 ps, and the second swept (x-axis). On the
y-axis, we plot contributions to the terms from the correlation time being
varied. The resulting behavior is identical to that in (A), except that the
amplitude is half, since we have split the total amplitude between the fixed and
variable correlation time (dashed line marks 0.15). In (C), the same information
is plotted, but the total correlation function includes a log-Gaussian
distribution (μ � 630 ps, σ � 1 order of magnitude), and a single, variable
correlation time.
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from more than one field, although one still requires specific sets
of experiments (Skrynnikov et al., 2002; Hsu et al., 2018).

LeMaster’s Approach
LeMaster proposed an alternative to SDM analysis of R1, R2,
and NOE data from one field, in order to separate overall
tumbling from internal motion (LeMaster, 1995). In this case,
LeMaster proposed fitting data to the following correlation
function:

C(t) � S2fS
2
HS

2
Ne

−t/τM + S2f(1 − S2H)e−t/τH + S2fS
2
H(1 − S2N)e−t/τN

+ (1 − Sf)2e−t/τf
τH � (ωH + ωN)−1, τN � ∣∣∣∣ωN

∣∣∣∣−1 (23)

It is assumed that τf is very short so that the term (1 − S2f)e−t/τf
makes only negligible contributions to the spectral density, resulting in
the following formula:

J(ω) � 2
5
S2f[S2HS2N τM

1 + (ωτM)2 + (1 − S2H) τH
1 + (ωτ2H) + S2H(1 − S2N) τN

1 + (ωτ2N)]
� 2
5
[ τM
1 + (ωτM)2 + (1 − S2f)( − τM

1 + (ωτM)2)
+ S2f(1 − S2H)( τH

1 + (ωτ2H) −
τM

1 + (ωτM)2) + S2fS
2
H(1 − S2N)( τN

1 + (ωτ2N) −
τM

1 + (ωτM)2)]
(24)

In the latter formulation, we find that the spectral density
becomes a linear combination of terms, weighted by (1 − S2f),
S2f(1 − S2H), and S2fS

2
H(1 − S2N). Then, one must fit these terms to

the experimental relaxation rate constants. We do so in Figure 7
for calculated relaxation rate constants. Like SDM, responses as a
function of correlation time are always identical (again, excepting
a scaling factor of 0.5 resulting from splitting the total motion into
components), although the functions themselves are different:
this results from the fact that LeMaster’s approach characterizes
the internal motion, and not the total motion, so that we obtain
one amplitude, (1 − S2f), which captures information about the
fastest correlation times (<30 ps), one amplitude, S2f(1 − S2H),
which captures information for correlation times near to τH, and
one amplitude, S2fS

2
H(1 − S2N), which captures information for

correlation times near to τN.
LeMaster’s approach is a linear fit, without priors; as discussed

in A Few Notes on Linearity, this means that the fitted parameters
may also be obtained by a linear combination of the experimental
relaxation rate constants. Therefore, the parameters (1 − S2f),
S2f(1 − S2H), and S2fS

S
H(1 − S2N) are linear to (1 − S2)θ(z). The

parameters S2H and S2N themselves are not linear to (1 − S2)θ(z),
but may be obtained by simple arithmetic from the linear
parameters. Like SDM, LeMaster’s approach is limited to data
acquired at a single field.

Interpretation of Motions by a Projection
onto an Array of Correlation Times
Approach
Limitations of the approaches above have led Ferrage and
coworkers to develop the interpretation of motions by a
projection onto an array of correlation times (IMPACT)

approach (Khan et al., 2015), which was applied to a protein
with intrinsically disordered regions (IDR). A challenge of IDRs is
that the lack of structure potentially yields a large number of
distinct motions and therefore many correlation times, so that
EMF approach is not appropriate for data analysis, but the limited
number of parameters obtained with SDM fails to provide a
complete description of the dynamics. Then, the IMPACT
approach allows analysis of large, multi-field data sets, by
taking the total correlation function to be a sum of several
fixed correlation times, τk, such that

C(t) � ∑
k

Ake
−t/τk (25)

Because C(0) � 1 and decays to 0, the Ak must sum to 1. For
the Engrailed 2 protein, 15N T1, NOE (σNH), and transverse and

FIGURE 8 | Behavior of the IMPACT approach as a function of
correlation time. In each plot, we fit calculated relaxation rate constants, and fit
the amplitudes in Eq. 25 according to the IMPACT procedure, using the set of
experiments from Khan et al. (2015). In (A), the input total correlation
function consists of a single decaying exponential term (with amplitude 1),
where the amplitudes are plotted as the correlation time is varied. In (B), the
total correlation function uses two correlation times (equal amplitudes), with
one fixed at 1 ns, and the second swept (x-axis). On the y-axis, we plot
contributions to the Ak from the correlation time being varied. In (C), the same
information is plotted, but the total correlation function includes a log-
Gaussian distribution (μ � 630 ps, σ � 1 order of magnitude), and a single,
variable correlation time.
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longitudinal cross-relaxation rate constants at five fields (400,
500, 600, 800, 1,000 MHz) could be fit to an array of six
correlation times, log-spaced between 21 ps and 21 ns. When
fitting to Eq. 25, one restricts the amplitudes to remain between
zero and one, and the sum of amplitudes must be set to one.

Following our procedures for SDM and LeMaster’s approach,
we also examine the behavior of the IMPACT approach in
Figure 8. When fitting a correlation function having a single
correlation time in Figure 8A, we obtain ideal behavior from the
IMPACT approach. When the input correlation time matches
one of the correlation times in the IMPACT array, the
corresponding amplitude is one, and all other amplitudes are
zero. When the input correlation time is in between correlation
times in the IMPACT array, then only the two nearest correlation
times to the input value have non-zero amplitudes, and those two
amplitudes sum to one (a minor deviation from this behavior
occurs at 10 ns). However, if we input two correlation times in
Figure 8B, or one correlation time and one distribution in
Figure 8C, with motion split equally between the two
correlation times or correlation time and distribution, the fit
parameters’ response to the swept correlation time is not an exact
reproduction of the behavior in Figure 8A, in contrast to SDM
and LeMaster’s approach. While SDM and LeMaster’s approach
are both linear combinations of relaxation rate constants,
IMPACT is a linear fit for which its behavior depends heavily
on restricting the values of the fit parameters (priors), which as
discussed in A Few Notes on Linearity, means that the fit
parameters are no longer linear to (1 − S2)θ(z). The result is

that the response of the parameters Ak to a given correlation time
do depend weakly on other motions present, thus not fully
obtaining the ideal, linear behavior of SDM and LeMaster’s
approach. However, IMPACT provides a good approximation
to this behavior, and is more generally applicable than SDM and
LeMaster’s approach.

