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Abstract: Heart Rate Variability (HRV) and Blood Pressure Variability (BPV) are widely employed
tools for characterizing the complex behavior of cardiovascular dynamics. Usually, HRV and BPV
analyses are carried out through short-term (ST) measurements, which exploit ~five-minute-long
recordings. Recent research efforts are focused on reducing the time series length, assessing whether
and to what extent Ultra-Short-Term (UST) analysis is capable of extracting information about car-
diovascular variability from very short recordings. In this work, we compare ST and UST measures
computed on electrocardiographic R-R intervals and systolic arterial pressure time series obtained
at rest and during both postural and mental stress. Standard time–domain indices are computed,
together with entropy-based measures able to assess the regularity and complexity of cardiovascular
dynamics, on time series lasting down to 60 samples, employing either a faster linear parametric esti-
mator or a more reliable but time-consuming model-free method based on nearest neighbor estimates.
Our results are evidence that shorter time series down to 120 samples still exhibit an acceptable
agreement with the ST reference and can also be exploited to discriminate between stress and rest.
Moreover, despite neglecting nonlinearities inherent to short-term cardiovascular dynamics, the
faster linear estimator is still capable of detecting differences among the conditions, thus resulting in
its suitability to be implemented on wearable devices.

Keywords: Heart Rate Variability (HRV); Short-Term (ST) cardiovascular variability; Ultra-Short-
Term (UST) HRV; electrocardiography (ECG); Systolic Arterial Pressure (SAP); entropy; conditional
entropy; complexity; time-series analysis

1. Introduction

In recent years, increased interest is being devoted to the study of the complex reg-
ulatory mechanisms of the human organism, in order to improve the level of knowledge
of biological functions and the early detection of pathologies [1–3]. In particular, a large
amount of information can be obtained by studying the cardiovascular system, both alone
and through its interactions with other physiological systems, by analyzing several param-
eters, such as blood pressure, level of oxygenated hemoglobin, heart rate and heart rate
variability (HRV) [4–6]. The latter represents the beat-to-beat variation of the duration of
the cardiac cycle and allows information to be obtained not only about the cardiovascular
function, but also about the balance between the activities of the sympathetic nervous
system (SNS) and the parasympathetic nervous system (PNS), thus allowing a thorough
understanding of the complex neuro-autonomic regulation. This is important, because the
usually antagonistic actions of the SNS and the PNS vary in response to psycho-physical
stress situations that can occur in different contexts during the daily life of both healthy
and pathological individuals [7,8]. Similarly, the study of other cardiovascular parameters,
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such as systolic (SAP) and diastolic (DAP) arterial pressure variability, enables investiga-
tion into the multiple feedback (e.g., baroreflex control) and autoregulatory mechanisms
(e.g., vascular myogenic autoregulation) that come into play in the complex cardiovascular
regulation [9–14].

HRV is usually studied through the monitoring of electrocardiographic (ECG) record-
ings, extracting the time series of R–R intervals (i.e., the time periods between successive
heartbeats) [6]. In clinical settings, the use of 24 h recordings, also referred to as long-term
(LT) analysis, is considered the “gold standard” for the investigation of cardiovascular
control mechanisms, since such timeframe allows a better description of the physiological
processes, taking into account slower temporal fluctuations (e.g., the circadian rhythms)
and the response of the organism to a wider range of external stimuli [6,11]. On the other
hand, short-term (ST) measurements are typically based on 5 min recordings and have
been more extensively employed for practical purposes, especially for assessing the balance
between SNS and PNS activities, given that fluctuations mediated by autonomic nervous
system (ANS), reflecting respiratory, baroreflex and vascular tone regulatory mechanisms
overlap to generate short-term dynamics [6,9–11,15]. Similarly, blood pressure variability
(BPV) can also be studied through short-term and long-term analyses; its variations have
been shown to be the result of complex interactions between extrinsic environmental factors
and intrinsic cardiovascular regulatory mechanisms, and have been associated with the
risk of cardiovascular events and mortality [13,14,16].

Short-term HRV is commonly investigated through different time-, frequency- and
information-theoretic domain indexes computed starting from ECG R-R interval time
series. Specifically, time–domain indexes are used to quantify both average heart rhythm
and the extent of beat-to-beat variability [6,17], while frequency–domain indexes extract
information specific to various time scales of oscillations. Furthermore, more recently
developed entropy-based measures permit the assessment of the regularity and complexity
of cardiovascular dynamics [18–22]. ST HRV analysis has also been proven useful outside
clinical settings, e.g., to monitor health and wellbeing at home and in everyday life scenarios
using wearable smartwatches and smartbands [23–26].

With the widespread adoption of wearable biomedical devices, especially in domestic
settings (e.g., smart-healthcare), research now focuses on whether, and to what extent,
shorter recordings can be exploited for cardiovascular variability analysis, given their lower
computational and memory resources, in order to quickly extract useful physiological
indexes [23,24,27,28]. Several works have recently investigated on the so-called ultra-
short-term (UST) HRV analysis, which exploits recordings shorter than 5 min, comparing
the results with those obtained using the ST standard [29–34]. However, the choice of
the time series length strongly influences the physiological indices derived from RR and
blood pressure time series, in such a way that employing shorter recordings reduces the
ability to resolve slower oscillations within the analyzed cardiovascular dynamics [17,35].
Generally, at least 2 min recordings are recommended to observe Low-Frequency (LF, range:
0.04–0.15 Hz) dynamics (related especially to SNS, but also to PNS activity) and at least
1 min to observe High-Frequency (HF, range: 0.15–0.4 Hz) dynamics (mainly related to
parasympathetic activity fluctuations associated with respiration) [6,17]. Longer recordings,
i.e., 24 h period LT analysis, further allow detection of lower frequency components, such as
the very-low-frequency (VLF, 0.0033–0.04 Hz) and the ultra-low-frequency (ULF, <0.003 Hz).
Therefore, the use of recordings shorter than 5 min may result in a loss of information
related to slower dynamics if compared to ST analysis. The reliability of the cardiovascular
parameters computed from UST recordings also depends on the acquisition protocol and
on the dynamics of the response mechanisms to the task or stimulus [35]. In this sense, the
use of validated and widely employed protocols used in HRV analysis could be envisaged,
e.g., the passive head-up tilt test to evoke orthostatic stress [36,37].

