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Abstract: Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably
leads to their release into the environment. Thus, living organisms, including plants, may be exposed
to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic,
our knowledge about NPs uptake by plants and their influence on different developmental processes
is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall
which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall
may facilitate the internalization of various particles including NPs. Our studies have shown that
AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.)
roots. However, the research carried out with using light and transmission electron microscope
revealed that AuNPs with different surface charge caused diverse changes in the root’s histology
and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against
particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma
membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged (−) AuNPs,
which passage to the cell.

Keywords: Arabidopsis thaliana; gold nanoparticles; protoplasts; root development; root meristem;
ultrastructure

1. Introduction

Substantial progress in the development of nanotechnology in recent years has led to an increase
in production and widespread usage of nanomaterials (NMs) in many application fields [1,2].
This remarkable progress is inevitably accompanied by the risk of NMs being released into the
environment [3]. As a result, NPs enter an ecosystem and may cause an invisible danger to the
environment by interaction with the living organisms [4–6]. Plants as an essential part of the ecological
system may be a potential route for NP transport and bioaccumulation into the food chain [7–9].
Therefore, there is a great need to investigate the effect of NPs on plants including their uptake,
translocation as well as their potential toxicity. It has been reported that the impact of NPs on plants
can be diverse and depends on the type of NPs, their physicochemical properties (e.g., particle size,
shape or surface properties), concentration, time exposure as well as plant species [10–15]. For example,
Yin et al. [16] found that in Lolium multiflorum roots, accumulation of silver NPs (AgNPs) of 6 nm in
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diameter was higher than for 25 nm. Moreover, 6 nm AgNPs more strongly affected plant growth.
Another study showed that AuNPs of different sizes were accumulated by tobacco but were not found
to be taken up by wheat [7,17]. AgNPs at low concentration (up to 30 µg/mL) did not penetrate
Oryza sativa roots, however, they caused an increase in root growth. AgNPs at higher concentration
(60 µg/mL) passed to the cells and had a toxic effect on the roots [18]. These findings confirm that a dose
and physical properties of NPs affect their availability and reactivity in plants. However, the surface
chemistry of NPs is also very important as it may influence NP reactivity, penetration and movement
within the plant and therefore plant responses to the same type of NPs may be completely different [19].
To date, only a few studies have demonstrated the importance of the coating properties on the NPs
uptake and their effect on plants. Zhu et al. [20] have proven that the surface charge of AuNPs has an
impact on diversity in their uptake by different plant species and accumulation on the root surface.
Similar results have been observed on tomato and rice since (+) AuNPs (positively charged) more
readily adhered to the roots and were easily internalised, while (−) AuNPs (negatively charged) were
less taken up by plants [21]. Other studies revealed that the rate and extent of CdSe/CdZnS quantum
dots absorption by poplar trees also depend on their surface properties [22]. One more important
issue in NP-plants interaction is a cell wall which is the first physical barrier for entry of NPs from the
external environment. The sieving properties of the plant cell wall impose a limitation on the size of
particles that can easily pass through it. The size exclusion limit for the plant cell wall is determined
by pore size which has been estimated to be between 3.3 to 6.2 nm [14,23,24]. Taking into account the
very small diameter of wall pores, it can be assumed that the cell wall may be an impassable boundary
for NPs [14,25]. However, some literature data showed that the cell wall permeability may change
depending on the environmental conditions of plant growth [26,27]. A few reports indicate that NPs
may cause enlargement of pores in a cell wall which further facilitates the entry of large NPs [28,29].
The question arises, whether the surface charge of NPs has any influence on cell wall permeability?
The knowledge of NP properties, which can determine the transport and uptake across the cells, will
improve our understanding of their toxicity. In present work, we evaluated interaction of 5 nm AuNPs
with different surface charge (positive, negative and neutral) with Arabidopsis thaliana (Arabidopsis)
roots. AuNPs were selected for this study because they have been demonstrated to have many benefits
compared to other NMs including their biologically inert properties [20]. AuNPs are the most stable
metal nanoparticles, the core material is an inert metal and is sparingly soluble in most solvents.
Moreover, compare to other NPs, AuNPs do not easily release metal ions, making them relatively easy
to detect [20,30]. We chose to the study Arabidopsis thaliana since it is a small model plant with a short
life cycle which allows easy manipulation and study. We conducted our researches on the Columbia
(Col-0) because this is the most commonly used ecotype within the Arabidopsis research community
(The Arabidopsis Genome Initiative, 2000). The first objective of this research was to compare the effect
of AuNPs with a different coating on the Arabidopsis root histology and ultrastructure. The changes
in the root’s development may suggest AuNP penetration into the roots. Thus, our next goal was to
determine whether a different surface charge of AuNPs affect their internalisation to roots. In these
studies, the 25 µg/mL concentration was applied in order to observe the relevant phytotoxic responses
as well as potential AuNP uptake. In addition, the protoplast culture of Arabidopsis leaves was also
analysed to verify the hypothesis that plasma membrane is not a barrier for nanoparticles. In this
experiment, we examined the impact of the surface charge of AuNPs on their passage to the cells
without the wall.
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2. Results

2.1. AuNPs Change the Histology of Arabidopsis thaliana Roots

The Arabidopsis root species consist of four zones: meristemastic (MZ), transition (TZ), elongation
(EZ) and differentiation (DZ; Figure 1). MZ is characterized by the small cells covered by the root
cap. This region includes the stem cell niche composed of the quiescent center and surrounding stem
cells [31]. The daughter stem cells divide a few times and they switch to expansion, the expanding
cells form the EZ. Between these two zones is small region—TZ, where cell division rates are slow and
the cells begin to increase in size. DZ is formed with elongated cells from different tissues that mature
into completely differentiated cells.