IMPACT has not been developed for application to solid-state
NMR, but it is worth investigating how such a method could
work. In Figure 9A, we use an IMPACT-type approach to fitting
R1 at three fields and S

2, using an array of three correlation times.
We restrict the fitted amplitudes (Ak) to fall between zero and
one, but it does not make sense to require the Ak to sum to one,
since the correlation function in solid-state NMR does not usually
decay to zero. Here, we assume a motion with just one correlation
time, and (1 − S2) � 0.3. Then, we find that IMPACT in solids is
similar to its solution-state behavior. Note that the amplitudes
corresponding to 1.4 and 5 ns capture motion near those
correlation times, whereas the amplitude corresponding to 1 ps
captures all motion not in proximity to 1.4 and 5 ns, including
very slow motions. As with solution-state NMR, if we split the
motion over two correlation times, and determine the response to
one of the two correlation times Figure 9B, the response changes
compared to fitting just the single correlation time. However, as
discussed in A Few Notes on Linearity, and demonstrated with
SDM and LeMaster’s approach, this dependence on other
motions present vanishes if we eliminate restrictions on the fit
parameters. Then, in Figure 9C, we repeat the fit from Figure 9A,
without restrictions on the fit parameters, yielding reasonable

FIGURE 9 | IMPACT behavior in solids. In each plot, we test the behavior of the amplitudes, Ak , using calculated solid-state NMR data (S2, 15N R1,
15N R1ρ, with

experimental conditions taken from Smith et al. (2016)). (A) plots the behavior of fitting S2 and three R1 rate constants to three correlation times (1 ps, 1.4 ns, 5 ns), where
the input correlation function has a single correlation time ((1 − S2)�0.3), while restricting theAk to fall between 0 and 1. (B) shows fits under the same conditions, but
includes two correlation times, with one fixed at 1 ns, and the other swept (x-axis). The y-axis plots the change in the Ak due to the swept correlation time. (C) shows
fits under the same conditions as (A), without restricting the values of the Ak . (D) also removes restrictions on the Ak , but fits S

2 and R1ρ data, using correlation times of
(1 ps, 2.5 μs, and 17.8 μs). (E) fits all data (S2, R1, R1ρ) simultaneously without restrictions on the Ak , with correlation times of 1 ps, 1.4 ns, 5 ns, 2.5 μs, and 17.8 μs (F)
fits R1 data, but uses one very short correlation time (32 ps), and one very long correlation time (100 ns).
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behavior, excepting some negative amplitudes in the Ak.
Figure 9D shows similar results, when fitting S2 and R1ρ,
although the fitted correlation times must be in the sensitive
range of the R1ρ rate constants. Unfortunately, when we attempt
to fit R1 and R1ρ simultaneously in Figure 9E, using the same
correlation times as in Figures 9C,D, we find extremely unstable
behavior. Apparently, we cannot simultaneously fit data on both
sides of the solid-state NMR blind spot.

In Figures 9C,D, we have fairly good performance, excepting
that some of the amplitudes become slightly negative.
Interestingly, these negative amplitudes may be eliminated by
placing two correlation times further away from each other. Then,
in Figure 9F, we fit only R1 data, using correlation times of 32 ps
and 100 ns. The fitted correlation times no longer correspond to
the center of the sensitive range of the Ak (750 ps, 6.2 ns), and the
amplitudes also far exceed the input value for (1 − S2). Fitting
while also including S2 data allows using an additional correlation
time (1 ps), but the corresponding Ak becomes large and negative
(not shown). From this final result, we could simply renormalize
the amplitudes to have a maximum of one, and report the center
of the sensitive range instead of the correlation times to which we
actually fitted. The result would still be a linear combination of
the experimental data, and therefore linear to (1 − S2)θ(z), but
the result would have very little to do with the correlation times
chosen to obtain that linear combination.

A NEW APPROACH FOR SOLID-STATE
NUCLEAR MAGNETIC RESONANCE

In the previous section, we investigated the behavior of a number
of approaches to processing relaxation data. Of those approaches,
model-free, SDM, and LeMaster’s approach provide parameters
which are linear to the distribution of correlation times,
(1 − S2)θ(z) (in some cases, some additional arithmetic
operations are required to obtain the reported parameters, e.g.,
〈τe〉 is calculated from S2 and (1 − S2)〈τe〉). IMPACT
approximates this behavior, although heavy reliance on priors
prevents perfect linearity. However, each approach is limited in
its application to solid-state NMR data. Therefore, we have
developed the detector analysis (Smith et al., 2018), which is a
general method for processing relaxation data that maintains a
linear relationship between fit parameters and the distribution of
correlation times.

Linear Combination of Data
As we have emphasized for the above examples, one may obtain
parameters that have a well-defined (linear) relationship to the
distribution of correlation times by taking linear combinations of
relaxation rate constants. Thus far, we have limited ourselves to
very specific linear combinations: combinations that yield the
spectral density, or combinations that are related to specific
correlation times. However, why shouldn’t we use any linear
combination that is optimized to give an ideal linear relationship
to the distribution of correlation times, (1 − S2)θ(z)? We first
recall that the correlation function has been defined here as being
a linear combination of decaying exponentials, defined by

(1 − S2)θ(z), and its Fourier transform (also a series of linear
combinations) must then also be linear to (1 − S2)θ(z).

C(t) � S2 + (1 − S2) ∫
∞

−∞
θ(z)e−t/(10z ·1 s)dz

J(θ,S)(ω) � 2
5
(1 − S2) ∫

∞

−∞
θ(z) 10z · 1 s

1 + (ω · 10z · 1 s)2 dz
(26)

Here, we take J(θ,S)(ω) to be the spectral density resulting from
(1 − S2)θ(z). Then, any relaxation rate constant is a weighted
sum of terms from the spectral density.

R(θ,S)
ζ � ∑

p

aζpJ
(θ,S)(ωp)

� ∑
p
aζp(1 − S2) ∫

∞

−∞
θ(z) 10z · 1 s

1 + (ω · 10z · 1 s)2 dz

� (1 − S2) ∫
∞

−∞
θ(z)∑

p

ap
10z · 1 s

1 + (ω · 10z · 1 s)2︸���������︷︷���������︸
�Rζ(z)

dz

R(θ,S)
ζ � (1 − S2) ∫

∞

−∞
θ(z)Rζ(z)dz (27)

R(θ,S)
ζ is the relaxation rate constant for an experiment, indexed

ζ , resulting from the distribution of correlation times,
(1 − S2)θ(z). Coefficients aζp indicate the weightings of the
spectral density for experiment ζ , sampled at frequencies ωp.
Insertion of J(θ,S)(ω) into this linear combination allows us to
express R(θ,S)

ζ as a linear function of (1 − S2)θ(z), where Rζ(z)
defines the linear relationship (we refer to this as the sensitivity).

Then, as is the case formodel-free, SDM, and LeMaster’s approach,
any sum of relaxation constants maintains linearity. Following our
previous convention (Smith et al., 2018), we denote the sum as ρ(θ,S)n .

ρ(θ,S)n � ∑
ζ

bζR
(θ,S)
ζ

� ∑
ζ

bζ(1 − S2) ∫
∞

−∞
θ(z)Rζ(z)dz

� (1 − S2) ∫
∞

−∞
θ(z)∑

ζ

bζRζ(z)︸����︷︷����︸
�ρn(z)

dz

ρ(θ,S)n � (1 − S2) ∫
∞

−∞
θ(z)ρn(z)dz (28)

Then, ρn(z) defines the linear relationship between (1 − S2)θ(z)
and ρ(θ,S)n . The subsequent question is, how dowe find the best linear
combinations of the experimental relaxation rate constants for
analyzing our relaxation data?

Optimizing Detectors: The Relaxation-Rate
Space Approach
While any linear combination of experimental relaxation rate
constants yields a linear relationship between (1 − S2)θ(z) and

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 72755313

Zumpfe and Smith Model-Free or Not?

