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Abstract: Visual object tracking (VOT) is a vital part of various domains of computer vision appli-
cations such as surveillance, unmanned aerial vehicles (UAV), and medical diagnostics. In recent
years, substantial improvement has been made to solve various challenges of VOT techniques such as
change of scale, occlusions, motion blur, and illumination variations. This paper proposes a tracking
algorithm in a spatiotemporal context (STC) framework. To overcome the limitations of STC based on
scale variation, a max-pooling-based scale scheme is incorporated by maximizing over posterior prob-
ability. To avert target model from drift, an efficient mechanism is proposed for occlusion handling.
Occlusion is detected from average peak to correlation energy (APCE)-based mechanism of response
map between consecutive frames. On successful occlusion detection, a fractional-gain Kalman filter
is incorporated for handling the occlusion. An additional extension to the model includes APCE
criteria to adapt the target model in motion blur and other factors. Extensive evaluation indicates
that the proposed algorithm achieves significant results against various tracking methods.

Keywords: object tracking; image processing; fractional-gain Kalman filter; APCE

1. Introduction

Visual object tracking (VOT) is an essential task in a variety of computer vision
applications such as video surveillance [1–3], automobile [4], human–computer inter-
action [5], cinematography [6], sensor network [7], motion analysis [8], robotics [9–11],
anti-aircraft system [12], autonomous vehicles [13], and traffic monitoring [14]. As pre-
sented in Figure 1, VOT remains a challenging issue due to motion blur, occlusion, fast
motion, among others [15–19].

Tracking methods can be categorized as generative and discriminative. In generative
tracking methods, the computation cost is high, and they are adaptable with environ-
mental factors due to which these tracking methods might fail in background clutter
situations [20–22]. Discriminative tracking methods perform better in clutter background
situations since they treat these as a binary classification problem. However, they are slow,
making them unsuitable for real-time applications [23–25].
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Figure 1. Challenging scenarios in visual object tracking (VOT). The first row shows motion blur in 
an image sequence. The second row shows the scale variation of the target. The third row shows 
heavy occlusion of the target. Pictures in the figure are part of OTB-100 dataset [26]. 

1.1. Related Work 
The STC tracker [27] has been widely used in recent years due to its computational 

efficiency. STC integrates spatial context information around the target of interest and 
considers prior information of previous frames for computing the extreme-of-confidence 
map by using Fourier transform. Die et al. [28] combined a correlation filter (CF) and STC. 
They extracted HOG (histogram of oriented gradients), (CN) color naming, and gray fea-
tures for learning-correlation filters. Then, the response of CF and STC is fused. Yang et 
al. [29] proposed an improved tracking method by incorporating peak to sidelobe ratio 
(PSR)-based occlusion detection mechanism and model update scheme in the STC frame-
work. Zhang et al. [30] proposed a tracking method by incorporating HOG, CN features, 
and an average difference of frames-based adaptive learning rate mechanism in the spa-
tiotemporal context framework. Zhang et al. [31] suggested a tracking method by incor-
porating a selection update mechanism in the spatiotemporal context framework. Song et 
al. [32] anticipated an improved STC-based tracking method by combining a scale filter 
and loss function criteria for better performance in UAV applications. 

During the past decade, significant progress has been made to develop accurate scale 
estimation in VOT [33–38]. Danelljan et al. [39] proposed a tracking-by-detection frame-
work by learning filters for translation and scale estimation based on pyramid represen-
tation. Li et al. [40] incorporated an adaptive scale scheme in a kernelized correlation filter 
(KCF) tracker using HOG and CN features. Bibi et al. [41] modify the KCF tracker by max-
imizing posterior distribution over the scales grid and updating the filter by fixed point 
optimization. Lu et al. [42] combined KCF and Fourier–Mellin transform to deal with ro-
tation and scale variation of the target. Yin et al. [43] modified the scale adaptive with 
multiple features (SAMF) tracker by using APCE-based rate of change between consecu-
tive frames to control scale size. Ma et al. [44] incorporated APCE in discriminative corre-
lation filters to address fixed template size. 