The present work aims at evaluating the extent to which the loss of physiological
information due to UST reduced time series length can be a good tradeoff for extract-
ing physiological indices with lower real-time processing and storage costs, suitably for
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wearable devices [24–26,29,34,38]. Moreover, while several works have focused on ultra-
short-term HRV [29,34,38,39], to the best of our knowledge there are no previous studies
performing a UST blood pressure variability analysis. Herein, a comparison between UST
and ST indices extracted in the time and information domains is performed on a dataset
composed of systolic blood pressure (SAP) and interbeat interval (RR) time series acquired
on a population of healthy subjects in rest and when undergoing orthostatic and mental
stress. The analysis has been carried out by reducing the time series length from 300
(short-term, ≈5 min) to 60 samples (≈1 min), in steps of 60, to assess the loss of informa-
tion at decreasing window length and to verify whether the shortest length is still able to
discriminate the transition from rest to stress.

2. Materials and Methods
2.1. Experimental Protocol

Analyses were carried out on a historical dataset employed for assessing the effects of
orthostatic and mental stress on cardiovascular dynamics. Data have been acquired from
61 healthy young volunteers (24 males, 37 females) aged 17.5 years ±2.4 years, normoten-
sive, and with a normal body mass index (BMI = 19 ÷ 25 kg m−2) [40,41]. All participants
signed a written informed consent form before taking part in the measurement protocol,
also requiring a parental or legal guardian permission to participate in the study when
the subject was a minor (i.e., less than 18 years of age). All procedures were approved by
the Ethical Committee of the Jessenius Faculty of Medicine, Comenius University, Martin,
Slovakia. Subjects were asked not to take substances influencing the autonomic nervous
system and cardiovascular system activities [40,41].

Physiological signals recorded on the volunteers consisted of (i) electrocardiographic
(ECG) signal acquired through a horizontal bipolar thoracic lead (CardioFax ECG-9620,
NihonKohden, Tokyo, Japan), (ii) continuous arterial blood pressure (BP) recorded on
the finger through the volume-clamp method (Finometer PRO, FMS, Amsterdam, The
Netherlands). All signals were acquired synchronously with a sampling frequency of
1 kHz.

Subjects were positioned on a motorized tilt table and a restraining strap was placed at
the thigh level to ensure the safety and stability of the subject during the movement of the
tilt table. Signals were acquired during a measurement protocol consisting of the following
four phases (schematically represented in Figure 1a):

• A resting condition (R1) with the subject laying in the supine position for 15 min, in
order to stabilize the physiological signals on a baseline level;

• A head-up tilt (T) test aimed at evoking mild orthostatic stress by inclining the motor-
ized table by 45 degrees for 8 min;

• Another resting condition (R2) with the subject laying in the supine position for 10 min,
in order to restore the physiological parameters to their baseline values;

• A 6 min long mental arithmetic (M) task aimed to evoke cognitive load (i.e., mental
stress), during which subjects were asked to mentally calculate the sum of three digits
in the least possible time, indicating whether the result was an even or odd number.

During the whole measurement protocol, the subjects were asked to avoid any move-
ment or speaking, to decrease artifacts occurrence and minimize the non-stationarities
during recording of the signals.

2.2. Time Series Extraction

Starting from the ECG and BP signals acquired for each subject and condition, we
extracted time series for carrying out the analyses described in the following subsections.
Specifically, the RR interval time series was obtained by measuring the temporal distance
between consecutive ECG QRS apexes, while the systolic arterial pressure (SAP) series was
obtained as the sequence of the maximum values of the blood pressure signal measured
within each RR interval. This procedure assured the same length for both RR and SAP time
series, for each given subject and physiological condition.
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Figure 1. (a) Schematic illustration of the experimental protocol, including baseline resting (R1), 
orthostatic stress (T), second resting (R2) and mental stress (M). Dashed boxes indicate the windows 
taken into account with regard to short-term (ST, 300 points) analysis. (b) Representative RR and 
SAP time series, extracted respectively from ECG and BP recordings, which have been investigated 
through univariate analysis performed after ST (red arrow) and ultra-short-term (UST, 240 to 60 
points, blue arrows) time window segmentation. 
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Figure 1. (a) Schematic illustration of the experimental protocol, including baseline resting (R1),
orthostatic stress (T), second resting (R2) and mental stress (M). Dashed boxes indicate the windows
taken into account with regard to short-term (ST, 300 points) analysis. (b) Representative RR and
SAP time series, extracted respectively from ECG and BP recordings, which have been investigated
through univariate analysis performed after ST (red arrow) and ultra-short-term (UST, 240 to 60 points,
blue arrows) time window segmentation.

The analyzed windows started 8 min after the beginning of the R1 phase, 3 min
after the beginning of the T phase, 3 min after the beginning of the R2 phase, and 2 min
after the beginning of the M phase (see schematization in Figure 1a). This choice was
made in order to favor the stationarity of the time series, neglecting the transition effects
due to the physiological changes elicited by the different phases during the measurement
protocol [40,41]. Before performing the analyses, a visual inspection of the series was
carried out to check for their stationarity.