AuNPs of 5 nm in diameter had different effect on root development depending on their surface
charge. (+) AuNPs did not cause any significant changes in Arabidopsis root histology in comparison
to the control root (Figure 1A,B). The changes in root histology were clearly visible after treatment
of neutral AuNPs. The first detectable alternation in all of the treated roots was more or less
developed vacuolization of rhizodermal and cortical cells from MZ, TZ and EZ (Figure 1C1–C3).
Another significant change in histology was the decrease in root MZ size in the neutral AuNPs
(reduction of about 45%) and (−) AuNP treated roots (reduction of about 36%) in comparison to the
control (distance between the quiescent center and the TZ, TZ is determined based on the position
of the first elongating cortical cell; Table 1; Figure 1A,C1–C3, red arrowheads). (−) AuNPs caused
different effect on root histology comparing to the control (Figure 1D,E1–E3), and these changes were
not so recurrent as in the case of neutral AuNPs treatment. The most often observed changes were
alternations of root zones that have been visible as a formation of lateral roots close to the root tip
(Figure 1E1,E3) or an enhancement of root hairs development close to the root tip as a consequence of
shortening the MZ and DZ (Figure 1E2). Moreover, increase in radial cell dimension of cortex cell was
observed under (−) AuNP treatment (Figure 1E2) since for the control the average diameter was equal
to 14.2 µm (SE = 0.6, N = 30) while for treated roots was 25.8 µm (SE = 1.04; N = 10). The obtained
results indicate that AuNPs caused the shortening of the MZ and the degree of this influence depends
on the surface charge that AuNPs may be caused by reduction in the cell division in MZ.

Table 1. The effect of AuNPs on the roots: length of MZ, width of periplasmic space and thickness of
the cell wall compare to the control roots.

Characteristic
Control Neutral AuNPs (+) AuNPs (−) AuNPs

Mean SE Mean SE p Mean SE p Mean SE p

MZ length [µm] 222.6 8.94 120.3 8.59 <0.001 227 9.34 0.974 142.2 9.34 <0.001
Periplasmic space width * [nm] 114 8.68 233.7 8.3 <0.001 173.6 8.18 <0.001 52.1 7.99 <0.001

Cell wall thickness ** [nm] 466.4 12.79 244.1 12.59 <0.001 274.2 12.36 <0.001 1103.1 12.18 <0.001

SE—standard error, p—significance level—the differences between means were compared using the
ANOVA—Dunnett’s test, p value < 0.001 indicate statistically significant differences. * Width of the periplasmic
space in the rhizodermal cell next to outer rhizodermal cell wall, ** thickness of the outer cell wall of rhizodermis
from MZ.
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Figure 1. Longitudinal sections of Arabidopsis thaliana roots of seedlings that have been growing in 
control conditions (A, D) and treated with: (-) AuNPs (B), neutral AuNPs (C1–C3) and (+) AuNPs 
(E1–E3). Red arrowheads indicate meristem boundary (the position of the first elongating cortical 
cell); DF—differentiation zone; EZ—elongation zone; MZ—meristematic zone; RC—root cap; TZ—
transition zone. Scale bars: A–C2 = 20 μm; D–E3 = 50 μm. 

Figure 1. Longitudinal sections of Arabidopsis thaliana roots of seedlings that have been growing in
control conditions (A,D) and treated with: (−) AuNPs (B), neutral AuNPs (C1–C3) and (+) AuNPs
(E1–E3). Red arrowheads indicate meristem boundary (the position of the first elongating cortical cell);
DF—differentiation zone; EZ—elongation zone; MZ—meristematic zone; RC—root cap; TZ—transition
zone. Scale bars: A–C2 = 20 µm; D–E3 = 50 µm.
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In the control roots, the rhizodermal cell ultrastructure was characterised by dense cytoplasm
containing numerous ribosomes and rough endoplasmic reticulum (ER), numerous active dictyosomes,
mitochondria, plastids and central spherical nucleus with large nucleolus (Figure 2A–C4).
The cytoplasm of cells from roots treated with (+) AuNPs and (−) AuNPs remained unchanged
(Figure 2E, Figure 3A–I), however, under treatment with neutral AuNPs, the cytoplasm was less
electron-dense (Figure 2H). Rough ER was of a normal appearance under (+) AuNPs conditions
(Figure 2E) but in (−) AuNP treated roots, the presence of wider lumen of ER complexes prevailed in
cells (Figure 3B,C,H,I). In rhizodermal cells of neutral AuNPs treated root, the dictyosomes structure
was changed and few or no vesicles were found in their vicinity (Figure 2I1,I4). No differences
in the structure of dictyosomes in other treated roots were observed (Figure 2F1,F4, Figure 3C).
Regarding mitochondria, in the control cells they had different shapes and part of them contained
numerous cristae in a dense matrix (Figure 2C3) while some lost their cristae being characterized by
the electron-light matrix in the centre with few cristae on periphery (Figure 3B,C4). Under (−) AuNPs
conditions, most mitochondria revealed a dense matrix and dilated, frequently ring-shaped cristae
(Figure 3B–I). Other AuNPs did not cause structural changes in mitochondria structure in comparison
to the control (Figure 3E,F3,H,I3,I4). The plastids remained unchanged upon treatment with neutral
AuNPs and (+) AuNPs and as in the control they had electron-dense stroma with few lamellae
and were characterised by the absence of thylakoids and some of them had visible plastoglobule
(Figure 2B,C4,E,F4,H,H4). The plastids in the cells of roots treated with (−) AuNPs had light stroma
without any lamellae and other structures inside (Figure 3C,E). No visible changes were detected in the
nucleus under the influence of various AuNPs compared to the control (Figure 2C2,F2,I2, Figure 3B).
The anticlinal cell walls of rhizodermis in all treated and untreated roots were thin and contained simple
plasmodesmata (Figure 2B,H inset, E). Increased vacuolization was observed for all of the roots growing
under AuNPs conditions and vacuoles were mostly filled with membranous/fibrillary structures
(Figure 2E,G,H, Figure 3E–I). However, in the (−) AuNPs treated roots, the content of vacuoles was
very diverse, some of them contained less or more electron-dense aggregations of granular precipitates
located centrally or peripherally in the vacuole (Figure 3C,E–H) and the irregular membranous
material was also found in these vacuoles (Figure 3G–I). The most conspicuous difference between
all treated roots in comparison to the control was the width of periplasmic space in rhizodermal cells
(Figure 2A,D,G). This region between the membrane and cell wall was significantly wider in roots
treated with neutral AuNPs and (+) AuNPs, while in the case of (−) AuNPs it was significantly reduced
(Table 1). In the periplasmic space of roots growing under AuNPs conditions numerous vesicles and
membranous material were visible (Figure 2D,E inset, G,H, arrows, Figure 3A,D). This lamellar and
vesicular structures seem to be paramural bodies. Few paramural bodies were also observed in the
rhizodermal cells from the control (Figure 2C4, arrow). Another significant modification was an
increased thickness of the outer periclinal cell wall of rhizodermis, which bordered the lateral root cap
in roots treated with (−) AuNPs (Table 1, Figure 3A) and their decrease in the case of neutral AuNPs
and (+) AuNPs (Table 1).
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Figure 2. Ultrastructure of rhizodermal cells from the control roots (A–C); treated with (+) AuNPs (D–
F) and neutral AuNPs (G–I). CW—cell wall, D—dictyosome, ER—endoplasmic reticulum, M—
mitochondria, N—nucleus; Ne—nuclear envelope; Nu—nucleolus; P—plastid; Pd—plasmodesmata; 
V—vacuole; Ve—vesicle; arrows—paramural bodies; asterisks—periplasmic spaces. 

