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In modern times, the organizational managements greatly depend on decision-making (DM). DM is considered the man-
agement’s fundamental function that helps the businesses and organizations to accomplish their targets. Several techniques and
processes are proposed for the efficient DM. Sometimes, the situations are unclear and several factors make the process of DM
uncertain. Fuzzy set theory has numerous tools to tackle such tentative and uncertain events.)e complex picture fuzzy set (CPFS)
is a super powerful fuzzy-based structure to cope with the various types of uncertainties. In this article, an innovative DM
algorithm is designed which runs for several types of fuzzy information. In addition, a number of new notions are defined which
act as the building blocks for the proposed algorithm, such as information energy of a CPFS, correlation between CPFSs,
correlation coefficient of CPFSs, matrix of correlation coefficients, and composition of these matrices. Furthermore, some useful
results and properties of the novel definitions have been presented. As an illustration, the proposed algorithm is applied to a
clustering problem where a company intends to classify its products on the basis of features. Moreover, some experiments are
performed for the purpose of comparison. Finally, a comprehensive analysis of the experimental results has been carried out, and
the proposed technique is validated.

1. Introduction

It is believed that management is actually a process of de-
cision-making (DM). Managing writers claim that an or-
ganization accomplishes its long-term and short-term goals
through DM. Basically, the act of choosing or selecting an
action in a number of actions is known as decision. )us,
DM is the process of opting the most suitable course of
action among available choices in order to achieve some
target. )e direction, planning, organizing, control, and
coordination-related matters are solved by DM. Since the
entire managerial process is based on decisions, therefore
DM plays a vital role in the regulation of a business’s

performance. Correct decisions reduce diversities, uncer-
tainties, and complexities of the organizational environ-
ments. Usually, the following steps are involved in the DM
processes to reach deliberate decisions: first, the decision and
its nature are identified by gathering enough related in-
formation. )en, all the possible alternatives are identified.
All of these options are then weighted according to the
evidence and expertise. Next, the best choice is being made
among the available alternatives based on the information
and logical indications. Now, it is the time for action, which
means the implementation of the made decision. Finally, the
decision is being reviewed and concluding remarks are
passed.
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Sighting the complexities and uncertainties in the pro-
cess of modern DM, mathematicians have worked out
different techniques for the purpose. Fuzzy set (FS) theory is
a rich field of mathematics that mainly deals with uncer-
tainty, and its major applications are devoted to DM pro-
cesses. Zadeh [1] conceptualized the FS theory in 1965. It is a
set of entities that possess partial memberships. )ese
memberships are actually fuzzy-valued mappings, which
means real numbers between 0 and 1 inclusive. Later, in
1986, Atanassov [2] modernized the FS and introduced a
structured intuitionistic FS (IFS). )ese modern sets assign
dual functions to their members, known as membership and
nonmembership functions. Both of these mappings are
fuzzy-valued such that their sum does not exceed 1. In 2013,
Cuong and Kreinovich [3] improved the idea of Atanassov
by adding a third function to the existing structure. )ey
introduced the world to the notion of picture FS (PFS),
where the members of a set possess the membership, ab-
stinence, and nonmembership functions. Each of the
mappings is a fuzzy-valuedmapping provided that their sum
is not greater than 1. Yager [4] used FSs for multiple ob-
jective DM, Arfi [5] proposed a linguistic FS approach and
applied the concept in political decision making, and Pro-
danovic and Simonovic [6] compared the FS ranking
methods for DM purposes in the implementation of water
resources. Based on intuitionistic fuzzy information, Chaira
[7] proposed a clustering algorithm with its application to
medical images. Dengfeng and Chuntian [8] applied the IFSs
in pattern recognition. Lin et al. [9] proposed the multi-
criterian DM (MCDM) on the basis of IFSs. Singh and
Kumar [10] extended the idea of MCDM for PFSs. Si et al.
[11] used PFS-based DM in the selection of COVID-19
medications. Van Dinh and )ao [12] applied some mea-
sures of PFSs in multiattribute DM (MADM).

In 2003, the structure of FS was adjusted by Ramot et al.
[13] such that the membership function was replaced by a
complex-valued fuzzy function to propose the edifice of
complex FS (CFS). )e output values of the membership
function in CFS belong to the unit circle in the complex plane.
)e insertion of imaginary numbers let the framework of CFSs
tomodel dual aspects of a single entity, each represented by real
and imaginary numbers.)e real part is said to be an amplitude
term, while the imaginary part is a phase term. After a decade,
in 2012, Alkouri and Salleh [14] came up with the notion of a
complex IFS (CIFS). )e structures of CIFS and IFS are almost
alike. )e only difference is the ranges of functions of mem-
bership and nonmembership, i.e., they are complex-valued
fuzzy mappings. Akram et al. [15] proposed the complex PFS
(CPFS) that generalizes all the predescribed fuzzy structures.
)ese are supreme tools to model three properties of an entity
with respect to some other variable. Yaqoob et al. [16] used
CIFSs in cellular network providers’ corporations. Nasir et al.
[17–19] applied the CFSs, complex fuzzy relations (CFRs), and
their generalizations to cybersecurity and network security.
References [20–22] majorly worked onDMmethods under the
complex fuzzy information.

In statistical problems, the term correlation coefficient is
often used, whose fundamental purpose is to measure the
strength of a relationship among entities. Several

statisticians and mathematicians have researched the subject
of the correlation coefficient. )e correlation coefficients are
widely used in FS theory. Yang and Lin [23] presented the
inclusion and similarity measures for type-2 FS with the
application to clustering analysis, Chen et al. [24] also ap-
plied the correlation coefficients clustering analysis, Xu et al.
[25] gave a clustering algorithm for IFS, Park et al. [26] used
the correlation coefficient in the problems of MADM. Garg
[27] defined the correlation coefficient for PFS and used it in
DM. Some worthwhile research related to decision-making
based on uncertainty through fuzzy theory tools includes the
remarkable works of Akram et al. [28, 29], who have pro-
posed different clustering algorithms. Ganie et al. [30] de-
fined the correlation coefficients of PFS and applied them in
medical diagnosis.

Espying the development of practical applications of
correlation coefficients in the theory of FSs, this research is
ardent to propose some innovative DM techniques based on
correlation coefficients. To this end, the information energy
of a CPFS, the correlation between two CPFSs, and the
correlation coefficient of CPFSs are defined, which act as the
building blocks for the proposed DM algorithm. Further-
more, the matrix of correlation coefficients for more than
one CPFS is established, which is followed by the definitions
of the equivalence matrix and the composition of the matrix
of correlation coefficients. In addition, the α-cutting clas-
sification rules are described. Many interesting properties
and worthwhile results have been proposed for the proposed
definitions. Moreover, the clustering algorithm based on
correlation coefficients of CPFSs is designed. As an illus-
tration, the proposed algorithm is applied to solve the
problem of classifying the set of laptops on the basis of
specifications and features. Several experiments are carried
out to validate the working and supremacy of the proposed
algorithm as compared to the rest of the available techniques
in the literature. Finally, the experimental section ends with
the remarks stating the advantages of proposed method and
the limitations of existing methods. )e proposed methods
can be used in a wide range of problems, and they are capable
of dealing with a large variety of data. )e practicality of the
given methods includes their applications to pattern rec-
ognition as Yang and Yang [31], for example, the pattern
recognition in the construction of buildings and the ma-
terials [32] and medical diagnosis [30]. Moreover, it could be
successfully used to categorize the masks’ types on the basis
of their characteristics, i.e., some are used for dust pre-
vention, others are clinical masks, COVID-19 preventive
masks, and masks made of clothes. In the future, the pro-
posed structures and ideas could be extended to other
generalizations of fuzzy theory, especially the spherical fuzzy
structures that permit the decision-makers to work in a
greater domain as compared to the other frameworks.
Henceforth, it would be worthwhile to cover those regions
with the novel techniques of this paper. )e introduction
section is followed by the preliminaries section, which
comprises some basic definitions such as FS, CFS, IFS, CIFS,
PFS, CPFS, and correlation coefficient of IFSs. )e third
section proposes the correlation coefficients for the CPFSs
along with some results and properties. In Section 4, the
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clustering algorithm based on proposed concepts is
designed. Section 5 is devoted to the application of the
designed algorithm for CPFSs. In Section 6, the experimental
comparisons are carried out, which states the advantages of
proposed structures and disadvantages of other methods.
Finally, Section 7 concludes this research.