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the resulting ρ(θ,S)n , not all combinations are equally good
choices. A few guidelines are, first, non-negativity of ρn(z);
we would like ρ(θ,S)n to always increase when amplitude of
motion increases, whereas negative regions of ρn(z) could
cause ρ(θ,S)n to decrease with increasing amplitudes. Second,
narrowness: we would like each ρ(θ,S)n to report on a specific
range of correlation times. Third, when the full set of
relaxation data is analyzed, one should be able to back-
calculate the experimental data (within some tolerance)
from the parameters ρ(θ,S)n . This ensures that one captures
all information in the experimental data (clearly, if the ρ(θ,S)n
can reproduce the experimental data, then the ρ(θ,S)n must have
retained the information in the experiments).

The question, then, is how to obtain optimized linear
combinations satisfying the above requirements. Our initial
answer to this question is the result of identifying a similar
problem in a completely different field: When one sees the
color of an object, its appearance depends on the distribution
of wavelengths reflected (or emitted) by the object. The
distribution of wavelengths is given by the spectral power
distribution, S(λ). Whereas S(λ) is an infinite-dimensional
description of the spectral power vs. wavelength, what is
“seen” is a projection of that distribution onto a three
dimensional space, corresponding to the three cones that
detect color in the eye. This 3D space is often described
using the CIE (Commission internationale de l’Eclairage)

XYZ color space (Smith and Guild, 1931; Judd, 1951; Vos,
1978).

X � ∫
∞

0

S(λ)x(λ)dλ

Y � ∫
∞

0

S(λ)y(λ)dλ

Z � ∫
∞

0

S(λ)z(λ)dλ

(29)

The functions x(λ), y(λ), and z(λ) are plotted in Figure 10B.
Based on the color one sees, one cannot define S(λ) precisely, but
certainly we learn something about the distribution of
wavelengths. In the same way, based on a set of relaxation
rate constants, we cannot fully define (1 − S2)θ(z), but
certainly we can learn something about the dynamics. The
matching forms of Eqs. 27, 29 further highlight the
relationship between these problems.

The XYZ color space can be represented as a 2D space, shown
in Figure 10A. Only x and y are shown, and z is selected so that
x + y + z � 1 (then, a third dimension would vary this sum,
corresponding to brightness). By marking points in the color
space, one can indicate how the color space may be represented in
another basis. Here, we have marked points corresponding to red,

FIGURE 10 | Similarity between the CIE XYZ colorspace and the relaxation rate constant space. (A) plots the XYZ colorspace, black lines indicate where single
wavelengths fall in the colorspace (z not shown, space is normalized such that x + y + z � 1). Points connected by a triangle indicate the definition of red, green, and blue
colors as defined by the sRGB standard (Anderson et al., 1996). (B) plots the sensitivity of the x(λ), y(λ), and z(λ) color matching functions as a function of wavelength
(λ). (C) plots sRGB sensitivities resulting from transformation from the XYZ to sRGB spaces. Points connected by triangles correspond to definitions of �r1, �r2, and �r3
that define the detector space. (D) shows the normalized relaxation rate space for 13C R1 at 300 and 800 MHz and H–C NOE at 800 MHz. (E) shows the sensitivities of
each of these experiments a function of correlation time. (F) shows detector sensitivities resulting from transformation from the relaxation rate constant space to detector
space (defined by the points in (D)).
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green, and blue of the sRGB standard (Anderson et al., 1996).
Colors within the resulting triangle may be obtained with positive
linear combinations of the red, green, and blue of sRGB, so that
this triangle is a good estimate of colors that may be obtained with
a color monitor (which creates color by combining red, green and
blue pixels–this means that in Figure 10A, colors outside the
triangle are not correctly represented on your screen). These
points also define a transformation from the XYZ color matching
functions (Figure 10B) to the sRGB functions (Figure 10C). Note
that any color may be represented in the sRGB space, but only
those where S(λ) results in positive R, G, and B values can
actually be reproduced by a typical monitor.

Realizing that the mathematics of relaxation rate constants
was essentially equivalent to color spaces, we created analogous
relaxation rate constant spaces, replacing the X, Y, and Z values
with normalized rate constants. However, instead of placing
points within the relaxation rate space, we surrounded the
space in Figure 10D, since we wanted to describe all points in
the space with positive parameters. Interestingly, by surrounding
the space as closely as possible, without crossing into the space, we
obtained a transformation to functions with well-separated and
non-negative sensitivities, see Figure 10F. In the example here,
we use three points to transform the three experimental
sensitivities into detector sensitivities, resulting in three
detectors. However, redundancy in the information of larger
data sets often results in the space becoming narrow in a
given dimension, so that the full space may also be
approximately described using fewer points, resulting in fewer
detectors than experimental data points, but better signal-to-
noise in the resulting parameters. Full details of this approach are
described in Smith et al. (2018).

Optimizing Detector Sensitivities:
Automated Approach
Investigating the relaxation rate space is a powerful way to
grasp the information content of a relaxation data set,
however, detector optimization using this method requires
manual selection of points in the space. This quickly became
excessively tedious for large data sets, as is the case for analysis
of relaxometry data (Smith A. A. et al., 2021), so that we have
also automated the optimization of linear combination (Smith
et al., 2019a).

For automation, one still has the requirements that we capture
the information in the experiments (that is, we can fit the data),
while minimizing the number of parameters to describe that data,
and second, that we obtain detector sensitivities that are narrow
and non-negative. The first requirement may be met using
singular value decomposition (Golub and Kahan, 1965).
Suppose we have a matrix, M, for which each row is a
sensitivity of one of our experiments (Rζ(z)), where we
perform a normalization to prioritize fitting of higher quality
data (procedure: first, we normalize all sensitivities to a maximum
of one, second we multiply the sensitivity by the median of the
experimental rate constants, and third we divide by the median
standard deviation of those rate constants). Each column then
corresponds to a correlation time. For N experiments, we obtain

the best approximation of M that can be achieved with a linear
combination of t vectors, defined by

M ≈ M̃ � Ut · Σt · Vt′
Vt′ � Σ−1

t · Ut′ ·M (30)

The t rows ofVt′ are linear combinations of the rows ofM, with
recombination defined by the product Σ−1

t · Ut′ ·M (Ut, Vt′ are
unitary matrices, and Σt is diagonal, with the largest n singular
values along the diagonal). Linear combination of the rows of Vt′
to yield the rows of M is an approximate relationship, but the
inverse, recombination of the rows of M to yield Vt′ , is exact.
Then, the closer M̃ is toM, the better the data can be fit, but this
requires t to be larger, and thus more noise is also present in the
final analysis. In principle, this linear recombination could be
directly applied to the experimental data, to obtain detectors with
sensitivities given by the rows of the Vt′ . The result would capture
(approximately) the maximum amount of information possible
from the experiment with t parameters. However, the sensitivities
found in the rows of Vt′ are not narrow, and usually have large
negative regions. On the other hand, a linear recombination of the
vectors in Vt′ would maintain the information content and fit
quality, but allows one to optimize the detector sensitivities to be
separated and non-negative.