Initially, time series of 300 heartbeats were extracted according to the standard of
short-term analysis. The time series duration varied in the different conditions according
to the heart rate, being on average ≈4.5 min during rest conditions, 3.5 min at T, and 4 min
during M. Afterwards, in order to perform ultra-short-term (UST) analysis of cardiovascular
parameters, shortened time series were obtained by reducing the series length each time
of 60 samples down to a minimum of 60 heartbeats. The resulting UST time series were
composed of 240, 180, 120, and 60 samples, selected starting from the beginning of the
reference ST series, as schematized in Figure 1b.

2.3. Time-Domain Analysis

Time-domain analysis was performed on ST and UST RR and SAP time series com-
puting the average (MEAN) and the standard deviation (STD) of the series values. With
regard to RR time series, the standard deviation coincides with the widely used standard
deviation of the interbeat intervals between normal sinus beats (SDNN) [6], given that no
ectopic beats were detected. Moreover, for the RR time series, the root mean square of
successive differences (RMSSD) was computed as follows to extract information about the
beat-to-beat changes in heart rate mediated mostly by PNS [6,15,42]:

RMSSD =

√√√√ 1
N − 1

N−1

∑
n=1

(x(n + 1)− x(n))2 (1)

being x(n) the n-th RR samples and N the time series length.
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2.4. Information Domain Analysis

For both the RR and SAP time series, information-theoretic analysis was performed to
quantify the information carried by the physiological time series, as well as their complexity.
The latter is typically quantified as the unpredictability of the present sample given its past
samples, and thus has been associated to the regularity of the time series [22,43]. For this
reason, in this work the static entropy (SE), dynamic entropy (DE), and conditional entropy
(CE) measures were computed on either a short-term or ultra-short-term series using both
a parametric and a model-free estimation.

Starting from a stationary stochastic process X, we can denote as x = {x1, x2, . . . , xN}
the time series of length N, taken as a realization of the process X, as Xn is the variable
obtained by sampling the process X at the present time n, and Xm

n = [Xn−1, . . . , Xn−m]
the variable describing the collection of the past m states. Using such notation, the static
entropy quantifies the “static” information contained in the current state of the process X,
without considering its temporal dynamics, and can be defined as [44]:

SE = H(Xn) = −E[log p(xn)] (2)

where E[·] is the expectation operator and p(·) the probability density, while H(·) denotes
the entropy. The dynamic entropy (DE) instead represents the “joint” entropy of the present
and past variables comprising the process; therefore, it provides the amount of information
provided by the current sample of the series and by its past samples as well, thus providing
“dynamic” information on the entire process. This can be defined as [45]:

DE = H(Xn, Xm
n ) = −E[log p(xn, xn−1, . . . , xn−m)], (3)

where H(·, ·) is the joint entropy of two random variables. Then, the conditional entropy
(CE) quantifies the average uncertainty that remains about the present state of the process
when its past states are known (i.e., the new information contained in the current sample
that cannot be inferred from the past history), and is defined as [44]:

CE = H(Xn|Xm
n ) = H(Xn, Xm

n )− H(Xm
n ) = −E[log p(xn|xn−1, xn−2, . . . , xn−m)] (4)

where H(·|·) denotes conditional entropy operator.
In this work, the computation of SE, DE, and CE indices was carried out through

two different estimation approaches, in order to identify which method allows the best
trade-off between computational costs and ability to discriminate among physiological
changes (i.e., rest versus stress).

The first estimation method (hereinafter referred as lin) consists of a linear parametric
approach based on the assumption that the observed process X is a stationary Gaussian
process [44], which is a reasonable assumption given that many physiological data tend
to follow a Gaussian distribution. Under this assumption, the above-mentioned entropies
measures can be computed, after describing the dynamics of the process X with a linear
regression model, from the covariance matrices of the variables sampling the process. In
particular, the present and past variables of the process are related with the autoregressive
(AR) model Xn = A·Xm

n + Un, where A is a vector of m regression coefficients and U is
a white noise process modeling the prediction error. AR model identification has been
performed via ordinary least squares method [46] to obtain estimations of regression
parameters and prediction error variance, thus estimating the variance and the covariance
matrices of the process. Then, denoting as σ̂2

X the variance of the process, as Σ̂XnXm
n the

covariance matrix of the present and past states of X, and as σ̂2
U the prediction error variance,

the above defined entropy measures can be computed as [45]:

SElin =
1
2

ln
(

2πeσ̂2
X

)
(5)
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DElin =
1
2

ln
(
(2πe)m+1∣∣Σ̂XnXm

n

∣∣) (6)

CElin =
1
2

ln
(

2πeσ̂2
U

)
(7)

where e is the Euler’s number.
The second estimation method (hereinafter referred as knn) is a model-free approach

based on nearest neighbor metrics, which exploits the intuitive notion that the local proba-
bility density around a given data point is inversely related to the distance between the
point and its neighbors. Using this approach, estimates of SE, DE and CE of the process X
can be respectively computed through the following expressions [44,45]:

SEknn = ψ(N) +
〈
log εn,k − ψ(NXn + 1)

〉
(8)

DEknn = −ψ(k) + ψ(N) + (m + 1)
〈
log εn,k

〉
(9)

CEknn = −ψ(k) +
〈
log εn,k + ψ

(
NXm

n + 1
)〉

(10)

where ψ(·) is the digamma function, k is the number of neighbors chosen for the analysis,
εn,k represents twice the distance between the n-th realization of (Xn, Xm

n ) and its k-th nearest
neighbor, NXn and NXm

n , respectively, represent the number of points with a distance from
xn and xm

n smaller than εn,k
2 and 〈·〉 is the average operator; the average is taken over all

the N−m realizations of the patterns (Xn, Xm
n ) that can be extracted from a series of length

N. Here, estimation of the SE and CE in (8) and (10) has been performed, exploiting the
distance projection method for bias compensation described in [44,45].

