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Abstract

Human herpes simplex virus (HSV) is a ubiquitous human pathogen that establishes a lifelong latent infection and
is associated with mucocutaneous lesions. In multicellular organisms, cell death is a crucial host defense mechanism
that eliminates pathogen-infected cells. Apoptosis is a well-defined form of programmed cell death executed by a
group of cysteine proteases, called caspases. Studies have shown that HSV has evolved strategies to counteract
caspase activation and apoptosis by encoding anti-apoptotic viral proteins such as gD, gJ, Us3, LAT, and the
ribonucleotide reductase large subunit (R1). Recently, necroptosis has been identified as a regulated form of
necrosis that can be invoked in the absence of caspase activity. Receptor-interacting kinase 3 (RIP3 or RIPK3) has
emerged as a central signaling molecule in necroptosis; it is activated via interaction with other RIP homotypic
interaction motif (RHIM)-containing proteins such as RIP1 (or RIPK1). There is increasing evidence that HSV R1
manipulates necroptosis via the RHIM-dependent inactivation or activation ofRIP3 in a species-specific manner. This
review summarizes the current understanding of the interplay between HSV infection and cell death pathways,
with an emphasis on apoptosis and necroptosis.
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Background
Herpes simplex virus(HSV) is a ubiquitous human
pathogen from the alpha-herpesvirinae subfamily [1].
There are two serotypes of HSV: HSV type 1 (HSV-1)
and HSV type 2(HSV-2). It is a well-documented fact
that the seropositivity rates for HSV-1 and HSV-2 in the
general adult population are around 90 % and 25 %,
respectively. HSV-1 is primarily associated with oral-labial
lesions, whereas HSV-2 is the main cause of genital herpes
[1, 2]. Rarely, severe infection of HSV-1 leads to fatal
sporadic encephalitis [3]. HSV contains a large double-
stranded DNA genome of around 150 K base pairs. There
is around 83 % sequence homology of the protein-coding
regions between HSV-1 and HSV-2 [4]. Therefore, HSV-1
and HSV-2 exhibit numerous biological similarities.

Cells have an innate capacity to activate effective anti-
viral countermeasures that can limit viral replication and
viral dissemination. Among these antiviral responses,
cell death is a common host defense mechanism against
viral infection that eliminates virus-infected cells before
the production of progeny virions. As would be
expected, viruses tend to develop an ability to evade
cell-death-based defenses; this evasion ability is generally
viewed as beneficial to viral infection and pathogenesis
[5]. It has been shown that HSV can establish a latent
infection in the human peripheral nervous system for
the entire life of the host. This infection can reactivate
and trigger recurrent disease [6]. A growing body of evi-
dence suggests that both HSV-1 and HSV-2 have
evolved various strategies to manipulate host cell death
signaling pathways, particularly the apoptosis and
necroptosis pathways.
Apoptosis is a prevalent form of programmed cell

death. Apoptosis has been shown to be vital for develop-
ment and tissue homeostasis in multicellular organisms.
The apoptotic cell displays characteristic morphological
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features including membrane blebbing, chromatin
condensation, intra nucleosomal DNA fragmentation,
and the formation of apoptotic bodies [7, 8]. Apoptosis
is executed by a specific family of cysteine proteases,
known as caspases [9]. HSV, like many other pathogenic
viruses, encodes anti-apoptotic viral proteins including
gD, gJ, Us3, latency-associated transcript (LAT) and
ribonucleotide reductase large subunit (R1) to interfere
with caspase activation [10, 11].
Necroptosis is morphologically characterized by mem-