⎡⎢⎢⎢⎢⎢⎣ ρ1(z)ρ2(z)
«

⎤⎥⎥⎥⎥⎥⎦ � T · Vt′ � T · Σ−1
t · Ut′ ·M (31)

Then, T defines the linear recombination of the Vt′ to yield
the ρn(z), where T is a square matrix. The product of a row of
T with Vt′ defines one of the detectors sensitivities, ρn(z). A
row of T is determined in order to optimize a detector
sensitivity, first by choosing a single correlation time,
zmax � log10(τc/s), for which we optimize a linear
combination of the rows of Vt′ such that ρn(zmax) � 1,
while simultaneously minimizing ρn(z) for all other
correlation times, and requiring that all ρn(z) remain non-
negative. This can be quickly solved using a linear
programming algorithm (Kantorovich, 1960; Dantzig,
1982; Virtanen, 2020). However, if we sweep through an
array of correlation times, performing this optimization at
each correlation time, we find that we are only successful at t
correlation times (we consider the minimization as having
failed if for some z, we find that ρn(z) exceeds 1). Currently,
we find the best t detectors by sweeping over a large array of
correlation times (200), although this algorithm could be
improved to reduce the number of optimizations required
(spaces method and automated method both implemented in
MATLAB, download from https://difrate.sourceforge.io).

In the detector analysis, once we have optimized the detectors,
we apply the same linear combination to the experimental
relaxation rate constants as were applied to the sensitivities in
order to obtain optimized detector responses. Note in practice
that this is implemented as a fit, allowing one to prioritize fitting
relaxation rate constants with lower measurement error.
Furthermore, we place bounds on the fitted detector responses,
ρ(θ,S)n . In A Few Notes on Linearity, we noted that bounds (priors)
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on the fit parameters can cause the fit parameters to not be linear
to (1 − S2)θ(z). This is only the case if the priors exclude the
best fit. Detectors are constructed such that any allowed set of
relaxation rate constants will not result in parameters that
violate the priors. Allowed rate constants are any set that
may occur for an arbitrary form of (1 − S2)θ(z). If, due to
noise or measurement error, a dis-allowed set of relaxation rate
constants is measured, then the priors will force the fitted
relaxation rate constants to fall in the allowed space.

MODEL-FREE, OR NOT?

We see that the original model-free approach, SDM, LeMaster’s
approach, and detector analysis all belong to a family of methods
that yield parameters with well-defined relationships to the
distribution of correlation times, here defined by (1 − S2)θ(z).
For SDM and detectors, the final parameters (J(ω), ρ(θ,S)n ) are
linearly related to (1 − S2)θ(z); for model-free, S2 and
(1 − S2)〈τe〉 are linear, and for LeMaster’s approach, (1 − S2f),
S2f(1 − S2H), and S2fS

2
H(1 − S2N) are linear, whereas the final

parameters (S2, 〈τe〉, S2f, S2H, and S2N) must be obtained via

additional arithmetic operations. Response of EMF parameters,
on the other hand, may react to changes in one motion
differently, depending on other motions in the system. Still, its
simplicity in analysis and interpretation—one to three pairs of
correlation times and amplitudes—makes it an attractive choice
for relaxation data analysis. Should we then compromise in some
cases, and sacrifice well-defined parameters for more easily
interpreted parameters?

Case 1: Extended Model-Free
Using detectors, we may better understand how EMF parameters
in solid-state NMR depend on amplitudes of motion for particular
windows of correlation times. We re-analyze relaxation data of
HET-s (218–289) fibrils (Smith et al., 2016), by first performing a
detector analysis on the data, shown in Figure 11A and then
iteratively fitting detector responses to correlation times and
amplitudes in Figure 11B, resulting in the EMF analysis in
Figure 11C.

Using the following procedure, we are able to reproduce our
previous model-free results, illustrated in Figure 11B for residue
273Ser. The procedure is given below as a set of simple equations,
where results are a good reproduction of our previous direct fit
using the model-free approach.

Step 1: zi

ρ(θ,S)2

ρ(θ,S)3

� ρ2(zi)
ρ3(zi)

Step 2: Ai

Ai � ρ(θ,S)2

ρ2(zi)
� ρ(θ,S)3

ρ3(zi)

Step 3: zi

ρ(θ,S)0 − Aiρ0(zi)
ρ(θ,S)1 − Aiρ1(zi)

� ρ0(zf )
ρ1(zf )

Step 4: Af

Af � ρ(θ,S)0 − Aiρ0(zi)
ρ0(zf )

� ρ(θ,S)1 − Aiρ1(zi)
ρ1(zf )

Step 5: As

Af � ρ(θ,S)4 − Aiρ4(zi) − Afρ4(zf )
ρ4(zs)

S2f � 1 − Af

S2i � 1 − Ai/S
2
f

S2s � 1 − As/(S2f S2i )

τf � 10zf · 1 s
τi � 10zi · 1 s
τs � 10zs · 1 s

(32)

FIGURE 11 |Model-free analysis fromdetectors. (A) shows a detector analysis of HET-s (218–289) fibrils (Smith et al., 2016), with sensitivities shown in (B) (amplitude scale
not shown; sensitivities have a maximum of 1). (B) illustrates the procedure to convert 273Ser detector responses into model-free parameters. Bars give the detector responses
(y-axis), plotted at the center of the corresponding detector’s sensitivity (x-axis, note that ρ0, blue, does not have a well-defined center). At top, we find the ratio of ρ(θ,S)3 /ρ(θ,S)2 is
consistent with a correlation time of 34 ns, with corresponding amplitude of 0.075 (intermediate motion). After subtracting the contribution of this correlation time to ρ(θ,S)0

(middle), we find the ratio ρ(θ,S)1 /ρ(θ,S)0 is consistent with a correlation time of 49 ps, and amplitude of 0.12 (fast motion). Using a fixed correlation time of 14.7 μs, we find an
amplitude for the slow motion of 1.8 × 10−3 (bottom). (C) shows the results of EMF analysis for all residues using the procedure in (B).
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In the first and second steps, we find a correlation time
for which the ratio of sensitivities of ρ2 and ρ3 matches the
ratio of the detector responses, and then subsequently find
the correct amplitude to reproduce these correlation times.
With ρ(θ,S)2 � 2.0 × 10−2, and ρ(θ,S)3 � 2.2 × 10−3, we find τi � 34
ns. Our first concern with this fit is that the intermediate
correlation time, zi � log10(τi/s), is a compromise between a
detector sensitive to motions around 6 ns and a second
sensitive around 2 μs. It seems unlikely that the same
motion can really explain these two detector responses,
which have sensitivities separated by three orders of
magnitude. The second problem is because we use a
compromise correlation time, both detector sensitivities are
very low at this correlation time, which must be
counterbalanced by using a large amplitude (Ai) in the
model-free fit. Then, in our example, Ai � 0.075 is
significantly larger than the detector responses, ρ(θ,S)2 and
ρ(θ,S)3 , from which it results, so that we are very likely
overestimating the amplitude of this motion.

In the third and fourth steps, we subtract the contributions
from zi and Ai from ρ(θ,S)0 and ρ(θ,S)1 , and similarly use the
ratios of the remainder of the detector responses to obtain
zf , and their amplitudes to obtain Af . Again, it is not clear
if these detectors should be treated as if they describe a
single motion. In particular, the relatively uniform behavior
of ρ(θ,S)0 likely is a result of primarily local librational
motion, which will not be described by the same
amplitudes and correlation times of motions leading to
greater variation in ρ(θ,S)1 . Interestingly, because the
amplitudes do not vary in the same way, the variation in
amplitude of ρ(θ,S)1 cannot be reproduced in the trends for
Af , but instead has to be fitted by variation in correlation
time (τf ). The result is that amplitude trends in S2i � 1 − Ai/S2f ,
shown in Figure 11(C, middle) correlate well with trends in τf ,
especially near breaks between the β-sheets of HET-s (near
235Glu, 271Gly). However, this correlation is actually
coming from similar amplitude trends observed for ρ(θ,S)1
and ρ(θ,S)2 . The corresponding detector sensitivities
are centered at 760 ps and 6.1 ns, and in fact overlap,
suggesting that they may describe the same or at least
related motions. EMF attributes these detector responses to
different motions, having median correlation times of 22 ps and
42 ns (taken over all residues), thus being separated by three
orders of magnitude.