Figure 2. Ultrastructure of rhizodermal cells from the control roots (A–C); treated with (+) AuNPs (D–F)
and neutral AuNPs (G–I). CW—cell wall, D—dictyosome, ER—endoplasmic reticulum, M—mitochondria,
N—nucleus; Ne—nuclear envelope; Nu—nucleolus; P—plastid; Pd—plasmodesmata; V—vacuole;
Ve—vesicle; arrows—paramural bodies; asterisks—periplasmic spaces.



Int. J. Mol. Sci. 2019, 20, 1650 7 of 22

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 22 

 

 
Figure 3. Ultrastructure of rhizodermal cells from the roots treated with (-) AuNPs (A–I). CW—cell 
wall; D—dictyosome; ER—endoplasmic reticulum; L—leucoplast; M—mitochondria; N—nucleus; 
Ne—nuclear envelope; Nu—nucleolus; Pd—plasmodesmata; V—vacuole; Ve—vesicle; arrows—
paramural bodies; asterisk—periplasmic space. 

The ultrastructure of the cortical cells from the MZ of control roots was similar to rhizodermal 
cells (Figure 4A–C). Treatment with AuNPs revealed increased secretion since a large amount of 
paramural bodies with different size and shape were observed comparing to the control (Figure 4A, 
B, D, F, G, K, J, L, arrows). All cortical cells and rhizodermal/cortical cells were syplasmically 
connected as the plasmodesmata were found in the relevant walls (Figure 4A–C, F, H). Under neutral 
AuNP conditions, the cytoplasm was less electron-dense and there were numerous small vacuoles 
(Figure 4E, F) or one big vacuole that occupied centre of the cell and also few or no vesicles in the 
vicinity of dictyosomes (Figure 4E). Conversely, in the (-) AuNPs treated roots, dictiosomes seemed 
to have increased reduction of vesicles (Figure 4L) compared to the control (Figure 4B). In the (+) 
AuNPs and (-) AuNPs treated roots, cortical cells contained numerous vacuoles of different size 
which mostly contained membranous or vesicular structures of different shape (Figure 4H, I, K, L).  

This analysis pointed out that all analysed AuNPs have an influence on rhizodermal cell 
ultrastructure. The most apparent alterations concern the width of periplasmic space, thickness of 
outer periclinal cell wall of rhizodermis and increased vacuolization of cells. 

Figure 3. Ultrastructure of rhizodermal cells from the roots treated with (−) AuNPs (A–I).
CW—cell wall; D—dictyosome; ER—endoplasmic reticulum; L—leucoplast; M—mitochondria;
N—nucleus; Ne—nuclear envelope; Nu—nucleolus; Pd—plasmodesmata; V—vacuole; Ve—vesicle;
arrows—paramural bodies; asterisk—periplasmic space.

The ultrastructure of the cortical cells from the MZ of control roots was similar to rhizodermal cells
(Figure 4A–C). Treatment with AuNPs revealed increased secretion since a large amount of paramural
bodies with different size and shape were observed comparing to the control (Figure 4A,B,D,F,G,K,J,L,
arrows). All cortical cells and rhizodermal/cortical cells were syplasmically connected as the
plasmodesmata were found in the relevant walls (Figure 4A–C,F,H). Under neutral AuNP conditions,
the cytoplasm was less electron-dense and there were numerous small vacuoles (Figure 4E,F) or one
big vacuole that occupied centre of the cell and also few or no vesicles in the vicinity of dictyosomes
(Figure 4E). Conversely, in the (−) AuNPs treated roots, dictiosomes seemed to have increased
reduction of vesicles (Figure 4L) compared to the control (Figure 4B). In the (+) AuNPs and (−) AuNPs
treated roots, cortical cells contained numerous vacuoles of different size which mostly contained
membranous or vesicular structures of different shape (Figure 4H,I,K,L).