2. Preliminaries

In this section, the definitions of some fundamental concepts
are presented, which will be used for the further research.
First, we define the fuzzy set (FS), which was presented by
Zadeh [1].

Definition 1 (see [1]). Let R denote the referential or uni-
versal set. )en an FS denoted by Z is of the form
Z � z, ξ(z): z ∈ R{ }, where the entity ξ(z) is called the
membership function, which assigns each of the elements of
R (i.e., z ∈ R) a fuzzy number (FN) N, i.e., N ∈ [0, 1].

Now, the intuitionistic fuzzy set (IFS) is defined, which
was introduced by Atanassov [2].

Definition 2 (see [2]). Let R denote the referential set. )en
an IFS denoted by Z is of the form
Z � z, ξ(z), η(z): z ∈ R , where the entities ξ(z) and η(z)

are called the membership and nonmembership functions,
respectively, which assign each of the elements of R (i.e.,
z ∈ R) FNs N1 and N2, respectively, given that their sum is
also a FN, i.e., N1, N2 ∈ [0, 1] ∋ N1 + N2 ∈ [0, 1].

Now, the definition of picture fuzzy set (PFS) was given
by Cuong et al. [3] as follows.

Definition 3 (see [3]). Let R denote the referential set.)en a
PFS denoted by Z is of the form
Z � z, ξ(z), α(z), η(z): z ∈ R , where the entities ξ(z),
α(z), and η(z) are called the membership, abstinence, and
nonmembership functions, respectively, which assign each
of the elements of R (i.e., z ∈ R) FNs N1, N2, and N3, re-
spectively, given that their sum is also a FN, i.e.,
N1, N2, N3 ∈ [0, 1] ∋ N1 + N2 + N3 ∈ [0, 1].

Ramot et al. [13] defined the complex fuzzy set (CFS) as
follows.

Definition 4 (see [13]). Let R denote the referential set. )en
a CFS denoted by Z is of the form
Z � z, ξ(z)eρ(z)2πi: z ∈ R , where the entity ξ(z) and ρ(z)

are called the amplitude and phase terms of membership
function, respectively, which assign each of the elements of R

(i.e., z ∈ R) a fuzzy number (FN) N, i.e., N ∈ [0, 1].
Later, Alkouri and Salleh [14] came up with the notion of

a complex IFS (CIFS).

Definition 5 (see [14]). Let R denote the referential set. )en
a CIFS denoted by Z is of the form
Z � z, ξ(z)eρξ(z)2πi, η(z)eρη(z)2πi: z ∈ R , where the entities

ξ(z) and η(z) are called the amplitude terms of membership
and nonmembership functions, respectively, which assign
each of the elements of R (i.e., z ∈ R) FNs N1 and N2,
respectively, given that their sum is also a FN, i.e.,
N1, N2 ∈ [0, 1] ∋ N1 + N2 ∈ [0, 1]. Likewise, the entities
ρξ(z) and ρη(z) are called the phase terms of membership
and nonmembership functions, respectively, which also
assign each of the elements of R (i.e., z ∈ R) FNs N3 and N4,
respectively, given that their sum is also a FN, i.e.,
N3, N4 ∈ [0, 1] ∋ N3 + N4 ∈ [0, 1].

Akram et al. [15] proposed the complex PFS (CPFS) that
generalizes all the predescribed fuzzy structures.

Definition 6 (see [15]). Let R denote the referential set. )en
a CPFS denoted by Z is of the form
Z � z, ξ(z)eρξ(z)2πi, α(z)eρα(z)2πi, η(z)eρη(z)2πi: z ∈ R ,
where the entities ξ(z), α(z) and η(z) are called the am-
plitude terms of membership, abstinence, and nonmem-
bership functions, respectively, which assign each of the
elements of R (i.e., z ∈ R) FNs N1, N2, and N3, respectively,
given that their sum is also a FN, i.e.,
N1, N2, N3 ∈ [0, 1] ∋ N1 + N2 + N3 ∈ [0, 1]. Likewise, the
entities ρξ(z), ρα(z), and ρη(z) are called the phase terms of
membership, abstinence, and nonmembership functions,
respectively, which also assign each of the elements of R (i.e.,
z ∈ R) FNs N4, N5, and N6, respectively, given that their
sum is also a FN, i.e., N4, N5, N6 ∈ [0, 1]

∋ N4 + N5 + N6 ∈ [0, 1].
Figure 1 depicts a summary of generalizations of CPFSs

in the light of above definitions.
Now, the information energy (IE) of an IFS, correlation

of IFSs, and correlation coefficient of IFSs are defined in the
following definitions.

Definition 7 (see [25]). Let Z � z, ξ(z), η(z): z ∈ R  be an
IFS on a referential set R, then its information energy (IE)
denoted by E is calculated by

E(Z) � 
n

k�1
ξ zk( ( 

2
+ η zk( ( 

2
 . (1)

Definition 8 (see [25]). Let Y � y, ξ(y), η(y): y ∈ R  and
Z � z, ξ(z), η(z): z ∈ R  be any IFSs on a referential set R,
then their correlation denoted by Δ is calculated by

Δ(Y, Z) � 
n

k�1
ξ yk(  × ξ zk(  + η yk(  × η zk(  . (2)

Definition 9 (see [25]). Let Y � y, ξ(y), η(y): y ∈ R  and
Z � z, ξ(z), η(z): z ∈ R  be any IFSs on a referential set R,
then their correlation coefficient denoted by ∁ is calculated
by formula (3) or alternatively formula (4):
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∁(Y, Z) �
Δ(Y, Z)

�������������
[E(Y) × E(Z)]

 , (3)

�


n
k�1 ξ yk(  × ξ zk(  + η yk(  × η zk(  

����������������������������������������������


n
k�1 ξ yk( ( 

2
+ η yk( ( 

2
  × 

n
k�1 ξ zk( ( 

2
+ η zk( ( 

2
 

 . (4)

3. Correlation Coefficient for Complex Picture
Fuzzy Sets

)is section is intended to give the formulae to calculate the
IE, correlation, and correlation coefficients for CPFSs.