The ECG and SBP signals were pre-processed and analyzed using MATLAB R2021b
(The MathWorks, Inc., Natick, MA, USA). All RR and SAP time series were normalized
to zero mean before computing the three entropy measures. For computing DE and CE,
the time series were also normalized to unit variance; this was not carried out for static
entropy, whose calculation requires the knowledge of the information of the variance of the
time series [45]. Information–domain indices were computed using the online available
MATLAB ITS Toolbox (see Data availability statement section).

The number of neighbors chosen for the model-free estimator was k = 10, while the
number of past components considered for the time series past histories was set equal to
2. Similarly, the order of the autoregressive model defined using standard least-squares
regression for the lin approach was set to m = 2.

In order to quantify the computational resources required to compute these indices,
the time spent for calculating linear and model-free estimations of DE, CE and SE was
measured for both RR and SAP time series in the four considered phases at varying time
series lengths using the built-in MATLAB function.

2.5. Statistical Analysis

The statistical analyses have been carried out on distributions of time–domain and
entropy measures obtained in the four phases (R1, T, R2, M) on both RR and SAP time
series. Given that the normality of distributions for the analyzed indexes was verified
according to the Kolmogorov–Smirnov test, the parametric Student’s t-test was used to
perform the pairwise comparisons, with a significance threshold set to p < 0.05. Specifically,
the statistical tests were carried out to compare (i) orthostatic and mental stress conditions
with resting states (i.e., T vs. R1 and M vs. R2) and (ii) ultra-short-term and short-term
distributions (i.e., UST vs. ST).

However, the mere use of statistical tests has often been considered not sufficient for
assessing the feasibility of the use of HRV indices evaluated through different techniques
in studies where statistical tests have been complemented by other approaches, e.g., corre-
lation analysis, Bland–Altman plots, or effect size [15,34,47,48]. In our work, correlation
analysis was carried out through the computation of the squared Pearson correlation co-
efficient r2 [49] to evaluate the strength of the linear relationship between each UST and
the ST reference distribution, in order to quantify to what extent their agreement decreases
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when reducing the time series length. According to Shaffer et al. [38,50], who selected
a conservative criterion for the Pearson correlation coefficient (r ≥ 0.90), herein we set
a threshold for the squared coefficient equal to r2 = 0.81 to establish the presence of a strong
agreement between indexes derived from UST and ST analysis.

Moreover, for all the time and information domain indices and time series length,
we assessed the difference between the distributions during stress and during rest by
computing the “effect size”. Measures of effect size represent a widely employed and
useful tool to describe the strength of the association between two distributions, providing
a description of the size of observed effects possibly independent of misleading influences
on sample size, and thus can complement statistical tests that instead assess significance [51].
Large but nonsignificant effect sizes may indeed suggest that other statistical tests with
greater discriminatory power should be employed, while small but significant effects due
to large sample sizes can be indicative of overvaluing the observed effect [51]. In this work,
the effect size has been evaluated through the Cohen’s d measure as the difference between
the means of the two distributions divided by the pooled standard deviation [52]:

d =
µ1 − µ2√

(n1−1)σ2
1+(n2−1)σ2

2
n1+n2−2

(11)

where µ, σ, and n are the mean, the standard deviation, and the number of samples of the
two distributions under comparison (i.e., the number of subjects), respectively. Generally,
the effect size is deemed as small, medium, and large, if the absolute value of d is lower than
0.2, between 0.2 and 0.5, or higher than 0.8, respectively. The Cohen’s d has been computed
between stress and rest conditions (i.e., T vs. R1 and M vs. R2) for each time series length,
in order to quantify whether and to what extent the strength of the relationship between
the two distributions changes if compared to the ST reference.

3. Results
3.1. Time-Domain Analysis

Figure 2 shows the comparison of ST (N = 300) and UST (N < 300) analyses performed
for the time-domain indexes (MEAN, SDNN, RMSSD) computed over the RR time series
across the 61 subjects in the four considered phases. For each panel, the top row subplot
shows the boxplot distributions of the indices, the central one being the Cohen’s d measure
(in absolute value), and the bottom one being the Pearson squared correlation coefficient.
Results show a statistically significant decrease of all the three indexes during T vs. R1
and during M vs. R2 phases for the ST and for all the UST time window lengths taken
into account. With regard to MEAN, statistically significant differences between UST
and ST distributions are reported only for R2 already from N = 240 and for shorter time
series (Figure 2(a2), top subplot). As regards SDNN, statistically significant differences
have been detected comparing all the UST distributions to ST reference during head-
up tilt (Figure 2(b1), top subplot). On the contrary, statistically significant differences
have been reported only in the shortest UST distribution (N = 60) for both R2 and M
(Figure 2(b2), top subplot). No statistically significant differences have been reported for
RMSSD. Cohen’s d measures (central subplots in Figure 2) computed between stress and
rest reported a medium-to-high effect size (|d| ≥ 0.7) for all the three indices, but lower
for RMSSD during mental stress (|d| ≈ 0.5). Moreover, in all the cases the Cohen’s d
showed higher values with regard to postural stress discrimination rather than mental
stress. Furthermore, d remains almost constant at decreasing time series length, except
for SDNN assessed during mental stress (Figure 2(b2)), in which it decreases with N. The
squared Pearson correlation coefficient (bottom panels in Figure 2) computed between ST
and UST distributions is very high and almost always above the threshold (r2 > 0.81) for
MEAN and RMSSD indices for all the time window lengths, except for RMSSD during
T for N = 60. A considerable decrease in the correlation is reported for the SDNN index,



Sensors 2022, 22, 9149 8 of 20

going below threshold for T when N = 120 (Figure 2(b1), bottom panel), and for both R2
and M when N = 60 (Figure 2(b2), bottom panel).
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Figure 2. Boxplot distributions (top subplots) of time-domain indexes, i.e., (a) MEAN, (b) SDNN
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UST distribution and the ST reference, with a threshold of r2 = 0.81 (dotted gray line).