Figure 1. Challenging scenarios in visual object tracking (VOT). The first row shows motion blur in
an image sequence. The second row shows the scale variation of the target. The third row shows
heavy occlusion of the target. Pictures in the figure are part of OTB-100 dataset [26].

1.1. Related Work

The STC tracker [27] has been widely used in recent years due to its computational
efficiency. STC integrates spatial context information around the target of interest and
considers prior information of previous frames for computing the extreme-of-confidence
map by using Fourier transform. Die et al. [28] combined a correlation filter (CF) and
STC. They extracted HOG (histogram of oriented gradients), (CN) color naming, and
gray features for learning-correlation filters. Then, the response of CF and STC is fused.
Yang et al. [29] proposed an improved tracking method by incorporating peak to sidelobe
ratio (PSR)-based occlusion detection mechanism and model update scheme in the STC
framework. Zhang et al. [30] proposed a tracking method by incorporating HOG, CN
features, and an average difference of frames-based adaptive learning rate mechanism
in the spatiotemporal context framework. Zhang et al. [31] suggested a tracking method
by incorporating a selection update mechanism in the spatiotemporal context framework.
Song et al. [32] anticipated an improved STC-based tracking method by combining a scale
filter and loss function criteria for better performance in UAV applications.

During the past decade, significant progress has been made to develop accurate
scale estimation in VOT [33–38]. Danelljan et al. [39] proposed a tracking-by-detection
framework by learning filters for translation and scale estimation based on pyramid repre-
sentation. Li et al. [40] incorporated an adaptive scale scheme in a kernelized correlation
filter (KCF) tracker using HOG and CN features. Bibi et al. [41] modify the KCF tracker
by maximizing posterior distribution over the scales grid and updating the filter by fixed
point optimization. Lu et al. [42] combined KCF and Fourier–Mellin transform to deal with
rotation and scale variation of the target. Yin et al. [43] modified the scale adaptive with
multiple features (SAMF) tracker by using APCE-based rate of change between consecutive
frames to control scale size. Ma et al. [44] incorporated APCE in discriminative correlation
filters to address fixed template size.
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A Kalman filter is used in various tracking algorithms for occlusion handling [45–49].
Kaur et al. [50] suggested a real-time tracking approach using a fractional-gain Kalman filter
for nonlinear systems. Soleh et al. [51] proposed the Hungarian Kalman filter (HKF) for
multiple target tracking. Farahi et al. [52] proposed a probabilistic Kalman filter (PKF) by
incorporating an extra stage for estimating target position by applying the Viterbi algorithm
to a probabilistic graph. Gunjal et al. [53] proposed a Kalman filter-based tracking algorithm
for moving targets under surveillance applications. Ali et al. [54] address issues in VOT
such as fast maneuvering of the target, occlusions, and deformation by combining Kalman
filter, CF, and adaptive mean shift in the heuristic framework. Kaur et al. [55] proposed
a modified fractional-gain-based Kalman filter for vehicle tracking by incorporating a
fractional feedback loop and cost function minimization. Zhou et al. [56] address issues in
VOT such as occlusions, motion blur, and clutter background by incorporating a Kalman
filter in a compressive tracking framework.

By summarizing the current methods, it can be perceived that significant work has
been done to develop a robust tracking algorithm by incorporating scale update schemes,
model update mechanisms, occlusion detection, and handling techniques in different
tracking frameworks. The STC algorithm proposed in [27] uses FFT for detection and
context information for a model update. However, it cannot effectively deal with occlusions,
scale variations, and motion blur.

1.2. Our Contributions

To address the limitations of the STC, this paper proposes a robust tracking algorithm
suitable for various image processing applications, such as surveillance and autonomous
vehicles. The contributions can be listed concisely as follows.

1. We introduce novel criteria for detecting occlusion by utilizing APCE, model update
rules, and previous history of the modified response map to prevent the tracking
model from wrong updates.

2. We introduce an effective occlusion handling mechanism by incorporating a modified
feedback-based fractional-gain Kalman filter in the spatiotemporal context framework
to track an object’s motion.