Definition 10. Let Z � z, ξ(z)eρξ(z)2πi, α(z)eρα(z)2πi,

η(z)eρη(z)2πi: z ∈ R} be a CPFS on a referential set R, then its
information energy (IE) denoted by E is calculated by

E(Z) � 
n

k�1
ξ zk( ( 

2
+ α zk( ( 

2
+ η zk( ( 

2
  + ρξ zk(  

2
+ ρα zk( ( 

2
+ ρη zk(  

2
  . (5)

Definition 11. Let Y � y, ξ(y)eρξ(y)2πi, α(y)eρα(y)2πi,

η(y)eρη(y)2πi: y ∈ R} and Z � z, ξ(z)eρξ(z)2πi, α(z)

eρα(z)2πi, η(z)eρη(z)2πi: z ∈ R} be any CPFSs on a referential
set R, then their correlation denoted by Δ is calculated by

Δ(Y, Z) � 
n

k�1

ξ yk(  × ξ zk(  + α yk(  × α zk(  + η yk(  × η zk( ( +

ρξ yk(  × ρξ zk(  + ρα yk(  × ρα zk(  + ρη yk(  × ρη zk(  
 . (6)

Definition 12. Let Y � y, ξ(y)eρξ(y)2πi, α(y)eρα(y)2πi, η(y)

eρη(y)2πi: y ∈ R} and Z � z, ξ(z)eρξ(z)2πi, α(z)eρα(z)2πi,

η(z)eρη(z)2πi: z ∈ R} be any CPFSs on a referential set R, then
their correlation coefficient denoted by ∁ is calculated by
formula (7) or alternatively formula (8):

Figure 1: CPFSs and their generalizations.
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∁(Y, Z) �
Δ(Y, Z)

�������������
[E(Y) × E(Z)]

 , (7)

�


n
k�1

ξ yk(  × ξ zk(  + α yk(  × α zk(  + η yk(  × η zk( ( +

ρξ yk(  × ρξ zk(  + ρα yk(  × ρα zk(  + ρη yk(  × ρη zk(  
⎡⎣ ⎤⎦

��������������������������������������������������������������������


n
k�1 ξ yk( ( 

2
+ α yk( ( 

2
+ η yk( ( 

2
  + ρξ yk(  

2
+ ρα yk( ( 

2
+ ρη yk(  

2
  ×


n
k�1 ξ zk( ( 

2
+ α zk( ( 

2
+ η zk( ( 

2
  + ρξ zk(  

2
+ ρα zk( ( 

2
+ ρη zk(  

2
  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦





.
(8)

Theorem 1. Let ∁(Y, Z) be the correlation coefficient for
CPFSs Y and Z. .en,

(i) It is symmetric, i.e., ∁(Y, Z) � ∁(Z, Y)

(ii) It is an FN, i.e., 0≤ ∁(Y, Z)≤ 1
(iii) ∁(Y, Z) � 1⇔Y � Z.

Proof

(i) )e substitution of values on both sides and sim-
plification proves the first claim.

(ii) As ∁(Y, Z) is calculated by using the values of
membership, abstinence, and nonmembership
functions of CPFSs Y and Z, therefore ∁(Y, Z)≥ 0.
For the other part of inequality, i.e., ∁(Y, Z)≤ 1,
consider the Δ(Y, Z).

Δ(Y, Z) � 
n

k�1

ξ yk(  × ξ zk(  + α yk(  × α zk(  + η yk(  × η zk( ( +

ρξ yk(  × ρξ zk(  + ρα yk(  × ρα zk(  + ρη yk(  × ρη zk(  
⎡⎢⎣ ⎤⎥⎦

�
ξ y1(  × ξ z1(  + α y1(  × α z1(  + η y1(  × η z1( ( +

ρξ y1(  × ρξ z1(  + ρα y1(  × ρα z1(  + ρη y1(  × ρη z1(  
⎡⎢⎣ ⎤⎥⎦

+
ξ y2(  × ξ z2(  + α y2(  × α z2(  + η y2(  × η z2( ( +

ρξ y2(  × ρξ z2(  + ρα y2(  × ρα z2(  + ρη y2(  × ρη z2(  
⎡⎢⎣ ⎤⎥⎦ + · · ·

+
ξ yn(  × ξ zn(  + α yn(  × α zn(  + η yn(  × η zn( ( +

ρξ yn(  × ρξ zn(  + ρα yn(  × ρα zn(  + ρη yn(  × ρη zn(  
⎡⎢⎣ ⎤⎥⎦.

(9)

According to the statement of Cauchy Schwarz; for
(y1, y2, . . . , yn), (z1, z2, . . . , zn) ∈ Rn, where R is
set of real numbers, imply

����������������������������

y1z1 + y2z2 + y3z3 + . . . + ynzn( 



≤ y
2
1 + y

2
2 + . . . + y

2
n  × z

2
1 + z

2
2 + . . . + z

2
n . (10)

)us, by applying the Cauchy Schwarz inequality to
above stated equation for Δ(Y, Z) implies
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(Δ(Y, Z))
2 ≤

ξ y1( ( ( 
2

+ α y1( ( 
2

+ η y1( ( 
2

+ ρξ y1( ( 
2

+ ρα y1( ( 
2

+ ρη y1( ( 
2

 +

ξ y2( ( 
2

+ α y2( ( 
2

+ η y2( ( 
2

  + ρξ y2( ( 
2

+ ρα y2( ( 
2

+ ρη y2( ( 
2

  + . . . +

ξ yn( ( ( 
2

+ α yn( ( 
2

+ η yn( ( 
2

+ ρξ yn( ( 
2

+ ρα yn( ( 
2

+ ρη yn( ( 
2

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

ξ z1( ( ( 
2

+ α z1( ( 
2

+ η z1( ( 
2

+ ρξ z1( ( 
2

+ ρα z1( ( 
2

+ ρη z1( ( 
2

 +

ξ z2( ( 
2

+ α z2( ( 
2

+ η z2( ( 
2

  + ρξ z2( ( 
2

+ ρα z2( ( 
2

+ ρη z2( ( 
2

  + . . . +

ξ zn( ( ( 
2

+ α zn( ( 
2

+ η zn( ( 
2

+ ρξ zn( ( 
2

+ ρα zn( ( 
2

+ ρη zn( ( 
2

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�


n

k�1
ξ yk( ( 

2
+ α yk( ( 

2
+ η yk( ( 

2
  + ρξ yk(  

2
+ ρα yk( ( 

2
+ ρη yk(  

2
  ×



n

k�1
ξ zk( ( 

2
+ α zk( ( 

2
+ η zk( ( 

2
  + ρξ zk(  

2
+ ρα zk( ( 

2
+ ρη zk(  

2
  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� E(Y) × E(Z)

(11)

)us, (Δ(Y, Z))2 ≤E(Y) × E(Z)⇒(Δ(Y, Z))≤������
E(Y)×


E(Z)⇒((Δ(Y, Z))/

������������
E(Y) × E(Z)


)≤ 1.