Figure 3 shows the comparison of ST (N = 300) and UST (N < 300) analyses with
regard to the time-domain indexes (MEAN, STD) of SAP time series across the 61 subjects
in the four considered phases. With regard to ST, MEAN decreases significantly during
T if compared to R1 (Figure 3(a1), top subplot), while it increases significantly during M
if compared to R2 (Figure 3(a2), top subplot); opposite trends are reported with regard to
STD (Figure 3(b1,b2), top subplots). For both indexes, results show statistically significant
differences for T vs. R1 and for M vs. R2 phases for all the UST time window lengths
taken into account, except for T vs. R1 with regard to the shortest series length (N = 60)
only for STD (Figure 3(b1), top subplot). With regard to MEAN, statistically significant
differences have been reported comparing UST vs. ST distributions during head-up tilt
condition for N = 240 and shorter (Figure 3(a1), top subplot); on the other hand, no
statistically significant differences have been reported with regard to R1 and to both M
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and R2 conditions (Figure 3(a2), top subplot)). As regards STD, statistically significant
differences have been reported comparing UST vs. ST distributions for N ≤ 120 and
N ≤ 180, respectively, for R1 and T (Figure 3(b1), top subplot)), for N ≤ 240 for R2, and
for just N = 60 for M (Figure 3(b2), top subplot)). Cohen’s d values evidence a high effect
size (|d| > 0.8), except for STD index during R1-T transition (Figure 3(b1), central subplot))
in which there is a medium-low effect size (|d| ≈ 0.5). An overall decrease in effect size
is observed with the sample size N, especially for STD. The correlation analysis between
UST and ST distributions reported a high squared correlation coefficient (r2 > 0.81) with
regards to MEAN distributions (Figure 3(a1,a2), bottom subplots). On the other hand, with
regards to STD, the correlation coefficient strongly decreases when shortening N, going
below the threshold for N = 120 for R1, R2 and M and for N = 60 for T (Figure 3(b1,b2),
bottom subplots)).
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Figure 3. Boxplot distributions (top subplots) of time-domain indexes, i.e., (a) MEAN and (b) STD
calculated from SAP time series during R1 (light gray) and T (light blue), (.1 panels), and during R2
(dark gray) and M (orange) (.2 panels) phases. Statistical tests: #, p < 0.05, R1 vs. T and R2 vs. M; *,
p < 0.05, ST vs. UST. Statistical tests: #, p < 0.05, T vs. R1 or M vs. R2; *, p < 0.05, ST vs. UST. Central
subplots: Cohen’s d (in absolute value) evaluated between each stress condition and the previous
rest phase (i.e., R1-T and R2-M) for all the considered time series lengths. Bottom subplots: squared
Pearson correlation coefficients computed between a given UST distribution and the ST reference,
with a threshold of r2 = 0.81 (dotted gray line).

3.2. Information Domain Analyses

Figures 4 and 5 depict the results of the information domain analysis carried out by
computing SE, DE, and CE indices through both lin and knn estimators for RR and SAP
time series, respectively, across the 61 subjects for each of the four physiological conditions
(R1, T, R2 and M). For each panel, the top row subplot shows the boxplot distributions of
the indices, the central one the Cohen’s d measure (in absolute value), and the bottom one
the Pearson squared correlation coefficient.
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Figure 4. Results of information domain analysis on RR time series. Boxplot distributions (top
subplots) of ST and UST indices of (a) SE, (b) DE and (c) CE calculated using both lin (.1 and .2) and
knn (.3 and .4) estimators during R1 (light gray) and T (light blue) (.1 and .3), and during R2 (dark
gray) and T (orange) (.2 and .4) phases. Statistical tests: #, p < 0.05, T vs. R1 or M vs. R2; *, p < 0.05
ST vs. UST. Central subplots: Cohen’s d (in absolute value) evaluated between each stress condition
and the previous rest phase (i.e., R1-T and R2-M) for all the considered time series lengths. Bottom
subplots: squared Pearson correlation coefficients computed between a given UST distribution and
the ST reference, with a threshold of r2 = 0.81 (dotted gray line).
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The results of the analyses carried out on RR time series are shown in Figure 4. For
both orthostatic and mental arithmetic conditions, the shift from rest to stress highlights
significant decrease of SE, DE and CE measures computed with both lin and knn estimators.
This variation is most appreciable under the postural stress, in fact statistically significant
variations are always reported comparing T vs. R1, for both ST and all the UST distributions
and for both estimators. On the other hand, using the lin estimator statistically significant
variations are reported comparing M vs. R2, for both ST and almost all the UST distributions
for all measures (except w.r.t to CE for N = 60), but only for SE (Figure 4(a4)) using the knn
approach. SE appears to decrease while CE and DE tend to increase when decreasing the
time series length N. This result is more evident using the knn estimator, in fact statistical
analysis carried out between UST and ST distributions highlighted significant differences
starting from time series of length N = 240 for almost any measure computed through
the model-free approach. For DE and CE computed through lin estimator, the statistically
significant differences between UST and ST at T occur only for N ≤ 180 and N ≤ 120,
respectively. The Cohen’s d values obtained for lin estimator are higher than for the knn
one (see central subplots in each panel in Figure 4). High effect sizes are reported for
CE and DE during T, but medium values instead during M; with regard to the SE index,
a medium–high effect size is assessed for both physiological state changes and for both
estimators. In any case, d appears almost constant at decreasing N (down to N = 120), while
a more marked decrease is observed when going to N = 60. Finally, the squared Pearson
correlation coefficient (see bottom subplots in each panel in Figure 4) decreases, shortening
the time series length N, and still largely shows a high degree of correlation (above the
threshold) down to N = 120.