In the final step, one fixes the slow correlation time to 14.7 μs
(based on a fit optimization over the whole data set). In this case,
the amplitude of ρ(θ,S)4 determines As alone; the proximity of
14.7 μs to the center of ρ4 (24 μs) results in fairly reasonable
amplitudes (for 273Ser, ρ(θ,S)4 and As fall within rounding error,
yielding 1.8 × 10−3).

Then, the major problems with this EMF analysis are
intermediate correlation times falling within the NMR blind
spot (∼20–600 ns), along with correspondingly inflated
amplitudes, as well as similar problems due to fitting fast
correlation times to ρ(θ,S)0 and ρ(θ,S)1 , which requires a
compromise correlation time between librational motions
(∼ps) with nanosecond motions. Furthermore, this behavior

prevented comparison of EMF parameters for HET-s to
MD results, whereas detectors yielded reasonable agreement
(Smith et al., 2019b). As we have previously pointed out
(Smith et al., 2017), the model-free parameters in HET-s
fibrils are far from being atypical, in fact they are fairly
consistent across multiple protein systems, likely due
most studies utilizing similar data sets and analysis
methodology (Chevelkov et al., 2009b; Schanda et al., 2010;
Haller and Schanda, 2013; Zinkevich et al., 2013; Lamley et al.,
2015a).

Case 2: Model-Free Analysis of μs-Motion
Microsecond motion is the result of processes having higher
free-energy cost than nanosecond and picosecond dynamics.
We suggest dividing these motions into local and collective
motions, where the free energy cost of local motions
comes from higher amplitude motions (∼10°) that require
traversing a large energy barrier. In contrast, collective
motions tend to be very low amplitude motion, where the
high free-energy cost of the motion is not due to large
amplitude dynamics or a significant energy barrier, but
rather diffusive dynamics involving large numbers of atoms.
Such dynamics are characterized by modes of motion, where
a continuum of possible correlation lengths leads to a
distribution of correlation times. In contrast, some local
microsecond dynamics can be reasonably well approximated
as a hopping motion between two orientations, and therefore
described with a single correlation time (although effort should
be made to determine whether relaxation might be due to
multi-site exchange, and understand how this changes the
interpretation of data analysis).

Local Dynamics
The availability of R1ρ data, including formulas for its analysis
(Trott and Palmer, 2002; Abergel and Palmer, 2003; Miloushev
and Palmer, 2005; Kurbanov et al., 2011; Rovo and Linser,
2017) and improving methods for its collection (Kurauskas
et al., 2017; Lakomek et al., 2017; Keeler et al., 2018;
Krushelnitsky et al., 2018) has recently resulted in
considerable improvement in the ability to characterize local
micro- to millisecond motions (Rovó, 2020). We consider two
categories of R1ρ experiments: the first is Bloch-McConnell
relaxation dispersion experiments (BMRD), for which R1ρ

relaxation is the result of motion modulating the isotropic
chemical shift, and the NEar Rotary-resonance Relaxation
Dispersion (NERRD, (Kurauskas et al., 2017)), for which
orientational changes in anisotropic tensors leads to R1ρ

relaxation. For two-site exchange, BMRD R1ρ relaxation rate
constants depend on exchange rate (kex � 1/τc), the change in
isotropic chemical shift due to exchange (Δω12), and the
population (p1, p2 � 1 − p1). Rate constants further depend
on the effective field strengths corresponding to each of the
two chemical shifts, ωe1 and ωe2, as well as the effective field for
the average chemical shift. Palmer and coworkers provide us
with the following expression (Trott and Palmer, 2002; Trott
et al., 2003; Miloushev and Palmer, 2005), which is valid in the
fast or intermediate exchange regimes:
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(33)

The total R1ρ relaxation has contributions from longitudinal
relaxation (R1), transverse relaxation from dipole and CSA
tensors (RDD,CSA

1ρ ), and from chemical exchange (RDD,CSA
1ρ ).

(Kurbanov et al., 2011) give the formula for RDD,CSA
1ρ .

RDD,CSA
1ρ � sin 2βe × [(δ

4
)2(J(ωS) + 1

3
J(2ωr − ωe) + 2

3
J(ωr − ωe)

+ 2
3
J(ωr + ωe) + 1

3
J(2ωr + ωe)) + 2

27
(ωIΔσI)2(12 J(2ωr − ωe)

+ J(ωr − ωe) + J(ωr + ωe) + 1
2
J(2ωr + ωe))] (34)

ωr is the magic angle spinning frequency, and ωe is the effective
field as defined above. If one assumes the microsecond dynamics
are dominated by two-site hoping, the spectral density is given
simply by

J(ω) � 2
5
3p1p2(1 − cos2 θ) kex

k2ex + ω2
� 2
5
(1 − S2) τc

1 + (ωτc)2
(35)

Then, the question is, how may we most efficiently extract the
exchange rate (kex � 1/τc), populations (p1, p2), chemical shift
changes (Δω12), and angle changes (θ). Fitting of kex has been
fairly well established using both NERDD or BMRD (Trott et al.,
2003; Ma et al., 2014; Rovo and Linser, 2017; Marion et al., 2019),
and combining both methods should improve the accuracy of the
resulting kex. However, separation of populations from either θ
(NERDD) or Δω12 (BMRD) is non-trivial. Supposing we already
know kex, a given experiment’s relaxation rate constant then
depends on the populations and either θ or Δω12 (at sufficiently
fast MAS, a given effective field usually results in either RDD,CSA

1ρ or
Rex
1ρ being dominant, although in principle both terms are active

in the same experiments). Inspecting Eqs. 34, 35 we note that
terms p1, p2, and θ, only appear once as a product of terms,
3p1p1(1 − cos2 θ). Then, based on NERRD data alone, these
parameters are inseparable. This is seen in Figure 12, where
we plot R1ρ as a function of p1 and θ. We also calculate RDD,CSA

1ρ
specifically for p1 � 0.25 and θ � 16°, and then indicate all other
positions resulting in the same value of RDD,CSA

1ρ Figures 12A,B
as a black contour. In Figures 12E,F, we only show contours
where RDD,CSA

1ρ matches the value obtained for p1 � 0.25 and
θ � 16°, but show several different experimental conditions
(varying the field strength, ]1 � ω1/2π). Because this results
in identical contours, we are unable to disentangle these

parameters based on NERRD experiments under different
conditions.