brane rupture and organelle swelling. It was traditionally
thought to be an unregulated form of cell death caused
by accidental physicochemical stresses. Recently, necrop-
tosis has been identified as a regulated form of necrosis;
this pathway can be activated in the absence of caspase
activity [12]. Necroptosis is driven by the activation of
receptor-interacting kinase 3(RIP3 or RIPK3) [13–15].
The RHIM domain of RIP3 is essential for its activation,
acting to receive upstream signals through RHIM-
dependent interactions [13, 14]. Interestingly, the viral
M45-encoded RHIM-containing viral inhibitor of RIP
activation protein (vIRA) in murine cytomegalovirus
(MCMV), a herpesvirus from the beta-herpesvirinae
subfamily, has been shown to prevent the activation of
RIP3 [16, 17]. vIRA disrupts the RHIM-dependent inter-
action between RIP3 and the DNA-induced activator of
interferon protein (DAI) [16, 17]. More recently, mul-
tiple studies have revealed that HSV R1 is capable of
manipulating necroptosis signaling through RHIM-
dependent modulation of RIP3 [18–21].
In this review, we summarize the current knowledge

about the molecular mechanisms of apoptosis and
necroptosis, and discuss how HSV manipulates these
major cell death signaling pathways.

Apoptosis signaling
Apoptosis can be induced by a variety of stimuli through
the activation of either cell surface death receptors (the
‘extrinsic pathway’) or mitochondrial effectors (the
‘intrinsic pathway’) (Fig. 1). The extrinsic apoptosis
pathway is initiated through the binding of death ligands
of the tumor necrosis factor (TNF) superfamily of cyto-
kines, including TNFα, the TNF-related apoptosis-
inducing ligand (TRAIL), and the CD95 (APO-1/Fas)
ligand to their respective receptors, TNFR1, DR4/5, and
Fas [22, 23]. As one example, the bingding of TNFα to
TNFR1 promotes the assembly of a membrane signaling
complex called Complex I that is composed of TNFR1-
associated death domain protein (TRADD), TNFR-
associated factor 2 (TRAF2), RIP1, and cellular inhibi-
tors of apoptosis (cIAPs) [24]. Complex I functions to
enable the nuclear translocation of the nuclear factor-κB
(NF-κB), thereby activating the NF-κB signaling path-
way. Activated NF-κB triggers the expression of anti-

apoptotic genes, including genes encoding members of
the cellular FLICE-inhibitory protein (cFILP) family [25],
genes of the anti-apoptotic Bcl-2 family [26, 27], and
genes of the inhibitor of apoptosis protein (IAP) family
[28]. During apoptosis, Complex I eventually triggers
formation of a signaling complex (termed Complex II)
in the cytosol that is comprised of Fas-associated death
domain (FADD), RIP1, and pro-caspase-8 [29]. This
process results in the cleavage and activation of caspase-
8 [29]. The activated caspase-8 in turn cleaves and acti-
vates downstream executioner caspases such as caspase-
3 and caspase-7; or, alternatively, activated caspase-8 en-
gages the intrinsic apoptosis pathway via cleavage of Bid
to form tBid [30]. The extrinsic apoptosis pathway can
be negatively regulated by IAPs and cFLIP. The IAP
family proteins such as XIAP, cIAP1, and cIAP2 have
been shown to bind caspases to block their activation
[31]. cFLIP is highly homologous to pro-caspase-8 and
thus has the ability to form a heterodimer with pro-
caspase-8. This heterodimerization results in the inhib-
ition of pro-caspase-8 activation [32].
In contrast, the intrinsic apoptosis pathway is initiated

by intrinsic stimuli through mitochondrial signaling [33].
Upon apoptotic stimuli, mitochondrial outer-membrane
permeabilization is induced. This triggers the release of
cytochrome c from mitochondria to the cytoplasm.
Subsequently, cytochrome c associates with apoptotic
protease activating facter-1(Apaf-1) and pro-caspase-9 to
form a protein complex termed the apoptosome. The
formation of the apoptosome results in the activation of
caspase-9 [34]. As with caspase-8, activated caspase-9
triggers a cascade of executioner caspases, leading to
apoptosis [33]. The intrinsic apoptosis pathway is tightly
regulated by the members of the Bcl-2 protein family,
which can be divided into the anti-apoptotic Bcl-2 family
members including Bcl-2, Bcl-xL, Mcl-1, and the pro-
apoptotic Bcl-2 family members including Bid, Bax, and
Bak [35].