Hence, 0≤ ∁(Y, Z)≤ 1.
(iii) For Y � Z⇔ξ(yk) � ξ(zk), α(yk) � α(zk),

η(yk) � η(zk), ρξ(yk) � ρξ(zk), ρα(yk) � ρα(zk)

and ρη(yk) � ρη(zk) where yk, zk ∈ R. )us,
∁(Y, Z) � 1 □

Example 1. Suppose Y and Z are two CPFS on
R � y1, y2, y3, z1, z2, z3  stated as

Y �

y1, 0.3e
2πi(0.1)

, 0.5e
2πi(0.4)

, 0.1e
2πi(0.3)

 ,

y2, 0.4e
2πi(0.3)

, 0.2e
2πi(0.3)

, 0.2e
2πi(0.3)

 ,

y3, 0.2e
2πi(0.4)

, 0.1e
2πi(0.4)

, 0.7e
2πi(0.1)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

Z �

z1, 0.2e
2πi(0.6)

, 0.4e
2πi(0.1)

, 0.3e
2πi(0.2)

 ,

z2, 0.3e
2πi(0.4)

, 0.3e
2πi(0.3)

, 0.4e
2πi(0.1)

 ,

z3, 0.5e
2πi(0.1)

, 0.4e
2πi(0.5)

, 0.1e
2πi(0.3)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(12)

)en by using formula (5), the IE of Y and Z are cal-
culated as

E(Y) � 1.99, (13)

E(Z) � 2.07. (14)

Also, by using formula (6), the correlation of Y and Z is
calculated as

Δ(Y, Z) � 1.43. (15)

Moreover, by using formula (8), the correlation coeffi-
cient of Y and Z is calculated as

∁(Y, Z) � 0.704. (16)

)ere is an alternative way of calculating the correlation
coefficient for CPFSs.

Definition 13. Let Y � y, ξ(y)eρξ(y)2πi, α(y)eρα(y)2πi,

η(y)eρη(y)2πi: y ∈ R} and Z � z, ξ(z)eρξ(z)2πi, α(z)eρα(z)2πi,

η(z)eρη(z)2πi: z ∈ R} be any CPFSs on a referential set R, then
their correlation coefficient denoted by ∁’ is also calculated
by formula (18) or alternatively formula (19):

∁′(Y, Z) �
Δ(Y, Z)

max Δ(Y, Y),Δ(Z, Z){ }
, (17)

�


n
k�1

ξ yk(  × ξ zk(  + α yk(  × α zk(  + η yk(  × η zk( ( +

ρξ yk(  × ρξ zk(  + ρα yk(  × ρα zk(  + ρη yk(  × ρη zk(  
⎡⎣ ⎤⎦

max


n
k�1 ξ yk( ( 

2
+ α yk( ( 

2
+ η yk( ( 

2
  + ρξ yk(  

2
+ ρα yk( ( 

2
+ ρη yk(  

2
  ,


n
k�1 ξ zk( ( 

2
+ α zk( ( 

2
+ η zk( ( 

2
  + ρξ zk(  

2
+ ρα zk( ( 

2
+ ρη zk(  

2
  

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

.
(18)

Now, )eorem 1 is proved using the alternative defi-
nition of correlation coefficient as follows.

Theorem 2. Let ∁′(Y, Z) be the correlation coefficient for
CPFSs Y and Z. .en,
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(i) It is symmetric, i.e., ∁′(Y, Z) � ∁′(Z, Y)

(ii) It is an FN, i.e., 0≤ ∁′(Y, Z)≤ 1
(iii) ∁′(Y, Z) � 1⇔Y � Z.

Proof

(i) )e substitution of values on both sides and sim-
plification proves the first claim.

(ii) Obviously ∁′(Y, Z)≥ 0. By using )eorem 1, the
following is implied:

Δ(Y, Z)≤
���������������
Δ(Y, Y) × Δ(Z, Z)


. (19)

)erefore,

Δ(Y, Z)≤max Δ(Y, Y),Δ(Z, Z){ }. (20)

Hence, ∁′(Y, Z)≤ 1.
(iii) )e proof is straight forward.

As far as the applications and practicality is concerned,
the weight value of an expert’s opinion acts as a crucial part
in problems concerning multiattribute decision-making
(MADM). Each of the attributes carries a particular weight
value. Henceforth, it is essential to develop some weighted
correlation coefficients. A vector of weight values is defined
and denoted by Ω � (ω1,ω2, . . . ,ωn) ∋ ωk ≥ 0 and


n
k�1 ωk � 1, where k ∈ 1, 2, 3, . . . n{ }. □

Definition 14. Let Y � y, ξ(y)eρξ(y)2πi, α(y)eρα(y)2πi,

η(y)eρη(y)2πi: y ∈ R} and Z � z, ξ(z)eρξ(z)2πi, α(z)eρα(z)2πi,

η(z)eρη(z)2πi: z ∈ R} be any CPFSs on a referential set R, then
their weighted correlation coefficient denoted by ∁Ω is
calculated by

∁Ω �


n
k�1 ωk( 

ξ yk(  × ξ zk(  + α yk(  × α zk(  + η yk(  × η zk( ( +

ρξ yk(  × ρξ zk(  + ρα yk(  × ρα zk(  + ρη yk(  × ρη zk(  

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

������������������������������������������������������������������������


n
k�1 ωk(  ξ yk( ( 

2
+ α yk( ( 

2
+ η yk( ( 

2
  + ρξ yk(  

2
+ ρα yk( ( 

2
+ ρη yk(  

2
  ×


n
k�1 ωk(  ξ zk( ( 

2
+ α zk( ( 

2
+ η zk( ( 

2
  + ρξ zk(  

2
+ ρα zk( ( 

2
+ ρη zk(  

2
  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦






.
(21)

Definition 15. Let Y � y, ξ(y)eρξ(y)2πi, α(y)eρα(y)2πi,

η(y)eρη(y)2πi: y ∈ R} and Z � z, ξ(z)eρξ(z)2πi, α(z)eρα(z)2πi,

η(z)eρη(z)2πi: z ∈ R} be any CPFSs on a referential set R, then

their weighted correlation coefficient denoted by ∁Ω′ is also
calculated by

∁Ω′ �


n
k�1 ωk( 

ξ yk(  × ξ zk(  + α yk(  × α zk(  + η yk(  × η zk( ( +

ρξ yk(  × ρξ zk(  + ρα yk(  × ρα zk(  + ρη yk(  × ρη zk(  

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

max


n
k�1 ωk(  ξ yk( ( 

2
+ α yk( ( 

2
+ η yk( ( 

2
  + ρξ yk(  

2
+ ρα yk( ( 

2
+ ρη yk(  

2
  


n
k�1 ωk(  ξ zk( ( 

2
+ α zk( ( 

2
+ η zk( ( 

2
  + ρξ zk(  

2
+ ρα zk( ( 

2
+ ρη zk(  

2
  

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
(22)

Remark 1. ωk � 1/n implies that ∁Ω � ∁ and ∁Ω′ � ∁′.

Theorem 3. Let ∁Ω(Y, Z) be the correlation coefficient for
CPFSs Y and Z. .en,

(i) It is symmetric, i.e., ∁Ω(Y, Z) � ∁Ω(Z, Y)

(ii) It is an FN, i.e., 0≤ ∁Ω(Y, Z)≤ 1
(iii) ∁Ω(Y, Z) � 1⇔Y � Z

Proof. )e proofs are straight forward. □

Theorem 4. Let ∁Ω′(Y, Z) be the correlation coefficient for
CPFSs Y and Z. .en,

(i) It is symmetric, i.e., ∁Ω′(Y, Z) � ∁Ω′(Z, Y)

(ii) It is an FN, i.e., 0≤ ∁Ω′(Y, Z)≤ 1
(iii) ∁Ω′(Y, Z) � 1⇔Y � Z

Proof. )e proofs are straight forward. □

4. Clustering Algorithm for Complex Picture
Fuzzy Numbers

)is section proposes a clustering algorithm for CPFS using
newly defined concepts and formulae. In addition, the
proposed clustering algorithm based on innovative structure
is applied to achieve the solution for a problem involving the
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complex picture fuzzy information. First, some essential
notions are defined.