3. We incorporate a max-pooling-based scale scheme by maximizing over posterior
probability in the STC framework’s detection stage. We applied a combination of STC
and max-pooling to attain higher accuracy.

4. We introduce an APCE-based adaptive learning rate mechanism that utilizes informa-
tion of current frame and previous history to reduce error accumulation and correctly
updates from the wrong appearance of the target.

5. Extensive performance analysis of the proposed tracker is carried out on standard bench-
mark videos in comparison with STC [27], KCF_MTSA [41], MACF [57], MOSSECA [58],
and Modified KCF [59].

1.3. Organization

The organization of this paper follows: brief explanations of STC and fractional
calculus are provided in Section 2. In Section 3, the tracking modules of the proposed
tracker are explained. Section 4 includes performance analysis. Discussion is given in
Section 5, while Section 6 concludes the paper.

2. Review of STC and Fractional Calculus
2.1. STC Tracking

The STC tracking algorithm formulates the relation between the target of interest and
its context in the Bayesian framework. The feature set Xc = {l(r) = (I(r), r)|r ∈ Ωc(x*)}
and spatial relation between target context is presented in Figure 2.
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Figure 2. The spatial relation between object and its context. Picture in the figure is part of OTB-100
dataset [26].

The confidence map is given as follows:

l(x) = P(x|k) = ∑
n(r) ∈ Xc

P(x, l(r) |k )

= ∑l(r) ∈ Xc P(x, l(r) |k )P(l(r) |k )
(1)

P(l(r) |k ) is the prior context model and P(x, l(r) |k ) is the spatial context model. The
confidence map function l(x) is given in (2):

l(x) = P(x|k) = v e(−|
x − x∗

∅ | Th) (2)

where v is the normalization constant, Þ is a parameter for shape, and ∅ is a parameter for
scale. The spatial context uses the intensity of the image and weighted Gaussian function
given in (3) and (4):

P(l(r) |k ) = I(r)ωγ(r − x∗) (3)

ωγ = θ e(−
|x−x∗|2

σ2 ) (4)

Equation (5) describes the spatial context model:

P(x, l(r) |k ) = hsc(x − r) (5)

Explaining for the spatial context:

= hsc(x − r)I(r)ωγ(r − x∗) (6)

= hsc(x)⊗ (I(x)ωγ(x − x∗)) (7)

Fast Fourier transform (FFT) can be calculated as follows:

F (l(x)) = F (hsc(x))� F(I(x)ωγ(x − x∗)) (8)

The solution of (8) follows:

hsc(x) = F−1

 F
(

v.e−|
x − x∗

∅ | Th
)

F((I(x)ωγ(x − x∗)))

 (9)
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As presented in (10), x∗t+1 can be obtained by computing the extreme-of-confidence map:

x∗t+1 = argx∈Ωc(x∗t )
max lt+1(x) (10)

The confidence map can be considered from (11):

lt+1(x) = F−1(F(Hstc
t+1(x)

)
�F (It+1(x)ωγ(x− x∗t ))

)
(11)

Spatiotemporal context is updated on learning rate ρ, as given in (12):

Hstc
t+1 = (1− ρ)Hstc

t + ρhsc
t (12)

2.2. Fractional Calculus

In this work, the Grünwald–Letnikov definition [60] is used for calculating fractional
difference defined in (13):

∆γ xk =
1

hn

k

∑
q=0

(−1)q
(

n
q

)
xk+1−q (13)

where n is fractional order, h is the sampling interval, k is the number of samples of given

signal x, and
(

n
q

)
is obtained using (14):

(
n
q

)
=

{
1 for q = 0
n(n−1)...(n−q+1)

q for q > 0
(14)

3. Proposed Solution

In this section, tracking modules are elaborated. First, the max-pooling-based scale
mechanism is presented. Second, the APCE-based occlusion detection mechanism is
discussed. Third, the fractional-gain Kalman filter-based mechanism for occlusion handling
is examined. Fourth, an APCE-based modified learning rate mechanism is explained. The
flowchart of the proposed tracker is displayed in Figure 3.