In contrast, R1ρ relaxation resulting from chemical exchange
has a more complex dependence on the various parameters. In
particular, effective fields for each of the two states in exchange,
ωe1 and ωe2 depend on the different offsets, Ω1, Ω2, but do not
depend on the populations, in principle making the terms
separable. Indeed, several plots in Figure 12 show that
different experimental conditions lead to different contours for
p1 vs. Δω12 (contours correspond to R1ρ that is equal to R1ρ

obtained for p1 � 0.25 and Δω12 � 500 Hz, where contour
intersections yield the input values). We are then able to
identify the critical conditions required for separating
population from chemical shift change. First, we see that if
kex ≫Δω12, contours are fully overlapped so that we are not
able to separate the terms, shown in Figure 12G. This is because,
in Eq. 33, k2ex must be much larger than the last term in the
denominator. If it is also larger than ω2

e1ω
2
e2/ω

2
e , then the critical

dependence of the R1ρ on ωe1 orωe2 is lost. In case k2ex is not larger
than ω2

e1ω
2
e2/ω

2
e , then the effective field must be much larger than

Δω12, so that this term converges on ω2
e , again losing dependence

on ωe1 and ωe2 (i.e. the denominator simplifies to ω2
e + k2ex (Trott

and Palmer, 2002)). In any case, if the effective fields become
large, ωe1 →ωe, ωe2 →ωe, similarly preventing separation in
terms. For example, see Figures 12J,K, where a large offset or
large field strength on the spin-locking field results in overlapping
contours. Finally, note that we require a frequency offset to be
applied in order to obtain the sign of Δω12. If no frequency offset
is applied, then all contours are symmetric as in Figure 12H.

Separability occurs only when kex, Δω12, and ωe are of similar
size. Restricting ωe is particularly challenging in solid-state NMR,
where coherent effects may contribute to relaxation when the
spin-locking field becomes too small (Öster et al., 2019). One
approach would be to use increasing spinning frequencies (Penzel
et al., 2015; Lakomek et al., 2017), although we note that some of
the most clear improvements in Figure 12 occur in Figure 12L,
where the field strength is only a few times bigger than the H–N
J-couplings, which cannot be averaged by spinning.

In case we are in the fast exchange limit for BMRD
experiments, we are left only with the terms p1p2(1 − cos2 θ)
from NERRD experiments and p1p2Δω2

12 from BMRD
experiments. In this case, there is little to be done to fully
separate population from the other parameters. If values of
Δω12 may be bounded, it is then possible to also bound p1p2,
and therefore one finds a restricted range for possible values of θ
(the reverse approach also works). However, if we are in the range
of intermediate exchange, then wemay separate populations from
Δω12, and use the result to also obtain θ (note that inclusion of
NERDD data should additionally improve the accuracy of kex,
which in turn improves separation of Δω12 from populations
based on the BMRD data). Note that Marion et al. have recently
presented similar arguments (Marion et al., 2019), although
separation of terms was apparently achieved by combining
NERRD and BMRD data for fairly fast exchange
(kex�18,000 s−1, Δω12/2π � 240 Hz). While we agree that using
both data sets together is beneficial, the information to separate
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population must come from the BMRD data and this is only
possible in the intermediate exchange regime (Marion et al.
calculated R1ρ for a set of conditions, and via a coarse grid
search, were able to find the initial conditions, however, other
solutions along contours as in our Figure 12 likely were
overlooked in the grid search).

A final consideration when analyzing BMRD and NERRD
data is whether a two-site exchange model is reasonable. In a true
two-site exchange, all moving residues should have identical
exchange rates and populations, but differing Δω12 and θ
values. Then, validation of the two-site model could be
achieved by independently analyzing all residues and
establishing that all fits have approximately the same p1, p2,
and kex (or just the same kex if populations cannot be
determined). In case the true behavior is, for example, three-
site exchange, fitting to the two-site exchange model will yield
exchange rates that are a weighted average of the two non-zero
eigenvalues of the 3 × 3 exchange matrix, where weighting will
depend on the chemical shifts of the three sites and/or the angles
sampled. In this case, it may be appropriate to apply a three-site

exchange model, while jointly fitting all residues using a common
set of rate constants (four to six independent parameters,
depending on the model chosen). Such an approach has been
demonstrated using CPMG relaxation in solution-state NMR
(Korzhnev et al., 2005; Neudecker et al., 2006), with the general
equations solved for CPMG (Koss et al., 2018).

Collective Dynamics
NERDD relaxation also appears throughout the whole protein in
the absence of BMRD relaxation, depending on sample
conditions, and is attributed to low amplitude rocking of the
whole protein. This is observed very weakly in GB1 crystals
(Krushelnitsky et al., 2018), and strongly in GB1 complexed
with IgG (Lamley et al., 2015b), HET-s (218–289) (Smith
et al., 2016), ubiquitin crystals with amplitude depending
heavily on crystal form (Ma et al., 2015; Kurauskas et al.,
2017; Lakomek et al., 2017), and SH3 (Krushelnitsky et al.,
2018). The apparent global nature of this motion led all of
these studies, with the exception of Lakomek et al., to fit R1ρ
relaxation using a slow motion with a single correlation time for

FIGURE 12 | Separating population from hop angle and change in chemical shift in NERRD and BMRD experiments. Relevant parameters are shown as insets
(ωr /2π�40 kHz for NERDD plots). In (A–D), contour plots are shown for NERDD and BMRD relaxation rate constants under various conditions, and in each plot, a
contour shows all values of p1 and θ or Δω1 that yield R1ρ equal to the value obtained for p1 � 0.25 and θ � 16° or ΔωI � 500 Hz (marked as a cross on each plot). In (E–L),
we only show the contour, but for a range of experimental conditions (five experiments, linearly spaced, with range indicated in the plot). In some cases, this yields
nearly identical contours, such that we only see one of the five contours.
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all residues. In our HET-s analysis, we proposed fitting R1ρ data
using a global, slow correlation time, where the corresponding
order parameter could vary, and additionally an offset term that
would account for faster motion that could not be fully
parameterized from R1ρ data alone. Kurauskas et al. also
followed this procedure, whereas Krushelnitsky and coworkers
included explicit fitting of an additional fast motion with a
distribution of correlation times. By including an offset term,
and using a single correlation time globally, we again have a
linear fit.

R1ρ � R0
1ρ︸�︷︷�︸

nsmotions

+ (1 − S2s ) R1ρ(τs)︸���︷︷���︸
μsmotion,fixed

(36)

Then, for each residue, R0
1ρ and (1 − S2s ) are varied, where R0

1ρ
in principle compensates for relaxation due to fast, nanosecond
motion, and (1 − S2s ) should determine the effective amplitude of
the global motion, with correlation time τs, on the given residue.
Practically, what happens is that the R1ρ rate constants measured
for a given residue have certain ratios. If those ratios match the
ratios calculated for τs, then R0

1ρ � 0 and the relaxation rate
constants are fitted only with (1–S2s ). In contrast, if all rate
constants are approximately equal, then (1 − S2s ) � 0 and R0

1ρ
accounts for the full relaxation. However, in most cases, the ratios
are closer to one than predicted by τs, but not exactly one and so
by including contributions from R0

1ρ and (1 − S2s )R1ρ(τs), the
data may be fit. One may investigate in more detail how the two
terms vary as a function of correlation time (as in Figures 6–8).
We show the behavior for the 15N and 13Cα R1ρ data sets found in
Smith et al. (2016) in Figure 13.

In Figure 13A, we calculate R1ρ relaxation rate constants for
15N relaxation, and fit to Eq. 36. (1 − S2s ) reaches a maximum of
approximately one at 19 μs, so that this parameter describes
motion at and around the fixed correlation time of τs �
18.5 μs. On the other hand, the offset term, R0

1ρ, actually is
most sensitive at 2.5 μs, far from fitting primarily fast,
nanosecond motion. We see that the functional forms are
similar to detector sensitivities optimized from the same data
set, Figure 13B. In Figure 13C, the behavior is less ideal: (1 − S2s )
reaches a maximum of 1.28 at 13 μs, somewhat removed from the
fixed correlation time of 7.0 μs, and the offset term becomes
negative for correlation times around 18 μs.