This analysis pointed out that all analysed AuNPs have an influence on rhizodermal cell
ultrastructure. The most apparent alterations concern the width of periplasmic space, thickness
of outer periclinal cell wall of rhizodermis and increased vacuolization of cells.
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Figure 4. Ultrastructure of cortical cells from the control roots (A–C); treated with neutral AuNPs (D–
F), (+) AuNPs (G–I) and (-) AuNPs (J–L). CW—cell wall; D—dictyosome; ER—endoplasmic 
reticulum; M—mitochondria; N—nucleus; Ne—nuclear envelope; Nu—nucleolus; P—plastid; Pd—
plasmodesmata; V—vacuole; Ve—vesicle; arrows—paramural bodies; asterisk—periplasmic space. 

2.2. AuNPs Did Not Enter Arabidopsis Roots 

Taking into consideration modifications in root histology and ultrastructure under the AuNPs 
treatment, it becomes interesting to investigate whether nanoparticles penetrate inside the cells. In 
order to verify AuNP passage to the roots, the studies were conducted using high-resolution 
transmission electron microscopy (HRTEM). This tool allows thorough analyses in contrasted 
samples. The results showed that AuNPs did not pass through the cell wall barrier of rhizodermis or 

Figure 4. Ultrastructure of cortical cells from the control roots (A–C); treated with neutral AuNPs (D–F),
(+) AuNPs (G–I) and (−) AuNPs (J–L). CW—cell wall; D—dictyosome; ER—endoplasmic reticulum;
M—mitochondria; N—nucleus; Ne—nuclear envelope; Nu—nucleolus; P—plastid; Pd—plasmodesmata;
V—vacuole; Ve—vesicle; arrows—paramural bodies; asterisk—periplasmic space.

2.2. AuNPs Did Not Enter Arabidopsis Roots

Taking into consideration modifications in root histology and ultrastructure under the AuNPs
treatment, it becomes interesting to investigate whether nanoparticles penetrate inside the cells.
In order to verify AuNP passage to the roots, the studies were conducted using high-resolution
transmission electron microscopy (HRTEM). This tool allows thorough analyses in contrasted samples.
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The results showed that AuNPs did not pass through the cell wall barrier of rhizodermis or root cap
cells of Arabidopsis regardless of their charge. AuNPs were retained on the surface along the root
length independently of the root zones (Figure 5A–54). HRTEM analysis revealed that, irrespective of
the surface charge, AuNPs tend to self-assemble into clusters and they were observed in the electron
(more or less) dense substances outside the roots but in the close proximity to their surface. The largest
clusters were formed by (+) AuNPs (Figure 5A1,A2,A3,A4) and were mostly observed close to the root
surface along MZ for all types of nanogold particles (Figure 5A3,B3,C3). The obtained results indicate
that the rhizodermal cell wall of Arabidopsis roots is an effective barrier against passage of AuNPs
into cell symplasm.
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Figure 5. Ultrastructure of Arabidopis thaliana root surface along all of root zones. AuNPs regardless
of their surface charge: (+) AuNPs (A1–A4), (−) AuNPs (B1–B4) and neutral AuNPs (C1–C4) did not
pass the cell wall and they were retained on the root surface; red arrows indicate AuNPs, insets—high
resolution images of AuNPs. R-OCW—root outer cell wall, RC-OCW—root cap outer cell wall.
Scale bars: A1–A4, C1–C4 = 500 nm; B1–B4 = 200 nm.
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2.3. Positively and Negatively Charged AuNPs Enter the Arabidopsis Protoplast

Since the obtained results showed that AuNPs affect root growth and development, but did not
penetrate into the roots, it was decided to carry out studies on Arabidopsis protoplasts in order to
verified whether the plasma membrane is also a barrier or if the wall is a molecular sieve controlling
the penetration of nanoparticles into cells. In this experiment, Arabidopsis protoplasts were incubated
with AuNPs of different charge in culture medium and after 1 hour samples were taken to analysis.
The results revealed that both (−) AuNPs (Figure 6) and (+) AuNPs (Figure 7) were internalized by the
protoplasts whereas neutral AuNPs were not found in the protoplasts.
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(-) AuNPs were abundantly present in the vicinity to the PM and probably part of them was 
associated with the plasmalemma (Figure 6A–D, H, J). In this region AuNPs were mostly observed 
in groups or clusters (from several to tens or even hundreds AuNPs in a cluster). Moreover, some 
AuNPs were observed in the cytosol just below the PM, showing that they can easily pass through 
the PM (Figure 6A, C, H). Nanogold particles were also found near the invaginating PM segments 

Figure 6. Ultrastructure of Arabidopsis protoplasts treated with (−) AuNPs (A–L). (−) AuNPs passed
through the PM that provided the first barrier between the environment and cytoplasm. (−) AuNPs
were detected on the PM surface, bound to the PM or in cytoplasm just below PM (A,B,H). They were
also mostly found in the vesicles or in the vicinity of the vesicles (C,D,E,G), in the multivesicular bodies
(I), in the cytoplasm (G,H,J) or in the vacuole (H,V,J,K,L); red arrows indicate the presence of AuNPs;
yellow asterisks indicate plasma membrane barrier; Ch—chloroplast; ER—endoplasmic reticulum;
M—mitochondria; MVB—multivesicular body; S—starch grain; V—vacuole; Ve—vesicle.