As presented in Figure 3, for each sequence, the ground truth of the target is manually
initialized in the first frame. Afterward, the confidence map of the target is calculated. Then,
by maximizing the posterior probability, the scale of the target is estimated. Then APCE
of the response map is calculated along with the difference of APCE between consecutive
frames. Based on occlusion criteria, the fractional-gain Kalman filter activates and predicts
the location of the target. Afterward, the learning rate of the tracking model is updated by
utilizing the current target position and previous history of APCE values.

3.1. Scale Integration Scheme

One limitation of STC is the inability to rapidly change the scale. During the detection
phase of STC, we applied max-pooling over multiple scales by maximizing the posterior
probability, as given in (15):

max
i

P (r i |y ) = P (y|r i) P (ri) (15)

where ri represents ith scale and P (y|r i) is the maximum detection likelihood response at
ith scale. The prior term P (ri) is the Gaussian distribution whose standard deviation is set
through experimentation. It allows for a smooth transition between frames, given that the
target scale does not vary much between frames.
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3.2. Occlusion Detection Mechanism

The performance of any tracking algorithm is affected by various factors, of which the
most common is occlusion. It is essential to create a mechanism for the detection of occlu-
sion. In the present work, an occlusion feedback mechanism is presented, which detects
occlusion and updates the target model by evaluating the tracking status of each frame.

Average peak to correlation energy (APCE) [61] determines tracker effectiveness. The
value of APCE changes according to the target occlusion state. Small values of APCE
specify tracking failure or target occlusion. It is given in (16):

APCEt =
|gmax − gmin|

2

mean
(

∑w,h

(
gw,h − gmin

)2
) (16)
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where gmax and gmin are maximum and minimum response values, respectively, and gw,h
gives indices of the response map. The occlusion detection criteria are built as given in
(17) and (18):

δ = APCEt −APCEt−1 (17)

APCEt < εth (18)

where APCEt and APCEt−1 are the APCE values at t and (t − 1) frames, respectively, δ is
the difference of the APCE between two sequential frames, and εth is the threshold value
acquired by performing multiple experiments. Rules of occlusion and model update follow:

1. When δ ≤ 0 or APCEt ≥ εth, it indicates that the target is coming out of the shelter,
and both the tracking and model updates are based on STC.

2. When δ ≤ 0 and APCEt < εth, it indicates that the target is in the occlusion state
and tracking is based on the fractional-gain Kalman filter. The tracking model is also
updated based on the Kalman filter prediction.

3. When δ > 0 or APCEt < εth, it indicates that the target occludes, and both the tracking
and model update are based on STC.

4. When δ > 0 or APCEt ≥ εth, it indicates that the target tracking is good and that
both the tracking and model update are based on STC.

As seen in Figure 4a, without occlusion, both APCE and δ are high; therefore, no
occlusion occurs. However, when both APCE and δ give low values, as shown in Figure 4b,
case occlusion occurs and the occlusion handling mechanism is activated. By using this
mechanism, proposed tracking achieved significant results for the occlusion challenge.
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3.3. Fractional-Gain Kalman Filter

The Kalman filter is widely used in the research area of VOT. A modified discrete time
linear system can be characterized by Equations (19) and (20):

xk = Axk−1 + Buk + wk (19)

zk = Hxk + vk (20)

where xk is the state vector, zk is system output, uk is system input, and vk is output noise.
A, B, and H are transition, control, and measurement matrices, respectively. The innovation
equation is the difference between the estimated output ẑk and actual output zk defined
in (21):

innovation = zk − ẑk = zk −Hx̂−k (21)

where x̂−k is the priori state. The estimation of the next state x̂k with a modified gain is
given in (22) and (23):

x̂k = x̂−k + Knew(innovation) = x̂−k + Knew
(
zk −Hx̂−k

)
(22)
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Knew = Kk + fk = Kk + ∆γ Kk (23)

where ∆γ Kk is the fractional derivative of previous Kalman gain. Priori error ê−k between
actual and estimated state and its covariance P−k can be given in (24) and (25):

ê−k = xk − x̂−k (24)

P−k = E
{(

ê−k
)2
}

(25)