Definition 16. A matrix M � (Cjk)m×m is said to be the
matrix of correlation coefficients when Zk is the collection of
CPFSs, and Cjk � C(Zj, Zk) denotes the correlation coef-
ficient between (Zj, Zk).

Definition 17. For a matrix of correlation coefficientsM, the
composite matrix is symbolized as (Cc

jk)m×m and defined by

M
2

� M ∘M � C
c
jk 

m×m
� max

l
min Cjl, Clk  . (23)

Theorem 5. Let a, b ∈ N, and Ma,Mb be matrices of cor-
relation coefficients, then their composition matrix is also a
matrix of correlation coefficients, i.e., M � Ma ∘Mb is a
matrix of correlation coefficients.

Definition 18. Let M � (Cjk)m×m denote the matrix of
correlation of coefficients, then M2 � M ∘M⊆M implies
that M is an equivalent matrix of correlation coefficients.
)e following formula defines the equivalent matrix of
correlation of coefficients:

M
2⊆M⇒max

l
min Cjl, Clk  ≤Cjk. (24)

Theorem 6. For a finite natural number a ∈ N, the recurrent
a compositions of a matrix of correlation coefficients M give
an equivalent matrix of correlation coefficients M2a, i.e.,
M⟶M ∘M � M2⟶M2 ∘M2 � M4⟶ . . .Ma ∘
Ma � M2a � M2(a+1).

)e equivalent matrices are similar, and they possess the
same properties and information. )us, in case of M2a �

M2(a+1) for some a ∈ N, M2(a+1) preserves the structure,
information, and meaning of its predecessor matrix M2a.
Since the equivalence matrices preserve the properties, they
are calculated to categorize the attributes under consider-
ation, which is sometimes not possible in contrary scenarios.

Definition 19. Let α ∈ [a, b] for any a, b ∈ [0, 1] ∋ a< b and
M � (Cjk)m×m be the matrix of correlation coefficients, then
an α-cutting matrix ofM is symbolized asMα and defined by

Mα � αCjk 
m×m

� αC Zj, Zk  �
a if Cjk ≤ α

b if Cjk ≥ α
.

⎧⎨

⎩ (25)

Now, the clustering algorithm for CPFSs is presented
and explained in a step-wise manner below.

4.1. Algorithm

Step 1. For a collection of CPFSs Zk, construct the matrix of
correlation coefficientsM � (Cjk)m×m by using Definition 16.

Step 2. )e step targets to achieve the equivalent matrix of
correlation coefficients. If M holds the property, then
proceed to step 3. Otherwise, the process of composition is
repeated until an equivalent matrix of correlation coeffi-
cients is achieved, i.e., M2a � M2(a+1), where α ∈ N.

Step 3. Finally, the α-cutting matrixMα is formulated for
the classification of CPFSs Zk. For the classification the
following rules apply, “If every entry in jth row and
corresponding kth column of α -cutting matrix Mα are
same, then the CPFSs are declared to be of the same
type.”

Figure 2 portrays the process of the proposed clustering
algorithm for CPFSs.

5. Application

In this section, an application of the proposed correlation
coefficients and clustering algorithm for CPFSs is presented.
)e following application demonstrates an illustration of the
proposed method. It can be extended and applied in several
fields of science and business, where an automated and
flawless decision is required. )is method surpasses the
uncertainties, especially in decision-making. In addition, it
also automatically classifies the products/entities based on
person’s priorities.

5.1. Illustrative Example. In this illustration, we present a
situation of laptop systems company who aims to cate-
gorize their computer machines by their specifications
and features. Assume that the set of four laptops is
denoted by Z � Z1, Z2, Z3, Z4 , where each Zk represents
a laptop, for k � 1, 2, 3, 4. Further, the features of interest
are (i) processor, (ii) cost, (iii) battery, (iv) storage, and (v)
build. Say, the set of features is Y � y1, y2, y3, y4, y5 ,
where, yk represents speed, cost, battery, storage, and
build for k � 1, 2, 3, 4 and 5, respectively. Initially, a CPFS
is required for further processes. Henceforth, four dif-
ferent CPFSs are constructed for each laptop Zk with the
elements yk representing the features. )e complex pic-
ture fuzzy numbers are assigned to each feature by the
experts and professionals according to their analysis of
each product. )e process of converting real-world
problem into fuzzy language is called fuzzification. )e
process involves careful and precise analysis of the
problem and its related parameters. A numerical scale for
the translation of data into numeric form is constructed
(see Figure 3). Each degree is assigned a number according
to the scale. Since the information is being translated to
complex picture fuzzy format, keeping the constraints in
mind, the selection of the values for degrees is
interdependent.

Using above fuzzification process, these are the CPFSs
Z1, Z2, Z3, and Z4, given in the following equations:
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Z1 �

y1, 0.2e
2πi(0.2)

, 0.3e
2πi(0.2)

, 0.4e
2πi(0.5)

 , y2, 0.5e
2πi(0.3)

, 0.1e
2πi(0.2)

, 0.2e
2πi(0.1)

 ,

y3, 0.3e
2πi(0.2)

, 0.4e
2πi(0.3)

, 0.2e
2πi(0.4)

 , y4, 0.5e
2πi(0.5)

, 0.1e
2πi(0.1)

, 0.1e
2πi(0.1)

 ,

y5, 0.2e
2πi(0.4)

, 0.2e
2πi(0.1)

, 0.4e
2πi(0.5)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (26)

Z2 �

y1, 0.7e
2πi(0.6)

, 0.2e
2πi(0.2)

, 0.1e
2πi(0.1)

 , y2, 0.3e
2πi(0.6)

, 0.3e
2πi(0.3)

, 0.3e
2πi(0.1)

 ,

y3, 0.6e
2πi(0.6)

, 0.1e
2πi(0.3)

, 0.2e
2πi(0.1)

 , y4, 0.7e
2πi(0.7)

, 0.1e
2πi(0.1)

, 0.1e
2πi(0.1)

 ,

y5, 0.6e
2πi(0.4)

, 0.2e
2πi(0.2)

, 0.2e
2πi(0.3)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (27)

Z3 �

y1, 0.4e
2πi(0.3)

, 0.2e
2πi(0.4)

, 0.3e
2πi(0.2)

 , y2, 0.6e
2πi(0.4)

, 0.2e
2πi(0.3)

, 0.1e
2πi(0.2)

 ,

y3, 0.3e
2πi(0.4)

, 0.2e
2πi(0.4)

, 0.4e
2πi(0.1)

 , y4, 0.6e
2πi(0.5)

, 0.2e
2πi(0.1)

, 0.1e
2πi(0.1)

 ,

y5, 0.7e
2πi(0.6)

, 0.1e
2πi(0.1)

, 0.1e
2πi(0.2)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (28)

Z4 �

y1, 0.8e
2πi(0.7)

, 0.1e
2πi(0.2)

, 0.1e
2πi(0.1)

 , y2, 0.7e
2πi(0.7)

, 0.1e
2πi(0.2)

, 0.2e
2πi(0.1)

 ,

y3, 0.7e
2πi(0.8)

, 0.1e
2πi(0.1)

, 0.1e
2πi(0.1)

 , y4, 0.2e
2πi(0.6)

, 0.2e
2πi(0.1)

, 0.5e
2πi(0.3)

 ,

y5, 0.5e
2πi(0.3)

, 0.2e
2πi(0.3)

, 0.1e
2πi(0.1)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (29)

Start

Define Problem

Analyze the Situation

Model the Problem

Find Correlation Coefficients

Construct the Matrix of Correlation Coefficients

Find Equivalence Matrix

Use α-cutting Classification

End

Figure 2: Flowchart for the proposed clustering algorithm.