As regards entropy measures computed on the SAP time series reported in Figure 5,
both estimators (i.e., lin and knn) and analysis approaches (i.e., ST and UST) show an in-
crease in SE (Figure 5(a1,a3), top subplots) as well as a decrease in DE (Figure 5(b1,b3), top
subplots) and CE (Figure 5(c1,c3), top subplots) from R1 to T, and, conversely, a decrease in
SE (Figure 5(a2,a4), top subplots) and an increase in DE (Figure 5(b2,b4), top subplots) and
CE (Figure 5(c2,c4), top subplots) from R2 to M. Nevertheless, while differences between M
and R2 distributions are always statistically significant, the comparison between T and R1
evidenced statistical significance only for lin estimation of CE using time series no shorter
than 120 samples, and for SE obtained with both estimators and N ≤ 240. Regarding the
comparison between ST and UST analyses, for both estimators and physiological state
changes, CE and DE values increase as the time series length decreases, whereas the SE
decreases more slowly. Statistical analysis highlighted significant differences already from
the first window length (N = 240) for almost all the information indices obtained with both
estimators during R2 and M, while overall this is true for T vs. R1 in any cases only for
shorter time series (N < 180). The only exception is the knn estimation of SE, for which no
significant differences are found between ST and UST analysis. The effect size assessed
through Cohen’s d (Figure 5, central subplots in each panel) is always medium–low, except
for SE index for M vs. R2, and overall decreases in absolute value when shortening the
series length. The correlation analysis between UST and ST distributions (Figure 5, bottom
subplots in each panel) shows that the squared Pearson’s correlation coefficient decreases
when reducing time series length, still reporting values higher than the threshold (r2 = 0.81)
for almost all indices for N ≥ 180 (often even for N = 120), except for the SE estimated
with the knn approach, for which r2 severely drops already for N = 240 (Figure 5(a3,a4),
bottom subplots).

Finally, we report the results relevant to the computational times required for the
calculation of the entropy-based measures, performed using both estimators. In order
to compare ST and UST analysis times, we have selected N = 120 samples as UST time
series length, since the previous results highlighted that this is the minimum length which
overall guarantees a very good agreement between ST and UST distributions. The average
computation time of all the entropy measures on 488 iterations (two time series in four
different physiological conditions for 61 subjects) was 0.24 ms and 5.87 ms for lin and knn
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on ST 300-samples time series, respectively, and 0.17 ms and 1.90 ms on UST 120-samples
time series. Such computational times were obtained on a computer equipped with an Intel
Core i7-11700K CPU (3.60 GHz), 64 GB RAM, 512 GB SSD, Windows 11, MATLAB R2021b.
The computational times are similar for RR and SAP series and do not vary as well with the
protocol phase. Moreover, while computational times remain almost constant as time series
length decreases with regard to lin, they strongly decrease at shortening N with regard to
model-free estimation.

4. Discussion

The aim of this work was to evaluate the extent to which UST HRV and BPV mea-
surements of less than 5 min duration can be used as a substitute for widely employed
and validated short-term recordings. Employing standard time-domain and recently in-
troduced entropy-based measures, we aim to assess whether and which UST metrics can
replace ST indices to discriminate postural and mental stress states, while exploiting shorter
recordings that are less prohibitive in terms of time cost, and computational power. In this
sense, we also compared two different approaches to estimating entropy-based measures,
i.e., a more reliable but also more computationally intense non-linear model-free method,
and a faster but less general linear model-based approach. The rest of the discussion is
organized as follows. Sections 4.1 and 4.2 focus on physiological interpretation of results
obtained through ST time-domain and information-theoretic domain metrics, respectively.
Section 4.3 discusses UST results in terms of their agreement with standardized ST measures.

4.1. Time-Domain Analyses on ST Series

Time-domain HRV results (Figure 2) are in agreement with widely recognized findings
in the literature which evidence an increased heart rate and a decrease of variability
(SDNN) and RMSSD during stress conditions, in particular after head-up tilt [15,53,54]. In
both stress conditions, but less markedly during mental stress, these trends are related to
an enhanced sympathetic and reduced parasympathetic activity, resulting from an SNS
activation and a PNS withdrawal which cause a shift in the sympathovagal balance [55–57].
In particular, the reduced parasympathetic contribution is evidenced by the decreased
RMSSD (Figure 2(c1,c2)) which has been usually related to PNS activity [6,17]. Nevertheless,
physiological mechanisms involved during orthostatic and arithmetical stress are different,
as demonstrated by the different SAP MEAN and STD trends in these two stress conditions
(cf. Figure 3(a2) vs. Figure 3(a1) and Figure 3(b2) vs. Figure 3(b1)). This is in agreement
with previous studies highlighting the presence of a closed-loop regulatory mechanism
between RR and SAP [10,58,59]. The decrease of the mean SAP together with the increase
of its variability during postural stress (Figure 3(a1,b1)) have been related to the decreased
venous return [60–62]. The resulting cardiac filling associated with SAP decrease leads
to baroreflex activation and to vasoconstriction during postural stress, which in turn
produce an increased heart rate [60–63]. The opposite trends reported for mental stress
(cf. Figure 3(a2) vs. Figure 3(b2) can be related to cortical mechanisms eliciting vasomotor
reactions and are reflected by SAP changes [54,64,65].