Posteriori error ek between actual and estimated state and its covariance Pk can be
given, as in (26) and (27):

ek = xk − x̂k (26)

Pk = E
{
(ek)

2
}

(27)

Kalman gain K is calculated by minimizing posteriori error covariance Pk as given
in (28):

Pk = E(xk − x̂k)
2 = E

(
x̂k − x̂−k − (K + ∆γ K)

(
zk −Hx̂−k

))2 (28)

Finding the value of K in (29):

dE
(
x̂k − x̂−k − (K + ∆γ K)

(
zk −Hx̂−k

))2

dK
= 0 (29)

Knew can be written as in (30):

Knew = K + E

{
k

∑
q=0

(−1)q+1
(

n
q

)
Kk−q

}
(30)

The modified Kalman gain Knew consists of two terms. The first term represents the
Kalman filter’s gain, and the second represents the mean of the fractional difference of
previous gains. The (−1)q+1 makes the mean value nominal.

3.4. Adaptive Learning Rate

The motion of the target is changed in each frame during tracking. It is, therefore,
necessary to update the target model adaptively rather than on a fixed learning rate. We
used an APCE-based degree indicator to better cope with environmental changes occurring
during tracking to make it adaptive. In the present work, we used maxima of historical
APCE values to normalize APCE, since the APCE value is very high. The degree indicator
dAPCE is defined in (31):

dAPCE =
APCEt

max({APCEts , . . . , APCEt−1})
(31)

where ts is the start index frame. The value of the learning rate is adjusted as in (32):

ρ =

{
0.075 , dAPCE > τth

0.075 ∗ dAPCE , dAPCE ≤ τth
(32)

where τth is the threshold value acquired by performing multiple experiments.
Figure 5a shows that, without both motion and blur, APCE and dAPCE are high;

therefore, the learning rate of tracking should be fast. However, when motion blur occurs,
both APCE and dAPCE give low values, as shown in Figure 5b. Thus, in that case, the
model should be updated slowly due to the appearance change of the target. By using
this mechanism, the proposed tracking achieved significant results for the motion blur
challenge. The tracker is given in Algorithm 1.
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Algorithm 1: Proposed Tracking Method

Input: Video with initialized ground truth on frame 1.
Output: Rectangle on each frame.

for 1st to the last frame.
Compute context prior model by using (3).
Compute confidence map by using (11).
Compute center of target location.
Estimate scale by using (15).
Compute APCE by using (16).
Determine occlusion detection using (17) and (18).
Check four rules of occlusion detection given in Section 3.2.
if rule 2 occurs

Activate fractional-gain Kalman filter
Compute fractional Kalman gain by using (30).
Predict position by using (22).
Compute error covariance by using (28).
end
Calculate occlusion indicator using (31).
Calculate learning rate using (32)
Update context prior model by using (3).
Update spatial context model by using (9).
Update STC model by using (12).
Estimate the position of target.

End
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4. Performance Analysis

Comprehensive assessments were conducted on videos taken from the OTB 2015 [26]
dataset for the proposed tracking method’s quantitative and quantitative evaluation. These
sequences include scale variations, motion blur, and fast motion challenges.

4.1. Evaluation Criteria

The proposed algorithm is compared with tracking methods on two evaluation criteria:
distance precision rate (DPR) and center location error (CLE). The calculation formula for
CLE is mentioned in (33):

CLE =

√(
xi − xgt

)2
+
(
yi − ygt

)2 (33)

4.2. Quantitative Analysis

DPR evaluation is presented in Table 1. In videos Blurcar1, Car2, Human7, Jogging1,
and Jogging2, the proposed algorithm outperforms Modified KCF, MOSSECA, MACF,
KCF_MTSA, and STC. For the sequences Blurcar3, Blurcar4, Boy, Dancer2, and Suv, the
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proposed tracker has marginally less precision value. Overall, the proposed algorithm has
a higher mean value than the other algorithms.

Table 1. Distance precision rate.