[0.0, 0.2] Very Low

Low

Medium

High

Very High

[0.2, 0.4]

[0.4, 0.6]

[0.6, 0.8]

[0.8, 1.0]

Figure 3: A numerical scale for fuzzification.
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Further, a weighted vector for features is defined based
on the priorities. A similar methodology described in Fig-
ure 3 applies for the selection of weight values of weight
vector. )e weight vector is Ω � 0.3, 0.1, 0.3, 0.2, 0.1{ }. )e
weight vector plays an important role, as it describes the
importance of certain properties and features. It actually
depends on the priorities, which leads to a totally different
outcome since the fundamental ingredients are acquired.
Now, by using algorithm 4.1, the stepwise calculations are
carried out. First, the matrix of the correlation coefficients is
constructed, which has been calculated and presented in the
following equation:

M �

1 0.753 0.853 0.641

0.753 1 0.896 0.917

0.853 0.896 1 0.789

0.641 0.916 0.789 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

)e second step focuses on acquiring the equivalence
matrix of correlation coefficients. )us, we calculate the
composite matrix M2 � M ∘M, which is given by

M ∘M �

M
2

�

1 0.853 0.853 0789

0.853 1 0.896 0.917

0.853 0.896 1 0.896

0.789 0.917 0.896 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(31)

Since M2 ≠M, M is not an equivalence matrix of
correlation coefficients. )us, we shall find one by com-
puting repetitive compositions of M.

M
2 ∘M2

� M
4

�

1 0.853 0.853 0.853

0.853 1 0.896 0.917

0.853 0.896 1 0.896

0.853 0.917 0.896 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
4 ∘M4

� M
8

�

1 0.853 0.853 0.853

0.853 1 0.896 0.917

0.853 0.896 1 0.896

0.853 0.917 0.896 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(32)

Hence, M4 is an equivalence matrix, since M4 � M8.
In the final step, the α-cutting matrix Mα is formulated

for the classification of CPFSs Zk.
For α ∈ [0, 0.853], the Mα is calculated to be

Mα( 1 �

0.853 0.853 0.853 0.853

0.853 0.853 0.853 0.853

0.853 0.853 0.853 0.853

0.853 0.853 0.853 0.853

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

For α ∈ [0.853, 0.896], the Mα is calculated to be

Mα( 2 �

0.896 0.853 0.853 0.853

0.853 0.896 0.896 0.896

0.853 0.896 0.896 0.896

0.853 0.896 0.896 0.896

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

For α ∈ [0.896, 0.917], the Mα is calculated to be

Mα( 3 �

0.917 0.896 0.896 0.896

0.896 0.917 0.896 0.917

0.896 0.896 0.917 0.896

0.896 0.917 0.896 0.917

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

For α ∈ [0.917, 1], the Mα is calculated to be

Mα( 4 �

1 0.917 0.917 0.917

0.917 1 0.917 0.917

0.917 0.917 1 0.917

0.917 0.917 0.917 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

All of the possible classifications of CPFSs Zk are given in
Table 1.

In clustering analysis, the classification of each entity
into different types is rare. But it is clear from Table 1 that
each laptop product is classified into different categories by
using the proposed methods based on CPFSs. Henceforth,
the efficacy of the proposed correlation of CPFSs is verified.

6. Experimental Comparison and
Result Analysis

In the section, different experiments shall be performed to
solve the above correlation coefficients problem under
different frameworks such as IFSs, CIFSs, and PFSs. In order
to carry out a fair comparison, the data will be taken from the
previous example without any modifications. Some of the
structures are limited to only membership and nonmem-
bership functions, and others lack phase terms; therefore,
some numbers will be omitted from the data.

6.1. Analysis of Results under IFSs and CIFSs. In this illus-
tration, the same situation of the laptops company is pre-
sented. Since the CIFSs are the generalization of IFSs and the
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former is superior to the latter, the comparison will be
carried out between the generalized structure and the

proposed method. Instead of CPFSs, CIFSs will be used to
solve the problem.)e CIFSs are Z1, Z2, Z3, and Z4, given in
the following equations:

Z1 �

y1, 0.2e
2πi(0.2)

, 0.4e
2πi(0.5)

 , y2, 0.5e
2πi(0.3)

, 0.2e
2πi(0.1)

 ,

y3, 0.3e
2πi(0.2)

, 0.2e
2πi(0.4)

 , y4, 0.5e
2πi(0.5)

, 0.1e
2πi(0.1)

 ,

y5, 0.2e
2πi(0.4)

, 0.4e
2πi(0.5)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (37)

Z2 �

y1, 0.7e
2πi(0.6)

, 0.1e
2πi(0.1)

 , y2, 0.3e
2πi(0.6)

, 0.3e
2πi(0.1)

 ,

y3, 0.6e
2πi(0.6)

, 0.2e
2πi(0.1)

 , y4, 0.7e
2πi(0.7)

, 0.1e
2πi(0.1)

 ,

y5, 0.6e
2πi(0.4)

, 0.2e
2πi(0.3)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (38)

Z3 �

y1, 0.4e
2πi(0.3)

, 0.3e
2πi(0.2)

 , y2, 0.6e
2πi(0.4)

, 0.1e
2πi(0.2)

 ,

y3, 0.3e
2πi(0.4)

, 0.4e
2πi(0.1)

 , y4, 0.6e
2πi(0.5)

, 0.1e
2πi(0.1)

 ,

y5, 0.7e
2πi(0.6)

, 0.1e
2πi(0.2)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (39)

Z4 �

y1, 0.8e
2πi(0.7)

, 0.1e
2πi(0.1)

 , y2, 0.7e
2πi(0.7)

, 0.2e
2πi(0.1)

 ,

y3, 0.7e
2πi(0.8)

, 0.1e
2πi(0.1)

 , y4, 0.2e
2πi(0.6)

, 0.5e
2πi(0.3)

 ,

y5, 0.5e
2πi(0.3)

, 0.1e
2πi(0.1)

 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (40)

)e weight vector remains the same, i.e.,
Ω � 0.3, 0.1, 0.3, 0.2, 0.1{ }. Now, the stepwise calculations
are carried out by using algorithm 4.1. )e matrix of the
correlation coefficients is given by

M �

1 0.751 0.847 0.655

0.751 1 0.906 0.925

0.847 0.906 1 0.816

0.655 0.925 0.816 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Now, in the search for an equivalence matrix of cor-
relation coefficients, compute M2 � M ∘M.