4.2. Information Domain Analyses on ST Series

The shift of the autonomic balance to the sympathetic branch caused by orthostatic
and cognitive challenges produces a simplification of the cardiac dynamics, with reduced
information contained in the RR time series (Figure 4(a1–a4)), which has been linked to the
emergence of oscillations at the frequency of the Mayer waves [15,41]. The elicited stress
conditions lead also to a decrease in complexity, and thus lower CE and DE values using both
linear and non-linear estimators (Figure 4(b1–c4)). Physiologically, this indicates a regularizing
effect on the cardiac dynamics produced by sympathetic activation and vagal withdrawal
already demonstrated in several previous works also on the same dataset [15,22,43,66,67].

The entropy-based SAP analysis revealed opposite trends for T and M compared to
the preceding resting condition (cf. Figure 5 right vs. left panels), confirming the different
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response to postural and mental stress. Mental challenge produced an SE decrease and
increased complexity, while opposite trends have been observed for postural stress. These
findings evidence that SAP dynamics are less affected by orthostatic stress than by cognitive
load. Physiologically, this can be ascribed to the larger involvement of upper brain centers
in controlling the vascular dynamics and resistance associated with sympathetic activation.
A relatively complex pattern of vascular resistance changes results in an augmented SAP
dynamical complexity, as demonstrated by previous works [41,43,64,67,68]. The trend
towards lower SAP complexity values during tilt may be related to the synchronization of
peripheral vascular activity due to sympathetic activation, contributing to regularizing the
fluctuations of SAP [69].

Comparing the entropy measures obtained through the two estimators, we found
lower values using knn than using the lin approach, especially with regard to RR and under
rest and mental stress conditions. The reasons of such a difference are difficult to explain
and may be related to several factors, ranging from local nonlinearities or nonstationarities
to bias effects evident especially for the knn estimator and due to the difficulty of working
on high-dimensional spaces [70]. Nevertheless, for the majority of measures both estimators
exhibit concordant changes and are equally able to distinguish between rest and stress
conditions. There are three exceptions, in which the knn is unable to detect differences,
while lin does, i.e., CE for RR comparing M vs. R2 (Figure 4(c4) vs. Figure 4(c2)), DE for RR
comparing M vs. R2 (cf. Figure 4(b4) vs. Figure 4(b2)), and CE for SAP comparing T vs. R1
(cf. Figure 5(c3) vs. Figure 5(c1)). The augmented discriminative capability of the linear
estimator, even if possibly related to the presence of non-linear dynamics [71,72] which are
not properly taken into account, may be a perspective used in practical applications for
a more accurate and fast differentiation between rest and stress conditions [39,67]. This
is also reinforced by the very low computational times required for the lin estimator to
compute the entropy-based measures on 300-sample series length (ST standard), which is
24 times lower if compared to knn.

4.3. Ultra-Short-Term versus Short-Term Analysis

The main focus of this work was to assess whether using shorter heart rate and SAP
time series allows us to obtain the same physiological information extracted with ST series,
as discussed in the previous Sections 4.1 and 4.2. Regarding the reliability of using UST
RR time series to discriminate between stress and rest conditions, our time-domain results
(Figure 2) demonstrate that, overall, it is possible to make use of 60-sample recordings to
detect the presence of either postural or mental stress compared to a rest condition. This is
true despite the fact that statistically significant differences between UST and ST series are
detected in R2 with regard to MEAN, and in T with regard to SDNN even for 240-sample
time series (Figure 2(a2,b1)). Therefore, our results suggest that, while UST analysis implies
a significant deviation of the analyzed metrics from their ST level, such deviation does not
significantly impair the capability to detect the response to stress even when working with
shorter time series.

The above-discussed results are reinforced by correlation analysis, which reported
squared Pearson correlation coefficient always above the adopted threshold for strong
correlation, with the only exception being SDNN computed for N = 60. Analogous remarks
can be made starting from Cohen’s d analysis between stress and rest conditions, with
similar values for all time series lengths, with only a noticeable decrease for N = 60. Such
results are in agreement with previous studies in the literature on RR series reporting a good
agreement between UST and ST both under physical stress [30,73] and mental stress [29,74]
conditions. However, the agreement decreases during the execution of a task or in the
presence of a stressful event that carries dynamicity in the control mechanisms [33,48,75],
similar to the trends reported in our results with regard to squared Pearson correlation
coefficient. A number of studies applying UST analysis to physical stress conditions
focus on the following recovery phase, showing that the dynamics are strongly influenced
by the intensity of the task and the response time of SNS and PNS [30,76]; this may
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explain the statistically significant differences found in R2 with regard to MEAN, being R2
a post-postural stress rest.

A quite common finding in previous works is that the SDNN index exhibits a lower
agreement if computed through UST RR series [48,77], and this is confirmed by our results
analyzing the trend of the correlation coefficient (Figure 2(b1,b2), bottom subplots). On
the other hand, the agreement is higher with regard to RMSSD index (Figure 2(c1,c2),
bottom subplots). This finding appears to be directly related to the definition of metrics,
since whereas SDNN reflects RR total power, the RMSSD is instead related only to the
fastest variations (i.e., vagally-mediated ones) observable even from shorter time series [17].
Although it is not possible to refer to previous studies, the results obtained with regard
to SAP (Figure 3) can be discussed similarly to RR. In particular, results highlight the
capability of using UST SAP time series to discriminate between stress and rest conditions
down to N = 60 (with the exception of STD for postural stress), even if statistically sig-
nificant differences are reported between UST and ST distributions for MEAN during T
and for most conditions for STD. Similarly to RR, a very high squared Pearson correlation
coefficient is reported between UST and ST distributions, decreasing with N and going
below threshold for N ≤ 120 for STD. Likewise to RR, the agreement of the STD measure is
lower for UST series, which is also confirmed by the lower effect size between the rest and
stress conditions.