Sequence Proposed Modified KCF [59] STC [27] MACF [57] MOSSECA [58] KCF_MTSA [41]

Blurcar1 0.978 0.858 0.024 0.698 0.999 0.999
Blurcar3 0.896 0.829 0.406 1 1 1
Blurcar4 0.876 0.987 0.113 0.944 1 1

Boy 0.973 0.64 0.761 1 1 1
Car2 0.988 1 1 1 0.993 1

Dancer2 0.993 1 1 1 1 1
Human7 0.904 0.76 0.332 0.636 0.824 0.448
Jogging1 0.973 0.993 0.228 0.231 0.231 0.964
Jogging2 0.866 0.945 0.186 0.166 1 0.189

Suv 0.778 0.978 0.805 0.978 0.976 0.98

Mean Precision 0.923 0.899 0.486 0.765 0.902 0.858

Average center location error evaluation is presented in Table 2. In the videos Blurcar1,
Car2, Dancer2, Jogging1, and Human7, the proposed algorithm outperforms Modified KCF,
MOSSECA, MACF, KCF_MTSA, and STC. For the videos Blurcar3, Blurcar4, Boy, Jogging2,
and Suv, the proposed algorithm has marginally high error values. Overall, the proposed
algorithm has the lowest mean error compared to the other algorithms.

Table 2. Average center location error.

Sequence Proposed Modified KCF [59] STC [27] MACF [57] MOSSECA [58] KCF_MTSA [41]

Blurcar1 4.86 16.05 1.31 × 106 85.16 6.34 6.01
Blurcar3 9.12 14.46 71.37 3.69 2.98 3.7
Blurcar4 15.01 11.19 2.61 × 103 8.04 10.15 7.15

Boy 8.09 50.34 27.4 2.65 2.31 2.91
Car2 2.68 3.96 12.43 1.55 5.39 2.13

Dancer2 6.82 6.41 15.3 6.48 5.8 6.68
Human7 7.59 16.74 42.98 19.62 12.14 36.63
Jogging1 8.39 3.72 5010 94.97 115.98 4.27
Jogging2 14.2 4.74 104.02 147.77 3.47 136.4

Suv 15.36 3.65 48 3.34 3.73 3.71

Mean Error 9.212 13.126 1.3 × 106 37.327 16.829 20.959

The precision and error plots are presented in Figures 6 and 7, respectively. These
plots provide a frame-by-frame comparison in entire image sequences. Since precision and
location error gives the mean of the entire sequence, it is possible that the algorithm loses
the target for a few frames but correctly tracks again. Therefore, these plots were presented
to show the effectiveness of the tracking method. In the videos Blurcar1, Human7, Jogging1,
and Jogging2, the proposed algorithm has the highest precision in the entire video. It has
slightly low accuracy in the Blurcar3, Blurcar4, Boy, Car2, Dancer2 and Suv videos. The
proposed algorithm has the lowest error in the Blurcar1, Human7, Jogging1, and Jogging2
videos. It has marginally high error compared with a few trackers for the Blurcar3, Blurcar4,
Boy, Car2, Dancer2, and Suv sequences.
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Frames per second (fps) analysis is presented in Table 3. In the Blurcar1, Car2,
Dancer2, Human7, and Jogging1 videos, the proposed algorithm outperforms Modified
KCF, MOSSECA, MACF, KCF_MTSA, and STC in terms of precision in error at the expense
of modest frame rate.

Table 3. Frames per second (fps).

Sequence Proposed Modified KCF [59] STC [27] MACF [57] MOSSECA [58] KCF_MTSA [41]

Blurcar1 10.78 66.29 27.75 18.5 53.06 15.35
Blurcar3 18.04 33.62 28.87 32.7 51.74 6.08
Blurcar4 5.7 21.42 20.07 8.64 27.65 5.83

Boy 26.67 85.51 33.48 58.7 157.17 22.02
Car2 57.18 90.7 94.08 55.3 95.38 11.2

Dancer2 29.66 29.65 65.1 29.2 38.87 6.26
Human7 25.17 34.44 59.66 40.5 26.11 11.48
Jogging1 42.71 95.45 61.75 49 36.59 12.55
Jogging2 22.77 33.01 56.92 34.6 33.97 11

Suv 69.61 76.32 98.03 50.9 79.7 8.44

The computational time for the learning rate module is presented in Table 4. It can
be seen that the proposed tracker takes less time in motion blur sequences. However, the
overall speed of the tracker is slightly slow, given in Table 3. Combining the different
tracking modules presented in Section 3, performance of the proposed tracker is significant
as each module is specifically designed and incorporated into the STC framework, making
it efficient in terms of less error and high precision for different challenging attributes
in VOT.