M ∘M � M
2

�

1 0.847 0.847 0.816

0.847 1 0.906 0.925

0.847 0.906 1 0.906

0.816 0.925 0.906 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

Since M2 ≠M, the computation is repeated.

M
2 ∘M2

� M
4

�

1 0.847 0.847 0.847

0.847 1 0.906 0.925

0.847 0.906 1 0.906

0.847 0.925 0.906 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
4 ∘M4

� M
8

�

1 0.847 0.847 0.847

0.847 1 0.906 0.925

0.847 0.906 1 0.906

0.847 0.925 0.906 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(43)

Hence, M4 is an equivalence matrix, since M4 � M8.
In the final step, the α-cutting matrix Mα is formulated

for the classification of CIFSs Zk.
For α ∈ [0, 0.847], Mα is calculated to be

Mα( 1 �

0.847 0.847 0.847 0.847

0.847 0.847 0.847 0.847

0.847 0.847 0.847 0.847
0.847 0.847 0.847 0.847

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

Table 1: )e classification of four sets of laptops on the basis of
proposed correlation coefficients.

α Classification
α ∈ [0, 0.853] Z1, Z2, Z3, Z4 

α ∈ [0.853, 0.896] Z1 , Z2, Z3, Z4 

α ∈ [0.896, 0.917] Z1 , Z3 , Z2, Z4 

α ∈ [0.917, 1] Z1 , Z2 , Z3 , Z4 
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For α ∈ [0.847, 0.906], Mα is calculated to be

Mα( 2 �

0.906 0.847 0.847 0.847

0.847 0.906 0.906 0.906

0.847 0.906 0.906 0.906
0.847 0.906 0.906 0.906

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

For α ∈ [0.906, 0.925], Mα is calculated to be

Mα( 3 �

0.925 0.906 0.906 0.906

0.906 0.925 0.906 0.925

0.906 0.906 0.925 0.906

0.906 0.925 0.906 0.925

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

For α ∈ [0.925, 1], Mα is calculated to be

Mα( 4 �

1 0.925 0.925 0.925

0.925 1 0.925 0.925

0.925 0.925 1 0.925

0.925 0.925 0.925 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

All of the possible classifications of CIFSs Zk are given in
Table 2.

If we tend to solve the problem under the influence of
IFSs through the methods of [25], it would lead to the
following:

Z1 � y1, 0.2, 0.4( , y2, 0.5, 0.2( , y3, 0.3, 0.2( , y4, 0.5, 0.1( , y5, 0.2, 0.4(  ,

Z2 � y1, 0.7, 0.1( , y2, 0.3, 0.3( , y3, 0.6, 0.2( , y4, 0.7, 0.1( , y5, 0.6, 0.2(  ,

Z3 � y1, 0.4, 0.3( , y2, 0.6, 0.1( , y3, 0.3, 0.4( , y4, 0.6, 0.1( , y5, 0.7, 0.1(  ,

Z4 � y1, 0.8, 0.1( , y2, 0.7, 0.2( , y3, 0.7, 0.1( , y4, 0.2, 0.5( , y5, 0.5, 0.1(  ,

(48)

M �

1 0.796 0.894 0.683
0.796 1 0.883 0.881
0.894 0.883 1 0.759
0.683 0.881 0.759 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M
2

�

1 0.883 0.894 0.796
0.883 1 0.883 0.881
0.894 0.883 1 0.881
0.796 0.881 0.881 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M
4

�

1 0.883 0.894 0.881
0.883 1 0.883 0.881
0.894 0.883 1 0.881
0.881 0.881 0.881 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M
8

�

1 0.883 0.894 0.881
0.883 1 0.883 0.881
0.894 0.883 1 0.881
0.881 0.881 0.881 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(49)

Hence,M4 is an equivalence matrix.)e classification of
IFSs Zk is given by

α ∈ [0, 0.881]⇒ Z1, Z2, Z3, Z4 ,

α ∈ [0.881, 0.883]⇒ Z1, Z2, Z3 , Z4 ,

α ∈ [0.883, 0.894]⇒ Z1, Z3 , Z2 , Z4 ,

α ∈ [0.894, 1]⇒ Z1 , Z2 , Z3 , Z4 .

(50)

)us, it is clear that removing the degree of abstinence
and phase terms greatly affects the final results, and the
classification is not as required. Although the algorithm

comes to similar looking results, these processes have been
carried out on incomplete information, thus leading to false
outcomes.

6.2. Analysis of Results under PFSs. In this experiment, the
same problem is solved under the correlation coefficients of
PFSs defined by Ganie et al. [30]. )e PFSs are Z1, Z2, Z3,
and Z4, given in Table 3.

)e values of weight vector do not change;
Ω � 0.3, 0.1, 0.3, 0.2, 0.1{ }. By following algorithm 4.1, ma-
trix of the correlation coefficients is found.
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M �

1 0.757 0.871 0.644

0.757 1 0.882 0.877

0.871 0.882 1 0.762

0.644 0.877 0.762 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

Now, the search for an equivalence matrix of correlation
coefficients begins, and thus the matrix composition is
carried out until the required matrix is obtained.

M ∘M � M
2

�

1 0.871 0.871 0.762

0.871 1 0.882 0.877

0.871 0.882 1 0.877

0.762 0.877 0.877 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

Since, M2 ≠M, the computation is repeated.

M
2 ∘M2

� M
4

�

1 0.871 0.871 0.871

0.871 1 0.882 0.877

0.871 0.882 1 0.877

0.871 0.877 0.877 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
4 ∘M4

� M
8

�

1 0.871 0.871 0.871

0.871 1 0.882 0.877

0.871 0.882 1 0.877

0.871 0.877 0.877 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(53)

Hence, M4 is an equivalence matrix, since M4 � M8.
Finally, the α-cutting matrix Mα is formulated for the

classification of PFSs Zk.
For α ∈ [0, 0.871], Mα is calculated to be

Mα( 1 �

0.871 0.871 0.871 0.871

0.871 0.871 0.871 0.871

0.871 0.871 0.871 0.871
0.871 0.871 0.871 0.871

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (54)

For α ∈ [0.871, 0.877], Mα is calculated to be

Mα( 2 �

0.877 0.871 0.871 0.871

0.871 0.877 0.877 0.877

0.871 0.877 0.877 0.877
0.871 0.877 0.877 0.877

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (55)

For α ∈ [0.877, 0.882], Mα is calculated to be

Mα( 3 �

0.882 0.877 0.877 0.877

0.877 0.882 0.882 0.877

0.877 0.882 0.882 0.877

0.877 0.877 0.877 0.882

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (56)

For α ∈ [0.882, 1], Mα is calculated to be

Mα( 4 �

1 0.882 0.882 0.882

0.882 1 0.882 0.882

0.882 0.882 1 0.882

0.882 0.882 0.882 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (57)

All of the possible classifications of PFSs Zk are given in
Table 4.

In the light of the above experimental results, it is ob-
served that the CIFS-based correlation coefficient technique
classified the products into the same categories as the
proposed method. However, their numerical scores are
different from those in the proposed work. An important
conclusion is that (i) the designation of three functions
(membership, abstinence, and nonmembership) to the en-
tities affects the results. (ii) )e similar categorization im-
plies that the proposed structure is the generalization of
CIFSs. Hence, it will always provide more accurate and
reliable results due to its greater structure.