Our results confirmed the feasibility of employing UST series to carry out computation
of regularity and complexity measures (Figures 4 and 5), already previously reported for CE
and Approximate Entropy [29,39,78]. Results of statistical tests evidence that, apart from
a couple of exceptions, the significant differences between the stressful and the preceding
rest conditions reported using 300-sample recordings are also retained for all the analyzed
metrics (SE, DE, CE) with shorter series down to a 60-sample duration. However, the
results of correlation analysis have evidenced that the agreement between UST and ST
distributions is overall very good (i.e., above threshold) only for N ≥ 120 for RR and for
N ≥ 180 for SAP, except for non-parametric SE that already exhibits a severe decrease of
r2 from 4 min length recordings. The results of RR analyses are in agreement with some
previous studies employing other non-linear measures for the analysis of predictability
(e.g., Shannon Entropy [29,33]), dynamics (e.g., Permutation Entropy [79]), and complexity
(e.g., Approximate Entropy and Sample Entropy [29,33,79]), overall reporting that record-
ings of at least 2–3 min are necessary in order to have good consistency with respect to
ST standard. Our results complement these findings, supporting the hypothesis that the
variation in cardiovascular dynamics and the complexity produced by a physiological state
change can be properly assessed using even shorter recordings (60 samples), but at the cost
of a lower correlation with ST reference. Moreover, the lower correlation found for SAP
in our analyses suggests that slightly longer recordings may be instead envisaged when
performing UST blood pressure variability if compared to HRV.

The Cohen’s d analysis on entropy measures evaluated on RR evidenced a better
discrimination of postural stress than mental stress with a higher effect size (Figure 4,
central subplots), in contrast to what is evidenced instead with regard to SAP (Figure 5,
central subplots). In any case, the effect size decreases when shortening the time window
length, thus suggesting a lower discriminative capability between stress and rest states
caused by the information loss about slower dynamics due to the shorter time series.

Finally, regarding the comparison of estimation methods for entropy-based measures,
the same considerations made in Section 4.2 also hold for the UST analysis. For the majority
of measures, both estimators are similarly capable of distinguishing between rest and
stress conditions. There are the same three exceptions discussed with regard to ST series,
in which the knn is unable to detect differences while lin can, i.e., CE for RR comparing
M vs. R2 (Figure 4(c4) vs. Figure 4(c2)), DE for RR comparing M vs. R2 (Figure 4(b4) vs.
Figure 4(b2)), and CE for SAP comparing T vs. R1 (Figure 5(c3) vs. Figure 5(c1)). This
may be due again to the significant proportion of nonlinear dynamics also contributing
to UST HRV and cardiovascular variability [41,72,80] that are detected by knn estimator
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but neglected by the model-based parametric approach. Also in this case, the increased
discriminative capability of the linear estimator and its lower computational costs may
be exploited for discrimination between rest and stress conditions [67]. Furthermore, our
results demonstrate that using shorter time series also requires reduced computational
costs for both estimators, with a decrease of ~1.7 times for lin and ~3.1 times for knn when
shortening the time series length from 300 to 120 samples. Computing all the information
indices exploiting time series of 120 samples through the parametric estimator is ~11 times
less computationally expensive than using the model-free estimator.

5. Conclusions

In this work, a comparison between ST and UST analysis has been carried out by
computing physiological indices in time and information-theoretic domains on heart rate
and blood pressure variability time series, during rest and both orthostatic and mental
stress conditions, to assess to what extent UST analysis can represent a valid substitute for
the ST standard, especially for stress detection.

Our results showed that time-domain and entropy-based measures computed on
RR and SAP series are able to discriminate between rest and stress even for very short
time series length, down to N = 120 or even N = 60 samples in most cases. However, the
drop in correlation below the set threshold reported for UST shortest windows (N ≤ 120)
suggests caution in the use of very-short-time series segments, especially when analyzing
SAP variability, opening a new issue that deserves further investigation in the future.

Finally, the comparison between a more reliable but time-consuming model-free
estimator and a linear model-based approach suggests that the latter can be suitably
employed for detecting changes in physiological conditions, thanks to the considerable
benefits in terms of reduction of computational costs at the expense of information loss
about non-linearities in cardiovascular dynamics.

The combined use of UST series and faster linear estimators for entropy-based mea-
sures can be beneficial for the integration of such metrics within wearable devices for
a real-time monitoring of cardiovascular parameters. Moreover, the large number of fea-
tures computed from data acquired by wearable devices could be employed in the future to
develop accurate machine-learning-based classifiers for stress detection. A future extension
of this work could focus on comparing UST indices in different classes of subjects, e.g.,
to evaluate differences due to sex, age, or body mass index. A further activity could be
devoted to performing the same UST analyses on photoplethysmographic (PPG) signals,
which can be directly acquired on wearable devices. Several studies agree on considering
pulse rate variability assessed from PPG as a surrogate of heart rate variability [15,81,82],
and recent studies have also investigated the use of PPG time series shorter than 300 samples
as an alternative for the standard ST analysis [31,83]. Moreover, analyzing PPG signals
also allows information to be extracted on blood pressure [84], and this would to achieve
insight into both heart rate and blood pressure variability which, as seen from our results,
often yield complementary results.
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