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ABSTRACT Here, we present the complete chloroplast genome sequence of white
spruce (Picea glauca, genotype WS77111), a coniferous tree widespread in the boreal
forests of North America. This sequence contributes to genomic and phylogenetic
analyses of the Picea genus that are part of ongoing research to understand their
adaptation to environmental stress.

Over tens of millions of years, conifers such as the white spruce (Picea glauca) have
evolved to cope with adverse environmental conditions (1, 2), such as prolonged

drought and increased pressure from forest insect pests (3). Plants have three different
genomes, namely, a nuclear, a mitochondrial, and a plastid (i.e., chloroplast) genome.
In general, chloroplast genomes are derived from the ancestral genomes of the
microbial endosymbiont from which these organelles originated (4). The nuclear ge-
nome of P. glauca (genotype WS77111) was published in 2015 (5).

A P. glauca (genotype WS77111) needle tissue sample was collected in southeastern
Ontario (44°19=48�N, 78°9=0�W; elevation, 250 m). Genomic DNA was extracted from
60 g of tissue by Bio S&T using an organelle exclusion method yielding 300 �g of
high-quality purified nuclear DNA, as previously described (6). The sample was se-
quenced at Canada’s Michael Smith Genome Sciences Centre (GSC). Here, we report on
the assembled and annotated chloroplast genome sequence of this genotype.

To sequence the sample, genomic DNA libraries were constructed according to the
plate-based and paired-end library protocols at the GSC on a Microlab Nimbus liquid-
handling robot (Hamilton, USA). Briefly, 1 �g of genomic DNA was sonicated (Covaris
LE220) in 62.5 �l to 400 bp and purified with PCRClean DX magnetic beads (Aline
Biosciences). Illumina sequencing adapters were ligated overnight at 16°C. Pooled
libraries were sequenced with paired-end 250-bp reads on an Illumina HiSeq 2500
instrument in rapid mode. Using this protocol, four libraries were generated, sequenc-
ing approximately 400 million reads from each one.

To assemble this genome sequence, we generated various random subsamples of
read pairs from one lane of one library (i.e., 42,881,319 read pairs), producing subsets
with 21�, 43�, 88�, 172�, 345�, 711�, 1,219�, and 5,619� coverage of the
chloroplast genome. Each subset was assembled with ABySS v2.1.0 (7) (using the
parameters k � 128 and kc � 3). Due to the large number of chloroplasts per cell,
the chloroplast genome would be sequenced at a very high coverage over a full lane
of data. Therefore, by subsampling the full data set, the coverages of the nuclear and
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mitochondrial genomes were lowered to a level where these sequences do not
assemble well, while the coverage of the chloroplast genome was still sufficient enough
for a high-quality assembly. The 43�, 88�, and 172� subsets produced the best ABySS
assemblies (N50 lengths, 3,692, 1,313, and 949 bp, respectively), as determined by a
QUAST analysis (v5.0.0) (8). For comparison, we used the white spruce admix (PG29)
chloroplast genome (NCBI GenBank accession number NC_028594) (9), the pub-
lished chloroplast genome that is most closely related to the WS77111 genotype.
The use of this admix as a reference was established previously (10), as it is a

FIG 1 Complete chloroplast genome of Picea glauca genotype WS77111. The Picea glauca chloroplast genome was annotated using GeSeq v1.65 (16) and
plotted using OrganellarGenomeDRAW v1.2 (17). The inner gray circle illustrates the G�C content of the genome.

Lin et al.

Volume 8 Issue 23 e00381-19 mra.asm.org 2

https://www.ncbi.nlm.nih.gov/nuccore/NC_028594
https://mra.asm.org


naturally occurring ingress of Picea glauca, Picea engelmannii, and Picea sitchensis
(5). We then performed additional ABySS assemblies with various k and kc param-
eters using these three subsets (k � 96, 112, 128, 144, and 160; kc � 3 and 4). The
assembly with the fewest aligning contigs (n � 14) and fewest misassemblies (43�;
k � 96; kc � 3) was chosen for further scaffolding with the PG29 chloroplast
genome, using LINKS v1.8.5 (11), thereby joining the contigs into one piece. We
then used Sealer v2.1.0 (12) to close the scaffold gaps. To be consistent with
previously published chloroplast genomes when reporting gene annotations, we
adjusted the start position of our assembly using BLAST v.2.7.1 (13) and polished
the final assembly with Pilon v1.22 (14), using BWA v0.1.7 (15) for read alignment.

The complete genotype WS77111 chloroplast genome is 123,421 bp long, with a
G�C content of 38.74%. Using GeSeq v1.65 (16) with several Picea sp. chloroplast
genomes as references (9, 10), we annotated 114 genes, namely, 74 protein-coding,
36 tRNA-coding, and 4 rRNA-coding genes. Five genes (rps12, petB, petD, rpl16, and
psbZ) required manual annotation. The genome map in Fig. 1 was generated using
OrganellarGenomeDRAW v1.2 (17).

The assembly of this new chloroplast genome will enable further analysis of the
phylogeny and genetics of Picea spp.

Data availability. The complete chloroplast genome sequence of Picea glauca,
genotype WS77111, is available in GenBank under accession number MK174379, and
the raw reads are in the SRA under accession numbers SRX525336 and SRR1259605.
The annotations used as references were from Picea abies (GenBank accession number
NC_021456), Picea asperata (GenBank accession number NC_032367), Picea glauca
genotype PG29 (GenBank accession number NC_028594), Picea morrisonicola (GenBank
accession number NC_016069), and Picea sitchensis (GenBank accession numbers
NC_011152 and KU215903).
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