Modulation of apoptosis by HSV
Apoptosis is currently regarded as a critical cellular
defense mechanism against viral invasion [10, 36]. Given
that the elimination of infected cells via apoptosis limits
viral replication and spread, it is not surprising that HSV
has evolved apoptosis evasion strategies. Emerging
evidence has established that HSV encodes anti-
apoptotic viral proteins to subvert apoptosis (Fig. 1). The
immediate-early genes including ICP4, ICP27, and
ICP24 are capable of inhibiting apoptosis during HSV
infection. We know this because HSV recombinant
viruses lacking each of these genes have an increased
ability to initiate apoptosis compared to wild-type
viruses [37–39]. Loss of either ICP4 or ICP27 also atten-
uates expression of early and late viral gene products,
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demonstrating that ICP4 and ICP27 are regulatory
proteins in HSV [40, 41]. The N-terminal region of
ICP27 is important for RNA binding and nuclear
localization, and its C-terminal region is essential for the
expression of early and late viral gene products. It has
been demonstrated that the C-terminal region of ICP27,
but not its N-terminal region, is required for the preven-
tion of apoptosis during HSV infection [42]. Therefore,

ICP27 likely has an indirect role in inhibiting apoptosis
through enhancing the expression of early and late anti-
apoptotic viral gene products.
Numerous studies have shown that early gene products,

including Glycoprotein D (gD), Us3 and R1, are able to
suppress apoptosis [43–46]. HSV strains that lacks gD
exhibit a reduced ability to block apoptosis, while comple-
mentation with re-expression of gD restores the apoptotic