In the case of the correlation coefficient based on PFS,
the phase terms are completely neglected. )e final out-
comes are different from the ones achieved by using the
proposed method. Besides different output values and class
values, the categories are also not the same.)e final remarks
are stated as: (i) the phase terms drastically affect the final
outcomes. (ii) )e proposed method is far superior to the
PFS-based method due to its complex structure. (iii) )e
results of the proposed method are more reliable because it
takes time into consideration.

It is perceived that the proposed correlation coefficient
for CPFS is a complete package. It takes all sorts of infor-
mation into account and thus yields a relatively perfect and
reliable outcome, whereas the other methods fail to comply
with the required levels of accuracy. Even though the results
look similar, their reliability differs. As correlation coeffi-
cient algorithms for PFSs [30] lack the phase terms, CIFSs
lack the abstinence degrees, and IFSs [25] fall short due to
nonapplicability to problems involving abstinence degrees
and phase terms. )us, their results do not meet the
mandatory altitudes due to the loss of information in those
methods. A thorough comparison of the final results is
presented in Table 5.

6.3. Comparative remarks. In the following sections, the
limitations of the methods based on present structures are
given along with the advantages of the proposed methods.

6.3.1. Limitations of Present Structures

(i) )e fuzzy set (FS) and complex FS (CFS) only
describe the membership of an entity and miss out

Table 2: )e classification of four sets of laptops on the basis of
correlation coefficients under complex intuitionistic fuzzy
information.

α Classification
α ∈ [0, 0.847] Z1, Z2, Z3, Z4 

α ∈ [0.847, 0.906] Z1 , Z2, Z3, Z4 

α ∈ [0.906, 0.925] Z1 , Z3 , Z2, Z4 

α ∈ [0.925, 1] Z1 , Z2 , Z3 , Z4 
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all the other details. )is deficiency limits their
abilities to model many real-life scenarios.

(ii) Even with membership and nonmembership
functions, the IFSs and CIFSs cannot model all sorts
of circumstances because there is no representative
for abstinent remarks. )ese limitations make them
unusable in certain situations.

(iii) )e absence of the abstinence function in PFSs also
bounds their propensity to solve problems that take
time into consideration.

(iv) )e deficits in the present structures, such as FS,
CFS, IFS, CIFS, and PFS, make their correlation
coefficients inoperable in particular settings.

6.3.2. Advantages of Proposed Structure

(i) Speaking of structure, the proposed CPFSs are
superior to all of the existing notions because they
model three different functions that are member-
ship, abstinence, and nonmembership. In addition,
their complex-valued structure gives them an edge
on simple-valued frameworks. In total, they have six
functions, which is the greatest for any structure in
the theory of FSs.

(ii) )e CPFSs are the generalization of FSs, CFSs, IFSs,
CIFSs, and PFSs. In CPFSs, putting certain

functions equal to zero will still solve the given
problem in the aforementioned environments.

(iii) )e correlation coefficients proposed in this paper
for CPFSs are also generalizations of the correlation
coefficients for IFS, CIFS, and PFS. )us, the pro-
posed methods have the ability to solve the prob-
lems in other frameworks.

7. Conclusions

In this research article, some basic notions of fuzzy set theory
were defined. Moreover, some novel ideas were established
that include information energy of a complex picture fuzzy
set (CPFS), correlation among CPFSs, correlation coeffi-
cients of CPFSs, matrices of correlation coefficients, com-
position matrices of correlation coefficients, and equivalent
matrices. Further, a clustering algorithm was first proposed
for complex structures, i.e., complex picture fuzzy infor-
mation, which can also deal with all sorts of fuzzy infor-
mation such as fuzzy, complex fuzzy, intuitionistic fuzzy,
complex intuitionistic fuzzy, and picture fuzzy information.
)e major benefit of the proposed framework is that it can
model up to three aspects of an entity with respect to some
variable. Furthermore, it can process real-valued data as well
as complex-valued data as compared to the preexisting
methods that only deal with real-valued data and lack the
phase terms. Additionally, this article proposed an

Table 3: Features of laptops in terms of PFS.

y1 y2 y3 y4 y5
Z1 (0.2, 0.3, 0.4) (0.5, 0.1, 0.2) (0.3, 0.4, 0.2) (0.5, 0.1, 0.1) (0.2, 0.2, 0.4)

Z2 (0.7, 0.2, 0.1) (0.3, 0.3, 0.3) (0.6, 0.1, 0.2) (0.7, 0.1, 0.1) (0.6, 0.2, 0.2)

Z3 (0.4, 0.2, 0.3) (0.6, 0.2, 0.1) (0.3, 0.2, 0.4) (0.6, 0.2, 0.1) (0.7, 0.1, 0.1)

Z4 (0.8, 0.1, 0.1) (0.7, 0.1, 0.2) (0.7, 0.1, 0.1) (0.2, 0.2, 0.5) (0.5, 0.2, 0.1)

Table 4: )e classification of four sets of laptops on the basis of correlation coefficients under picture fuzzy information.

α Classification
α ∈ [0, 0.847] Z1, Z2, Z3, Z4 

α ∈ [0.847, 0.906] Z1 , Z2, Z3, Z4 

α ∈ [0.906, 0.925] Z1 , Z2, Z3 , Z4 

α ∈ [0.925, 1] Z1 , Z2 , Z3 , Z4 

Table 5: A complete comparison for the outcomes through different approaches.

Proposed approach Approach of [30] using PFS
α Classification α Classification
[0, 0.853] Z1, Z2, Z3, Z4  [0, 0.847] Z1, Z2, Z3, Z4 

[0.853, 0.896] Z1 , Z2, Z3, Z4  [0.847, 0.906] Z1 , Z2, Z3, Z4 

[0.896, 0.917] Z1 , Z3 , Z2, Z4  [0.906, 0.925] Z1 , Z2, Z3 , Z4 

[0.917, 1] Z1 , Z2 , Z3 , Z4  [0.925, 1] Z1 , Z2 , Z3 , Z4 

CIFS Approach of [25] using IFS
α Classification α Classification
[0, 0.847] Z1, Z2, Z3, Z4  [0, 0.881] Z1, Z2, Z3, Z4 

[0.847, 0.906] Z1 , Z2, Z3, Z4  [0.881, 0.883] Z1, Z2, Z3 , Z4 

[0.906, 0.925] Z1 , Z3 , Z2, Z4  [0.883, 0.894] Z1, Z3 , Z2 , Z4 

[0.925, 1] Z1 , Z2 , Z3 , Z4  [0.894, 1] Z1 , Z2 , Z3 , Z4 
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application of the proposed concepts and clustering algo-
rithm that exemplified the way of classifying similar items on
the basis of features. In the end, different experiments were
carried out to solve the clustering problem by using other
existing techniques. As a result, the proposed method stood
out, and its work was validated through a deep analysis of
experimental results. )e proposed technique and structures
can be used for all types of data and applied to pattern
recognition in buildings’ construction, categorizing and
analyzing the types of masks based on material, and many
others. Aiming at the expansion of the range of applications,
these concepts will be extended in the future by making
amendments to the structures.
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