The sensitivity of the offset term in Figure 13A to motion near
2.5 μs as opposed to faster motions may be surprising, although
perhaps it should not be. NERRD experiments are most sensitive
in the μs-range of correlation times, and rate constants under
different experimental conditions have nearly converged to the
same value at 1.9 μs (all rate constants within 5% of each other)–
only slightly faster than the 2.5 μs where we find the maximum.
Then, we would expect the offset term to be sensitive both near
where R1ρ is most sensitive, but also near where it converges,
which is roughly what we find.

It is then important to note that fitting R1ρ to contributions
from an offset term and a fixed correlation time results in an offset
term that is most sensitive not to fast (nanosecond) motions, but
rather to slower (microsecond) motions. In some cases, (1 − S2s )
may be overly sensitive to some correlation times, with sensitivity
exceeding one at positions that are removed from τs. Detectors
are also a better choice for characterizing broad distributions of
correlation times, if one does not know the form of the
distribution. In fact, we suspect that global rocking motion is
the result of collective dynamics over varying length scales, where
increasing the correlation length also increases the correlation
time, and therefore yields a broad distribution of correlation
times. We demonstrated the relationship between correlation
length and correlation time window for HET-s fibrils on the
nanosecond timescale using a combination of NMR and MD
simulation (Smith et al., 2019b), however, the question remains
whether similar behavior can fully explain rocking motion of
crystalline proteins; for example, Schanda and coworkers argue
that a coupling between overall rocking motion and local loop
motion may exist in crystalline ubiquitin (Kurauskas et al., 2017).

OUTLOOK: COMBINING METHODS

We have seen that relaxation data in NMR may be processed by a
variety of different methods, however, only some of these methods
can really be thought of as “model-free,” such that we can establish
a well-defined (linear) behavior for each parameter as a function of
correlation time, independent of the actualmodel of the correlation
function. These methods are the original model-free analysis,
under the assumption that ωτi ≪ 1, spectral density mapping,
LeMaster’s approach, and detector analysis. Of these, only
detector analysis is generally applicable to solid-state NMR.

So, are detectors the last word in NMR dynamics analysis? We
certainly hope not. Each detector response provides a “window”

FIGURE 13 | Behavior of fitting R1ρ data to an offset and a fixed
correlation time. (A) shows the offset term,R0

1ρ, divided by 2000, and the order
parameter for the slow correlation time, (1 − S2

s ) resulting from fitting
calculated relaxation rate constants as a function of correlation time to
Eq. 36. Experiments are 15N R1ρ acquired with MAS frequency of 60 kHz and
spin-lock strengths of 11, 16, 25, 38, and 51 kHz, and τs is fixed at 18.5 μs.
(B) shows detector sensitivities optimized using the same data set. (C) shows
R0
1ρ divided by 2000 and (1 − S2

s ) for 13C R1ρ acquired with MAS frequency of
60 kHz and spin-lock strengths of 9, 18, 35, and 48 kHz, as well as an
additional experiment with MAS frequency of 40 kHz and spin-lock strength of
25 kHz τs is fixed at 7.0 μs. (D) shows detector sensitivities optimized using
the same data set.
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into the total reorientational motion of some NMR tensor, with
the window width and center defined by ρn(z). Still, such a
description is not very precise: a moderate detector response
could result from a low amplitude motion near where ρn(z)
reaches its maximum, it could result from a high amplitude
motion where ρn(z) is small, or (and we suspect this is often the
case), it characterizes a distribution of correlation times that
overlaps the range of sensitivity of that detector. A collection of
detectors, and their behavior as a function of position in a
molecule gives further hints at the dynamics of a molecule,
but leaves much to be desired in terms of details of motion.
What we would rather have is better models of motion. If we use a
good model, based on knowledge of the dynamics obtained from
other methods, the information added to our experimental data
should improve our interpretation of the experiment.

Molecular dynamics simulation is particularly powerful as a
complimentary method to NMR. One obtains positions of all
atoms as a function of time, allowing first, the direct calculation of
the NMR-relevant correlation functions, and second, in principle
allowing one to connect those correlation functions to specific
motion in the molecule. C(t) is explicitly calculated as

C(tn) � 1
N

∑N−n−1

i�0
P2( �μ(τi) · �μ(τi+n))

≈ S2 + (1 − S2) ∫
∞

−∞
θ(z) e−tn/(10z ·1 s)︸����︷︷����︸

RC(tn)(z)
dz

(37)

This is the discrete form of Eq. 14, as would be applied to an
MD trajectory. To obtain the nth time point in the correlation
function, C(tn), we simply average over all pairs of frames
separated by n frames. The latter equation is our assumed
form for the correlation function, where we note that a given
time point of the correlation function, C(tn), is related to the
distribution of correlation times with the same functional form as
the relaxation rate constants (excepting the offset, S2, see Eq. 27).
This allows one to calculate detectors from the collection of time
points in MD-derived correlation functions using a procedure
nearly identical to that described in Optimizing Detector
Sensitivities: Automated Approach, where the sensitivity, Rζ(z)
(Eq. 27), is replaced by the termRC(tn)(z) � exp( − tn/(10z · 1 s)).
In fact, not onlymay detector analysis be easily modified to analyze
MD-derived data, but it is a general approach to numerically
solving the inverse Laplace transform, which avoids some of the
pitfalls of more common regularization approaches (Tikhonov and
Arsenin, 1977).

When analyzing MD with detectors, one has two options:
find the optimal set of detectors for describing correlation time
distributions found with MD (that is, as many as possible with
good signal-to-noise, and as narrow/non-overlapping as
possible), or optimize the detectors to match some or all of
the NMR-derived detectors. The latter approach is shown in
Figure 14, where sensitivities of seven NMR experiments in
Figure 14A are optimized to yield five detectors in Figure 14C,
and the linear combination used to yield ρ2(z) is explicitly
illustrated in Figure 14B. From MD, time points in the

correlation function may also be linearly combined
(sensitivities for 11 time points shown in Figure 14D), to
match the NMR-derived detectors Figures 14E,F. Note that in
Figure 14F, the linear combination is a very good match for ρ1
and ρ2, with moderate success for ρ0, but detector sensitivities
in the microsecond range are badly reproduced. The detector
optimization indicates (correctly) that a 1 μs trajectory cannot
reasonably predict dynamics in the range of several
microseconds (ρ3, ρ4 in red, violet), thus providing a means
for determining what information can and cannot be
compared across methods. Where sensitivities agree,
quantitative comparison of dynamics in MD and NMR is
possible. Note that in Figures 14D–F, we only show
11 time points for illustrative purposes, but this procedure
is equally valid for ∼106 time points (for such a long correlation
function, calculating Eq. 37 takes much longer than evaluating
its result with detectors).

The detector analysis then provides a very reliable means of
comparing NMR results to MD simulation. The ability to easily
compare results across multiple methods is one of the primary
advantages of detector analysis. We should note that carefully
executed fitting of MD-derived correlation functions, followed by
calculation of relaxation rate constants should yield similarly
reliable rate constants, if the trajectory is sufficiently long (Mollica
et al., 2012). However, the rate constants themselves are sensitive
to a broader range of correlation times than detectors, so that the
comparison has lower timescale resolution than detectors.