Fig. 1 HSV modulates apoptosis signaling. Apoptosis is activated through both extrinsic and intrinsic pathways. In the extrinsic pathway, the ligation
of a death receptor (e.g. tumor necrosis factor receptor-1; TNFR1) by its ligand promotes the assembly of the membrane-associated Complex I, which
is composed of TRADD, TRAF2, RIP1, and cIAPs. This complex can activate NF-κB that initiates the transcription of some anti-apoptosis genes, such as
cFLIP, IAPs and anti-apoptotic Bcl-2 family. During apoptosis, Complex I eventually triggers formation of Complex II, which is composed of FADD, RIP1,
and pro-caspase-8, and leads to the activation of caspase-8. In the intrinsic pathway, cytochrome c is released from mitochondria to the cytoplasm,
causing the formation of the apoptosome with Apaf-1 and pro-caspase-9, resulting in the activation of caspase-9. Activated caspase-8 and caspase-9 in
turn cleave and activate downstream executioner caspases such as caspase-3 and caspase-7 for the execution of apoptosis. Activated caspase-8 also
can engage the intrinsic pathway via cleavage of Bid to form tBid. HSV encodes anti-apoptotic viral proteins to subvert apoptotic signaling. Us3 can
block the intrinsic pathway while R1 and LAT prevent the extrinsic pathway. gJ and LAT blocks both the intrinsic and the extrinsic pathways. gD
activates NF-κB to enhancing the expression of anti-apoptotic genes. The regulatory proteins ICP4, ICP24 and ICP27 may indirectly inhibit apoptosis by
promoting the production of later anti-apoptotic viral gene products. UL14 has HSP-like functions that may block caspases activation and apoptosis.
Conversely, ICP0 promotes caspase activation and apoptosis
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phenotype of a gD-deficient virus [44]. One known gD
receptors is herpes virus entry mediator (HVEM/
TNFRSF14), which is a member of the TNF receptor
family, and is capable of activating the NF-κB signaling
pathway [47]. It has been shown that gD-mediated inhib-
ition of Fas-induced apoptosis requires NF-κB activation
to promote expression of anti-apoptotic genes [48]. Us3, a
serine/threonine kinase, can affect intrinsic apoptosis
signaling, as overexpression of Us3 inhibits cytochrome c
release; this also inhibits caspase-3 activation in cells
infected with ICP4-deficient HSV-1 [49]. Further Us3 has
been shown to interact with programmed cell death
protein 4 (PDCD4), and knockdown of PDCD4 can block
apoptosis induced by ICP4-deficient HSV-1 [50]. In
addition, some studies have shown that Us3 is able to
phosphorylate the pro-apoptotic proteins Bad and Bid to
block their function in promoting apoptosis [51–53]. The
R1 proteins ICP6 and ICP10, have been well characterized
as viral inhibitors of apoptosis. Both ICP6 and ICP10 con-
tain an N-terminal RHIM-like domain [54] and a C-
terminal ribonucleotide reductase (RNR) domain [55].
Despite having RNR activity, ICP6 is not required for
HSV-1 growth or DNA replication in dividing cells [56].
Interestingly, cells infected with the HSV ICP6 deletion
mutant were sensitive to poly(I:C)-induced apoptosis,
which requires receptor-interacting protein 1 (RIP1) and
TIR-domain-containing adapter-inducing interferon β
(TRIF) [57]. The association of RIP1 and TRIF depends
on the RHIM domains of both proteins. Of note, HSV R1
is able to block RHIM-dependent interaction between
RIP1 and TRIF; it is also able to block apoptosis triggered
by TRIF or RIP1 overexpression [57]. Moreover, expres-
sion of ICP6 or ICP10 provides protection against TNFα-
and FasL-induced apoptosis [46, 58–61]. The RNR
domain of HSV R1 can directly bind to the caspase-8
death effector domain and prevent caspase-8 activation,
leading to suppression of extrinsic apoptosis signaling
[46, 58–61]. It has been shown that ICP10 contains a
serine–threonine protein kinase (PK) domain at its N-
terminus [62]. The functional activity of PK is required for
ICP10-mediated prevention of neuronal apoptosis, both
incultured cells and in an in vivo model of N-methyl-D-
aspartate (NMDA)-induced excitotoxicity [63, 64]. In the
late phases of HSV replication, glycoprotein J is encoded
by Us5. Deletion of gJ in both HSV-1 and HSV-2 leads to
defects in inhibition of caspase activation in Fas-or UV-
induced apoptosis [65]. Expression of gJ is able to inhibit
Fas- or UV-induced activation of caspases-3, 6, 8, and 9
[65]. In addition to inhibiting Fas-mediated apoptosis, gJ
can protect T lymphocytes against grB-mediated apoptosis
[65]. The late gene UL14 product has been shown to in-
hibit apoptosis [66]. An HSV-1 UL14 protein deletion
virus strain exerted decreased suppression of apoptosis
compared to a rescued virus strain. UL14 has heat shock

protein(HSP)-like functions that may play a role in apop-
tosis inhibition, as HSPs such as HSP70 and HSP27 are
known to block caspase activation and apoptosis [67–69].
In addition, the latency-associated transcript (LAT)
has been shown to protect neuronal cells against
apoptosis, both in cultured cells and in in vivo animal
models of HSV-1 latency [70–73]. Expression of LAT
is able to inhibit caspase-8- and caspase-9-induced
apoptosis, thereby interfering with both the extrinsic
and the intrinsic apoptosis pathways [70, 73]. Such an
inhibitory effect of LAT on apoptosis promotes neur-
onal survival in the latency-reactivation cycle and
thus enhances spontaneous reactivation.
Although HSV has developed various strategies to