(−) AuNPs were abundantly present in the vicinity to the PM and probably part of them was
associated with the plasmalemma (Figure 6A–D,H,J). In this region AuNPs were mostly observed
in groups or clusters (from several to tens or even hundreds AuNPs in a cluster). Moreover, some
AuNPs were observed in the cytosol just below the PM, showing that they can easily pass through
the PM (Figure 6A,C,H). Nanogold particles were also found near the invaginating PM segments
which formed vesicles (Figure 6C,D). Cell membrane engulfed AuNPs from outside the cell, drew
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them and formed an intracellular vesicles (endosomes). Thus, AuNPs were observed in vesicles
just below PM (Figure 6E,G). This result indicates participation of endocytosis as a pathway for
(−) AuNPs internalization. In the cytoplasm, AuNPs were seen not only in the vesicles but also in the
multivesicular bodies (MVBs; Figure 6F). (−) AuNPs were also associated with other membranous
organelle, such as endoplasmic reticulum (Figure 6G), however, some single AuNPs were not linked
with any organelles, just found free in the cytosol (Figure 6G,H,J). Some MVBs and vesicles contained
AuNPs fused with the tonoplast releasing their contents into vacuole (Figure 6I,K). Free AuNPs were
observed inside vacuoles as single particles (Figure 6I,J) and sometimes grouped in small clusters
(Figure 6H,L). Detection of particles in the cytoplasm, vesicles and vacuole suggests the path of a
defence system leading to immobilization of particles in vacuole.
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Figure 7. Ultrastructure of Arabidopsis protoplasts treated with (+) AuNPs (A–L). (+) AuNPs passed
through the PM that provided the first barrier between the environment and cytoplasm. (+) AuNPs
were found on the outer and inner side of PM and associated to PM (A–C). They were also observed in
the membranous compartment, among others in endoplasmic reticulum (B,C); in the vesicles or in the
vicinity of the vesicles (D–F,J), in the multivesicular bodies (G,I), in the cytoplasmic compartments
(E,H,K,L) or in the vacuole (I,J); red arrows point to AuNPs; yellow asterisks indicate plasma
membrane; ER—endoplasmic reticulum; M—mitochondria; MVB—multivesicular body; S—starch
grain; V—vacuole; Ve—vesicle.

A similar experiment was performed using (+) AuNPs. Observation of samples showed that
these particles were internalized into protoplast cells more abundantly (at least on eye estimation;
Figure 7) than (−) AuNPs. Moreover, in comparison to the (−) AuNPs, positively charged nanogold
were always observed in larger or smaller clusters and never as a single particle. These particles
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were distributed on the external surface of protoplasts, on the PM and just below PM in the cytosol
(Figure 7A–C). AuNPs were also observed to bind to membranous compartments immediately below
the PM (Figure 7B,C). Probably (+) AuNPs also may easily pass through PM. However, these particles
were detected inside the vesicles that sometimes contained electron-dense material (Figure 7D) as well
as AuNPs were bound to the membranes of vesicles (Figure 7E). These vesicles probably represented
endosmoes. In some cases, the release of (+) AuNPs to cytosol from vesicles (Figure 7F) and their
free presence in the cytoplasm was observed (Figure 7F,H,L). Additionally, the nanogold particles
were detected in the MVBs and were inside the vesicles or associated with the membranes (Figure 7G).
Observations also showed presence of AuNPs in the vacuole where they were located in the lumen in
the electron dense material (Figure 7I) and sometimes were associated with the membranous structures
(Figure 7J). These findings may suggest that another pathways of NPs uptake could be endocytosis.
This may lead to immobilisation of AuNPs. Moreover, AuNPs were also found in the proximity to the
forming extracellular vesicles composed of PM (Figure 7K,L). These vesicles were probably released
from cell that may indicate that (+) AuNPs nanoparticles possibly enter to the exocytosis pathway.