With MD and NMR data sets, one may then use NMR data via
detectors (or relaxation rate constants) as a means of validating
the MD, and potentially refining it; methods include selecting
sections of trajectories that best reproduce experiment (Salvi
et al., 2016), selecting the best force fields for a system (Antila
et al., 2021), or validating the refinement of a force-field itself
(Hoffmann et al., 2018a; Hoffmann et al., 2018b). One may also
use NMR data (specifically order parameters) as a means of
directing the simulation, so that the simulation returns
parameters matching the experiment (Hansen et al., 2014).
One should note that a major challenge of combining NMR
and MD data is that, while NMR is highly sensitive to
microsecond motions, for example, via R1ρ measurements, it is
challenging to obtain accurate dynamics on the microsecond
timescale from MD simulations. Although MD simulations now
regularly extend for multiple microseconds, or longer via
enhanced sampling (Bernardi et al., 2015), one still lacks
sufficient statistics to obtain reliable dynamics behavior.
Consider, if we investigate a 1 μs motion, using a 10 μs
trajectory, we should observe 10 events, but the variance in
number of events is also 10 (assuming Poisson statistics), so
that large errors easily occur. Additionally, correct replication of
slower motions requires all the faster motion leading up to the
slow motion to occur at approximately the correct rates, so that
the slower motions are more susceptible to influences like force
field inaccuracies, starting structure of the system, etc. This
remains a significant challenge for combining experiment in
simulation, requiring creative solutions to take advantage of
simulation where reproduction of experimental observables
is poor.
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With experimental validation or refinement of an MD
simulation, one may analyze the simulation further, with
improved confidence of the accuracy of the simulation.
However, we want to use the simulation specifically to
improve our interpretation of the experimental parameters.
For example, we recently showed that it was possible to
calculate the spatial correlation of motions within a given
detector window between different residues in HET-s
(218–289) fibrils (Smith et al., 2019b), using a modified
iRED analysis (Prompers and Brüschweiler, 2001; Prompers
and Brüschweiler, 2002). The result is that we could see that

detector windows corresponding to longer correlation times
tended to result in correlation over longer distances, providing
at least some explanation for the presence of slow, low
amplitude motion in fibrils. A similar correlation analysis is
shown in Figure 14G, in this case for residues in an α-helix,
where similarly, detector windows corresponding to longer
correlation times yield longer correlation lengths. We suspect
this behavior to be nearly universal: even in well-defined
structures, there is always some residual flexibility. Then,
both short- and long-range modes of motion should be
thermally populated (in terms of modes, these are more

FIGURE 14 |Combining NMR andMD. (A) plots normalized NMR sensitivities for a selection of experiments (S2, 15NR1 at 400, 500, 850 MHz, 15NR1ρ at 850 MHz,
60 kHz MAS, ]1 at 10, 25, and 45 kHz). (B) shows a linear combination of the normalized sensitivities (x, y positions shifted to reduce plot overlap), which yields the
sensitivity of ρ2, shown in (C) (green, bold). In color are the weighted contributions from each rate constant, and grey shows the cumulative sum (summing all sensitivities
at and below the grey line). (C) shows the five sensitivities optimized from NMR data. (D) plots sensitivities of time points fromMD-derived correlation functions (0 s,
10 points log-spaced from 50 ps to 1 μs). (E) shows a linear combination of those sensitivities, optimized tomatch the sensitivity of ρ2 (x, y positions shifted to reduce plot
overlap). (F) shows detectors optimized to match the NMR-derived detectors in (C). (G) shows spatial correlation of motion in a helix as a function of correlation time
(windows for <20, ∼20, ∼100, ∼800 ns). Color intensity and bond radii indicate the correlation coefficient between that residue’s H–Nmotion and the motion of the black
residue. (H) illustrates frames used to separate transformation from the PAS to the lab frame into four steps: a peptide plane frame, a helix frame, and a molecule frame
(illustration inspired by Brown (1996), molecule plots created with ChimeraX (Pettersen et al., 2021)).
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accurately described as having short and long wavelengths).
However, the longer-range modes usually have longer
correlation times, resulting in the trends in Figure 14G.
Note that this implies that there should almost always be
distributions of correlation times due to varying correlation
length, further complicating the interpretation of the two to
three correlation times provided by the EMF approach.

For fairly rigid regions of a molecule, we expect detector-
specific correlation analysis to help explain dynamic trends.
However, what should we do for regions that are more
mobile, with multiple types of motion contributing?
Having all of the atom positions in an MD simulation
should provide the detail that would allow us to separate
different motions. Then, we could define the total motion of a
bond as resulting from the product of these motions. For
example, for an H–N dipole coupling in an α-helix, the total
rotation of the dipole is the result of the reorientation of the
principal axis system (PAS) of the dipole within the peptide
plane (PP), the peptide plane reorienting within the helix, the
helix reorienting with the molecule, and the molecule
reorienting within the lab frame.

�v(t+ τ) �R(Ωτ,t+τ) · �v(τ)
�R(Ωmol.→lab

τ,t+τ ) ·R(Ωhelix→mol.
τ,t+τ ) ·R(ΩPP→helix

τ,t+τ ) ·R(ΩPAS→PP
τ,t+τ ) · �v(τ)

(38)

This concept is illustrated in Figure 14H. In the case that it
is possible to derive a correlation function from each rotation,
one then may effectively achieve an in silico model-free type
separation of the correlation functions motion. A similar
approach for the specific separation of librations, φ/ψ
reorientation, and peptide plane tumbling in intrinsically
disorded proteins has been demonstrated by Salvi et al.
(2017), however we find that it is possible to fully
generalize this concept for separation of arbitrary
definitions of independent motions (manuscript under
revision, (Smith et al., 2021b)). Then, separated motions
may also be analyzed with detectors, to determine how both
experimental and simulated detector responses depend on
both timescale and position in the molecule. Separation of
motions could also be coupled with mode analyses such as
iRED (Prompers and Brüschweiler, 2001, 2002) or principal
component analysis (Amadei et al., 1993; Altis et al., 2007),
providing a method to better characterize distributions of
correlation times arising from different motions and
complex mode-like dynamics. In each proposed case,
comparison of the different MD analyses is possible via the
detector analysis. Our eventual goal is that one may extract
enough detail from the MD to build explicit models of motion
for direct application to the NMR experimental results, so that
the final characterizations are no longer model-free at all, but
rather yield highly detailed models based on the combined
information from experiment and simulation.

CONCLUSION

We show that the original model-free approach, SDM, LeMaster’s
approach, and detectors all belong to a class of methods where fit
parameters are resulting from a linear combination of experimental
relaxation rate constants (potentially requiring an additional
arithmetic step to yield the final parameters). IMPACT is a
close approximation to this behavior, whereas EMF parameters
exhibit significantly different behavior. Analysis methods
belonging to this class are particularly useful because it is
straightforward to estimate the resulting parameters if the
distribution of correlation times, (1 − S2)θ(z), is known. This is
particularly advantageous when determining if a model is
consistent with experimentally determined parameters, and also
allows easy comparison of multiple methods.

The detector analysis is the most general of these approaches,
being applicable to any collection of NMR relaxation experiments
probing reorientational motion, and can be generalized for other
methods such as MD simulation, requiring very little
modification of the analysis. Then, the resulting detector
responses from NMR and MD are easily compared. With
experimental validation of MD, one may then use the wealth
of detail in MD simulation to better understand how
experimentally derived parameters are related to specific
motion, via correlation of motion, separation of motion, and
other existing and yet-to-be developed techniques. This has the
potential to lead to improvedmodels of motion for NMR analysis,
which in turn can help obtain a more fundamental understand of
dynamics in biomolecular systems.
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