interfere with apoptosis by encoding multiple anti-
apoptotic viral proteins, the viral immediate-early ICP0
gene product has actually been identified as an apoptotic
inducer during HSV-1 infection [74]. Wild-type HSV-1
infection is able to trigger apoptosis in the presence of
the translational inhibitor cycloheximide (CHX), while
the recombinant virus HSV-1(d109) that has deletions
for all five α/IE genes fails to induce apoptosis [75, 76].
Deleting ICP0, but not ICP4 or ICP22, reduces the abil-
ity of HSV-1 to trigger apoptosis in the presence of
CHX [74]. Moreover, combinant virus HSV-1 producing
ICP0 is sufficient to trigger caspase-3 activation and
apoptosis during viral infection [74]. It is conceivable
that HSV-1 induces apoptosis, but then prevents the
lethal effect of apoptosis on infected cells by producing
anti-apoptotic viral proteins. These findings raise the
possibility that HSV-1 may benefit from ICP0-mediated
activation of apoptotic signaling during infection. How-
ever, this potentially beneficial function has not been
fully elucidated.

Necroptosis signaling
Necroptosis can be activated by the TNF family death
receptors, Toll-like receptors, and interferon receptors
[77–79] (Fig. 2). The most extensively-studied necropto-
sis pathway is the one induced by the cytokine TNFα via
the activation of TNF receptor 1(TNFR1). When TNFα
binds to TNFR1, RIP1 is recruited to the TNFR1
complex (Complex I) and becomes ubiquitinated [77].
Cylindromatosis (CYLD) is a deubiquitylating enzyme
that can remove the polyubiquitin chain from RIP1 [80].
Deubiquitination of RIP1 by CYLD triggers the disasso-
ciation of RIP1from TNFR1 and the subsequent forma-
tion of Complex II, which is comprised of FADD, RIP1,
and caspase-8, leading to caspase-8 activation and
apoptosis [29]. When caspase-8 activity is inhibited by
chemical or viral inhibitors, TNF-induced apoptosis
switches to necroptosis. In this process, RIP1 interacts with
RIP3 to form a protein complex, termed a necrosome,
through the RHIM domains of both proteins [13, 14].
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Necrosome formation leads to the phosphorylation
and activation of RIP3. Subsequently, the activated
RIP3 phosphorylates its substrate MLKL [81, 82].
Upon phosphorylation, MLKL oligomerizes and trans-
locates to the plasma membrane, eventually leading to
necroptosis [83–85].

In addition, DAI and TRIF have been shown to acti-
vate RIP3 in the necroptosis pathways that are initiated,
respectively, by M45/vIRA mutant MCMV and the acti-
vation of TLR3/4 [16, 78]. Notably, TRIF and DAI are
able to mediate RIP3-dependent necroptosis independ-
ent of RIP1 [16, 78].

Fig. 2 Necroptosis signaling pathways. Necroptosis can be induced through multiple signaling pathways that converge on RIP3. RIP3 is activated
through interaction with a RHIM-containing protein in the following pathways: RIP1 (TNF family death receptors and type I IFNRs); TRIF (TLR3/4);
DAI (M45/vIRA) mutant MCMV infection); HSV R1 (HSV infection in the mouse cells). Activated RIP3 phosphorylates its substrate MLKL and this
event drives MLKL oligomerization and translocation to the plasma membrane, leading to necroptosis