3. Discussion

3.1. Changes in the Root Architecture and Histology

The root is a first plant contact with potentially toxic agents in the rhizosphere. Thus, it is the first
organ that may respond to stress conditions. The changes in root system architecture upon abiotic
stresses are well documented [32–57]. In terms of NP impact on root development, the best described
alternation is the root growth inhibition. One of the first reports of NP toxicity on plants revealed
that 13 nm aluminium oxide NPs inhibited root elongation in cabbage, carrots, cucumber, maize
and soybeans [32]. Similar results after treatment with aluminium NPs were observed in Triticum
aestivum [33]. The reduction in root length was also observed in Lolium perenne treated with zinc oxide
NPs [34], in Glycine max, Arabidopsis thaliana and Oryza sativa treated with copper oxide NPs [35–37],
in Arabidopsis thaliana treated with iron oxide NPs [38] and Avena sativa treated with silica NPs [39].
This evident symptom of NP toxicity may be correlated with reduction of MZ size since its activity
controls root growth and development. However, regarding the influence of NPs, this phenomenon is
poorly documented. The studies on barley and (+) AuNPs revealed that high concentration (50 µg/mL)
caused ~18% decrease in MZ length while lower concentration (25 µg/mL, the same as in our research)
did not affect the MZ length [40]. Our results also indicate that the MZ length of Arabidopsis thaliana
roots is not changed upon (+) AuNPs, however, is significantly shortened under the influence of neutral
AuNPs and (−) AuNPs (with an approximately 45% and 36% decrease in root MZ size, respectively).
Reduction in MZ length seems to be a widespread reaction in plant response to abiotic factors such as
salinity stress [41,42], cold stress [43], glucose excess [44], X-ray treatment [45] or heavy metals [46,47].
Inhibitory effect of different stressors on MZ length may be caused by either a decreased rate of cell
divisions or a more rapid elongation and differentiation of cells. Yuan et al. [48] found that reduced root
MZ length is a result of increased elongation-differentiation rate rather than a decrease in meristematic
cell divisions. Diminished meristematic cell division potential was observed, among others, under
deficiency of phosphate or excess of copper [49,50]. Disorders in root activity upon stress conditions
can also cause other changes in root growth patterns, for example enhanced formation of lateral root or
increased root hair density [47,51,52]. These alterations accelerate water and nutrient uptake by plants.
Intensified formation of lateral root was observed under zinc oxide NP treatment of Arabidopsis [51],
Triticum aestivum [52] or Festuca rubra roots [47]. The roots of wheat exposed to copper oxide NPs
exhibited increase formation of root hairs close to the root tip [52]. Similar observations were noted in
the case of Arabidopis exposed to copper oxide NPs [53]. In the studies presented here the changes
in the root architecture were randomly observed in seedlings growing upon (−) AuNPs conditions.
We found enhancement of root hairs development as well as the formation of lateral roots close to
the root tip. However, there are also reports that NPs may cause hairless phenotype in roots as in
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the case of barley roots treated with (+) AuNPs [40]. Our results also indicate that treatment with
neutral AuNPs caused strong vacuolization mainly in the rhizodermal and cortical cells of the root tip.
The more vacuolated cells of the root tip have been observed upon treatment with AgNPs in the Eruca
sativa [54] or Lolium multiflorum [16]. Moreover, an extension of vacuolar system seems to be a common
feature of heavy metal toxicity in the root cells, for instance of Zn and Ni [47,55], Al [56] or Cd [57].
Appearance of vacuolization in plant cells may be considered as detoxification mechanism [57].

3.2. Changes in the Root Ultrastructure

Besides the effects of NPs on the plant development and morphology, they can also affect the
plant on the ultrastructural level. However, there are insufficient data on such effects of AuNPs
on plants. Most studies have shown that ultrastructural modifications under NP conditions are
associated with their penetration to plant cells [39,58–61]. The alterations in root tip exhibited, among
others, changes in plastids structure and appearance of protein bodies in vascular tissue [59], vacuolar
changes, mitochondrial swelling and cristae degeneration [60] or plasmalemma detachment from the
wall in cortical cells [61]. Our analysis has shown that regardless of the surface charge of AuNPs,
they were not able to penetrate root cells and they were found in the vicinity to the root surface.
However, the presence of AuNPs of different charge in growing medium has influenced root cells
ultrastructure. The main changes concerned rhizodermal cells from MZ. Treatment with neutral
AuNPs and (+) AuNPs caused widely detachment of PM that formed a thicker periplasmic space
comparing to the control. This periplasm contained fibrillary or membranous constituents including
paramural bodies. The increased space between the wall and plasmalemma suggests a process of
intense secretion that occurs in the cell. This activity is often associated with direct or indirect defence
against abiotic agents. Secretory products are removed from the cells through plasmalemma and
are released into the periplasmic space, from which they pass through the cell wall [62]. Our results
showed that in roots that had been growing with (−) AuNPs, the periplasmic space was strongly
reduced but the cell wall thickness was significantly increased comparing to the control. It has been
noted that the thickened cell wall may facilitate detoxification processes and confers greater mechanical
resistance to cell collapse [63,64]. Moreover, cell wall thickening can act as a barrier limiting particles
absorption into the protoplast like in the case of heavy metals, for instance aluminium [65], lead [66,67]
or cadmium [68].

3.3. Internalization of Nanoparticles into the Cells

The cell wall provides a strong barrier for nanoparticle internalization into the cells. In our
previous work we stated that 5 nm neutral AuNPs are not able to pass through the cell wall of barley
roots since the wall pores diameter are smaller than the NP size [14]. Therefore, we tried to verify
whether the different surface charge of NPs may influence the physical properties of the wall thus
facilitating NP passage. The results exhibited that neutral, positively and negatively charged AuNPs
at size 5 nm did not penetrate Arabidopsis roots but, as was mentioned above, had an influence on
root development. However, the other studies revealed that AuNP uptake and distribution depend on
both nanoparticle surface charge and plant species [20]. This research revealed that negatively charged
NPs were most efficiently taken up by the plant roots while (+) NPs were extensively accumulated
on the root surface [20]. In our work we also observed that (+) AuNPs most abundantly adhered to
the root surface, which may be caused by electrostatic interactions between (+) AuNP and negatively
charged root surface [69]. This finding is consistent with other studies focusing on the interactions
of differentially charged NPs with plants [21,22,70]. In order to verify whether only cell wall is a
protective barrier against NP penetration we examined differentially charged AuNPs movement into
the protoplasts. We found that neutral AuNPs did not penetrate the cells while (+) and (−) AuNPs
easily crossed the PM. These results are in accordance with studies on mammalian and human cell
lines [71]. The neutral AuNPs are coated with a highly hydrophilic molecule—polyethylene glycol
(PEG). It has been shown that increase hydrophilicity led to reduction in AuNPs uptake by HeLa cells,
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however, the negative charge of citrate coated AuNPs increases the AuNPs uptake in these cells as
have been shown in [72]. Decreased penetration of PEG coated NMs to cells have been also shown for
macrophages [73–75]. This effect can be associated with surfactant properties of PEG since molecules
adhesion is hindered by the hydrate shell of NPs [71]. Positive surface charge caused by the presence
of amino groups has been reported to increase cell surface affinity and uptake of NPs by different cell
lines [76,77]. These results are consistent with our observations which showed that (+) AuNPs the
most abundantly crossed the PM in protoplasts.