4.3. Qualitative Analysis

Figure 8 depicts the qualitative analysis of the proposed tracking with five state-of-
the-art trackers. Modified KCF and KCF_MTSA are extensions of KCF [62] based tracking
methods. However, Modified KCF is not robust to motion blur (Blurcar1, Blurcar3, and
Human7), whereas the performance of KCF_MTSA is affected in occlusion (Jogging2) and
motion blur (Human7). MACF is an improved version of fast discriminative scale space
tracking [63] and achieved favorable results in various challenges of VOT. However, it
does not perform well in motion blur (Blurcar1) and occlusion (Jogging1 and Jogging 2).
MOSSECA is an improved context-aware formulation version of the MOSSE [64] tracker.
The results are exceptional except in the Jogging1 and Human7 sequences. STC is the
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baseline tracker of the proposed method and achieves favorable results. However, it can be
seen that it does not address occlusion (Jogging1 and Jogging2) or motion blur (Blurcar1,
Blurcar3, Blurcar4, Boy, and Human7).

Table 4. Computation time of the proposed tracker’s learning rate module.

Sequence Frame Size Number of Frames Time

Blurcar1 640 × 480 742 0.011
Blurcar3 640 × 480 357 0.008
Blurcar4 640 × 480 380 0.009

Boy 640 × 480 602 0.009
Car2 320 × 240 913 0.018

Dancer2 320 × 262 150 0.006
Human7 320 × 240 250 0.007
Jogging1 352 × 288 307 0.012
Jogging2 352 × 288 307 0.008

Suv 320 × 240 945 0.017
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It can be seen that the proposed tracker outperforms other tracking methods in
these sequences. This performance is attributed to three factors. First, a max-pooling-
based scale scheme is incorporated, making it less sensitive to scale variations (Boy).
Second, incorporation of the APCE-based modified occlusion detection mechanism and
fractional-gain Kalman filter-based occlusion handling makes it effective toward occlusions
(Jogging1, Jogging2, and Suv). Third, the combination of APCE criteria in the learning rate
of the proposed algorithm model update effectively, making it efficient towards motion
blur (Blurcar1, Blurcar3, Blurcar4, Boy, and Human7) and illumination variations (Car2
and Dancer2).
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5. Discussion

We discuss several observations from performance analysis. First, max-pooling-based
scale formulation in spatiotemporal context outperforms trackers without this formulation.
This can be attributed to estimating maximum likelihood by using target appearance
sampled at a different set of scales. Second, trackers which utilize modules for occlusion
detection and handling module outperform trackers without these modules. This can be
attributed to the fractional-gain Kalman filter and an APCE-based occlusion detection
mechanism preventing tracker from drift. Third, trackers with adaptive learning rate
perform better than those with fixed learning rate.

6. Conclusions

This paper contributes insight into an STC-based accurate tracking algorithm by
incorporating max-pooling, fractional-gain Kalman, and APCE measures for occlusion
detection and tracking model update. It can improve the adaptability of the target model
and prevent error accumulation. Evaluations specify that the proposed tracker achieves
enhanced results in various complicated scenarios. However, there are some problems:
(1) tracking performance is severely affected in dense occlusion; (2) the tracker lost the
target of interest in deformation and fast motion; and (3) frame rate of the proposed tracking
method is slow. These three points will be the focus of follow-up research. Additionally,
considering the challenges of VOT, we also plan to perform future in-depth research on the
fusion of features and better prediction estimation mechanisms, and carry out Raspberry
Pi, FPGA, and DSP-based hardware implementation and practical application for meeting
the requirements of society.
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