Fig. 3 HSV modulates necroptosis signaling. HSV R1 can interact with RIP1 and RIP3 via their RHIM domains. In the natural human host, HSV R1
binding to RIP3 or/and RIP1 prevents the formation of the RIP1- RIP3 necrosome and also prevents the activation of RIP3. This effect counteracts
necroptosis and promotes cell survival during HSV infection and thus facilitates efficient viral replication. In contrast, the association of R1 with
RIP3, in the non-natural mouse host, drives the activation of RIP3 and necroptosis of infected cells, thereby limiting viral replication
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Modulation of necroptosis by HSV
When caspase activity is impaired, necroptosis can serve
as an alternate form of cell death to limit viral replica-
tion. Therefore, it will be interesting to see whether HSV
has evolved strategies to subvert necroptosis for its
sustainable replication. Intriguingly, recent studies have
revealed that both HSV-1 and HSV-2 infection attenu-
ated TNF-induced necroptosis in human cells. The
expression of HSV-1 ICP6 or HSV-2 ICP10 is sufficient
to disrupt TNF-induced necroptosis of human cells
[20, 21]. The RHIM domains of ICP6 and ICP10 are
required for their association with RIP1 or RIP3 [18].
Interaction between HSV R1 and RIP1 or RIP3 pre-
vents the formation of the RIP1-RIP3 necrosome as
well as the activation of RIP3 [20]. Notably, the
RHIM domains of ICP6 and ICP10 are essential for
their suppression capacity of RIP3 and necroptosis in
human cells [20]. In addition to its role in inhibiting
caspase-8-dependent apoptosis, the RNR domain of
HSV R1 is required for the prevention of necroptosis
in human cells [20]. Thus, HSV has an evolved a
strategy to counteract the necroptosis response in hu-
man hosts through the HSV R1-mediated inactivation
of RIP3.
Although HSV R1 exerts a RHIM competitor function

to evade necroptosis in human cells [20, 21], both HSV-
1and HSV-2 infection efficiently activate RIP3-dependent
necroptosis in mouse cells [18, 19] (Fig. 3). This activated
necroptosis pathway that follows HSV infection occurs in-
dependent of TNFR, TLR3, and DAI [18]. Strikingly, an
ICP6 deletion mutant HSV-1 strain fails to trigger efficient
necrotposis compared to the wild-type virus strain.
Introduction of ICP6 into mouse cells is able to trigger
RIP3-dependent necroptosis in a RHIM-dependent man-
ner [18, 19]. These findings reveal an opposite impact of
HSV R1 on necroptosis in mouse cells versus human cells.
In mouse cells, induction of RIP3-dependent necroptosis
leads to restriction of viral replication. Moreover, loss of
RIP3 in mouse results in increased HSV-1 viral titers and
mortality [18, 19]. Therefore, RIP3-dependent necroptosis
acts as a crucial host defense mechanism to limit HSV
replication in mouse, a non-natural host.
The species-specific modulation of necroptosis by

HSV is consistent with the fact that humans are the
natural host for HSV. In human cells, HSV R1 behaves
like the RHIM-containing MCMV viral protein vIRA,
which also has the ability to disrupt the RHIM-
dependent activation of RIP3 [16]. Without vIRA,
MCMV infection activates necroptosis through DAI-
mediated activation of RIP3 in its natural mouse host.
Thus, vIRA is required for MCMV replication by pre-
venting the RHIM-dependent interaction between RIP3
and DAI in infected cells [16]. Additionally, some other
herpes viral proteins, including the R45 and E45

proteins, contain a RHIM domain. It will be interesting
to evaluate their impacts on necroptosis in natural
and non-natural hosts. These studies will enhance our
knowledge of pathogen-host interactions and deepen
our understanding of the pathogenic mechanisms of
infectious diseases.

Conclusion
Apoptosis and necroptosis have been identified as
critically-important host defense mechanisms contribut-
ing to the elimination of pathogen-infected cells. HSV
has evolved various strategies to evade these cell death
responses by encoding potent viral inhibitors. Among
these, HSV R1 has been well-characterized as a suppressor
of both caspase-8-induced apoptosis and RIP3-induced
necroptosis in natural human hosts. It is noteworthy that
necroptosis is activated in non-natural mouse host
cells following HSV infection via the RIP3-mediated
recognition of HSV R1. Therefore, it appears that
HSV R1 modulates necroptosis via the RHIM-
dependent activation or suppression of RIP3 signaling
in a species-specific manner. Viral and cellular RHIM
sequences seem to be determinants of whether a pro-
necroptotic or an anti-necroptotic pathway is induced
during HSV infection. Further understanding of the
precise molecular mechanism(s) for this species-
specific modulation of necroptosis by HSV will pro-
vide important insight into the development of novel
therapeutic strategies for preventing the establishment
of the latent HSV infection and viral spread.
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