It has been established that in plants NPs may pass through PM via endocytotic or non-endocytotic
pathway [78]. Endocytosis is a major process of active transport across the PM that begins
with vesicle formation at the PM. Subsequently, the cargo is transported to the early and late
endosomal compartments where is sorted and recycled back to the PM or directed to the vacuole for
degradation [79,80]. Etexberria et al. [81] revealed that 40 nm polystyrene nano-spheres and 20 nm
quantum dots were taken up by fluid phase endocytosis to distinct intracellular compartments of
sycamore protoplasts. Endocytosis mechanism for NPs of similar size but a different surface charge may
also be different as was shown in the experiment in tobacco protoplasts with AuNPs of opposite charge.
(+) AuNPs were bound to the PM and were passed to the cells more abundantly than (−) AuNPs.
The authors claim that (+) AuNPs were mostly recycled to the cell surface while (−) AuNPs were
preferentially directed to the degradation pathway and that recycling to PM was slower or did not
occur [82]. Similarly, the selective endocytotic pathway was found in the tobacco pollen tubes exposed
to (+) AuNPs and (−) AuNPs [83]. Our results also showed that the internalization of AuNPs occurs
via endocytosis and that this process differs for particles of different surface charge. Moreover, we
have also observed that AuNPs may be uptaken by cells through non-endocytotic pathway as they
easily passed across the PM. This is in accordance with research on Catharanthus roseus protoplast
where multiwalled carbon nanotubes passively passed through the PM without entrapment into the
degrading endosomal organelles [84].

4. Materials and Methods

4.1. Characterisation of Gold Nanoparticles

AuNPs (5 ± 2 nm) were obtained from nanoComposix Europe, Prague, Czech Republic.
AuNPs surface was modified by: 1/polyethylene glycol (PEG) that neutralizes charge, 2/branched
polyethyleneimine (BPEI) containing the amino groups that cause the formation of (+) AuNPs and
3/citrate that cause formation of the (−) AuNPs. All solutions of AuNPs were verified in HRTEM
before starting the experiments (Figure 8A–C).
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4.2. Arabidopsis in Hydroponic Culture

Arabidopsis thaliana (L.) Heynh ecotype ‘Columbia’ seeds were surface sterilized by immersion
in 20% sodium hypochlorite, then kept at 4 ◦C in sterile water for three days for synchronized
germination. The hydroponic culture was conducted as described previously [85] with some
modifications. Material for growing plants contained: a liquid medium container (plastic box covered
with a plate with holes) and a seed-holders (cut off the upper part of the 0.8 mL eppendorfs, 5 mm
length, they fit into holes in the container). Seed-holders were filled with 0.8% agar enriched with 1

2
(half-strength) MS medium (Murashige and Skoog) [86] (pH = 5.8). Seeds were immersed in 0.2 % agar
and placed on agar in seed-holders. The container was filled with 1

2 MS liquid medium and the bottom
of seed holders was dipped into the nutrient solution. The seeds were cultivated for 7 days only in 1

2
MS medium. After 7 days, seedlings were transferred to the different types of AuNPs solutions (neutral,
positively and negatively charged) at concentration 25 µg/mL (diluted in 1

2 MS solution) for next
7 days. The solutions of NPs were placed in the 1.5 mL eppendorfs and the holders with seedlings were
placed on their lids. Then, they all were placed in the container with appropriate holes. The container
was filled with water and covered with a perforated film to provide moisture. Seedlings were grown in
a growth chamber at 20–23 ◦C, with a 16-h light/8-h dark cycle. Samples were fixed mechanically with
the agarose method for obtaining straight roots [87]. First, whole seedlings were prefixed in 50 mM
cacodylate buffer (Serva, Heidelberg, Germany; pH 7.0) containing 3% glutaraldehyde (Sigma-Aldrich,
St. Louis, MO, USA) and 0.5% paraformaldehyde (Polysciences, Eppelheim, Germany) for two hours
followed by washing three times in cacodylate buffer. Next, roots were encesed in 0.6% low melting
temperature SeaPlaque agarose (Lonza, Basel, Switzerland) according to Wu et al. [87] and incubated
in fresh fixative overnight at 4 ◦C. Roots were washed three times in cacodylate buffer and stained with
0.5% ruthenium red in cacodylate buffer for three hours. After washing in cacodylate buffer, samples
were post-fixated in 1% osmium tetraoxide (Serva, Heidelberg, Germany) for 2 h at room temperature,
rinsed three times in cacodylate buffer, dehydrated in graded ethanol series and gradually embedded
in Epon resin (Poly/Bed 812; Polysciences, Eppelheim, Germany). Ultrathin longitudinal sections of
70 nm were cut with the use of the Leica EM UC6 ultramicrotome and collected onto carbon-coated
copper grids (200 mesh, Electron Microscopy Science, Hatfield, PA, USA). Samples were stained with a
uranyl acetate (Polysciences) and lead citrate agents [14] (Sigma-Aldrich, St. Louis, MO, USA) and
analysed in a Jeol JEM-3010 HRTEM (300 kV) equipped with an EDS (Energy Dispersive Spectrometry,
IXRF Systems Inc., Austin, TX, USA) spectrometer and a 2 k × 2 k Orius 833 SC200D CCD camera
(Gatan, Pleasanton, CA, USA).

For histological analysis 1.5 µm longitudinal sections were cut and stained with Periodic Acid
Schiff’s agent and counterstained with Toluidine blue (O’Brien and McCully, 1981).

4.3. Protoplast Culture

Sterile seeds of Arabidopsis Col-0 were placed on a medium containing 1
2 MS, 1% sucrose and

0.8% agar in sterile glass containers [88]. Leaves of 4- to 5-week-old sterile plants were taken for
protoplast isolation. Protoplasts were prepared as previously described [89]. In brief, the sterile leaves
were cut on 0.5–1 mm strips and were digested in enzyme solution [about 20 leaves for 10 mL of
enzyme solution which contained: 1–1.5% cellulose R10 (Duchefa, Haarlem, the Netherlands); 0.2–0.4%
macerozyme R10 (Duchefa, Haarlem, the Netherlands); 0.4 M mannitol; 20 mM KCl, 20 mM MES
buffer (2-[N-morpholino]ethanesulfonic acid), pH = 5.7; 10 mM CaCl2]. The tissues were infiltrated
in a vacuum in the dark, next digestion was continued for 3 h in the dark, without shaking at room
temperature. The final step of the release of protoplasts was shaking at 80 rpm for 3 min. After cell
wall digestion, protoplast suspension was filtered through a 75 µm nylon mesh to separate protoplasts
from undigested tissue. Following by centrifugation (centrifuge MPW-380R) pelleted protoplasts were
re-suspended by gentle shaking in 10 mL of W5 solution (washing solution; 154 mM NaCl; 125 mM
CaCl2; 5 mM KCl2; 2 mM MES, pH 5.7). Washing was repeated two more times. Freshly isolated
protoplast were re-suspended in culture medium [B5-Gamborg’s solution, 0.4 M glucose, and 1 mg/L
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2,4-dichlorophenoxyacetic acid, 0.5 mg/L 6-benzylaminopurine [88]] enriched with different types
of AuNPs at concentration 10 µg/mL (the dose of AuNPs has been selected based on the viability of
protoplast that were subjected to different NPs concentrations). The incubation of protoplasts with
nanoparticles and the control without addition of AuNPs lasted for 1 h at 26 ◦C in the dark (about
1 × 105 protoplasts per sample). After washing protoplasts two times in the culture medium, they were
embedded in 1.2% SeaPlaque agarose as was described previously [90]. After agarose solidification,
samples were fixed overnight at 4 ◦C in 2% glutaraldehyde in the culture medium (pH 6.8), postfixed
with osmium tetroxide for 3 h and next dehydrated, infiltrated and subsequently embedded in Epon
resin. For ultrastructural analysis ultrathin sections, 70 nm thick, were cut with the use of Leica EM
UC6 ultramicrotome and placed on grids with carbon film (200 mesh). Next, sections were stained
with uranyl acetate and lead citrate agents. The samples were analysed in a HRTEM Jeol JEM-3010
(300 kV) equipped with EDS spectrometer and Gatan 2k × 2k Orius TM 833 SC200D CCD camera.

Cell viability was assessed by staining protoplasts with fluorescein diacetate (FDA; Sigma-Aldrich,
St. Louis, MO, USA) before fixation according to Anthony et al. [91] and Skálová et al. [92] (Figure 9).
A stock solution that was prepared in acetone (5 mg/mL) was dissolved in culture medium (0.5 mL
per 24.5 mL) in order to obtain the FDA working solution. The viability of freshly isolated protoplast
was approximately 69% however after one hour of treatment, it was approximately 60%, 53% and 48%
for (−) AuNPs, neutral AuNPs and (+) AuNPs, respectively. Samples were observed by Nikon Eclipse
Ni-U fluorescence microscope equipped with a Nikon Digital DS-Fi1-U3 camera with corresponding
software (Nikon, Tokyo, Japan).
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4.4. Data Analysis

Measurements of the meristematic zone length, cell diameter, thickness of the cell wall and width
of periplasmic space were carried out using ImageJ software (version 1.49; http://imagej.nih.gov/).
For the measurements of the MZ length, the border between the quiescent centre and the TZ (indicating
the position of the first elongated cortex cell) was measured as described previously [93]. At least
10 roots were subjected to this analysis. The statistical Student’s t-test was applied to compare the
radial diameter of the cortical cells. It was measured from five cells above MZ (for AuNPs treated
roots only root from Figure 3E2 was subjected to the analysis, for the control cells from three roots
were measured). The periplasmic space width and cell wall thickness were measured along the MZ
from at least two roots. Differences between means were compared using Dunnett’s test implemented
in the Statistica v.12 software.
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5. Conclusions

Taking together the obtained results we can conclude that:
(1) A different surface charge of AuNPs influence Arabidopsis root development, which has been

confirmed on the histological and ultrastructural level.
(2) The cell wall of Arabidopsis rhizodermis is an impermeable barrier for AuNP penetration

regardless of the surface charge of particles.
(3) Positively and negatively charged AuNPs enter through the plasma membrane, which was

confirmed by the experiment on protoplast culture. The results suggest that the pathway of a defence
system that leads to immobilization of AuNPs varies depending on the surface charge.
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Abbreviations

AuNPs gold nanoparticles
(+) AuNPs positively charged gold nanoparticles
(−) AuNPs negatively charged gold nanoparticles
DZ differentiation zone
ER endoplasmic reticulum
EZ elongation zone
FDA fluorescein diacetate
HRTEM high-resolution transmission electron microscope
MS Murashige and Skoog medium
MZ meristematic zone
NMs nanomaterials
NPs nanoparticles
PEG polyethylene glycol
PM plasma membrane
TZ transition zone
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