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Prototypical topological orbital 
ferromagnet γ-FeMn
Jan-Philipp Hanke, Frank Freimuth, Stefan Blügel & Yuriy Mokrousov

We predict from first principles an entirely topological orbital magnetization in the noncoplanar bulk 
antiferromagnet γ-FeMn originating in the nontrivial topology of the underlying spin structure, without 
any reference to spin-orbit interaction. Studying the influence of strain, composition ratio, and spin 
texture on the topological orbital magnetization and the accompanying topological Hall effect, we 
promote the scalar spin chirality as key mechanism lifting the orbital degeneracy. The system is thus 
a prototypical topological orbital ferromagnet, the macroscopic orbital magnetization of which is 
prominent even without spin-orbit coupling. One of the remarkable features of γ-FeMn is the possibility 
for pronounced orbital magnetostriction mediated by the complex spin topology in real space.

Spin and orbital degrees of freedom of electrons give rise to two fundamental contributions to the magneti-
zation in materials, both of which are usually distinguished by means of x-ray magnetic circular dichroism1–3. 
While firm knowledge of spin magnetism has been acquired due to extensive research in this area over the past 
several decades, exploration of the concept of the orbital magnetization (OM) in condensed matter is still at a 
rather premature stage. Even an accurate theoretical description of orbital magnetism has been missing until the 
recent advent of a rigorous Berry phase theory4–7. Since the OM affects a phlethora of elementary properties like 
spin-dependent transport8–11, orbital magnetoelectric coupling12–14, and Dzyaloshinskii-Moriya interaction15, a 
deeper understanding of orbital magnetism in solids is in general of outstanding relevance.

Spontaneous orbital magnetism in ferromagnets is conventionally explained as a key manifestation of the 
spin-orbit interaction lifting (partially) the orbital moment quenching. While such an interpretation applies to 
most condensed-matter systems, it fails to describe orbital magnetism in crystals exhibiting a finite topological 
OM (TOM) prominent even in the absence of spin-orbit coupling. In these systems an emergent magnetic field 
rooting in the noncoplanarity of neighbouring spins replaces the spin-orbit interaction as the main mechanism 
lifting the orbital degeneracy by coupling to the orbital degrees of freedom16–18. The latter noncoplanarity between 
three neighbouring spins is usually quantified by the so-called scalar spin chirality κ =  Si · (Sj ×  Sk), which plays 
also a fundamental role in the physics of skyrmions19–25. The nonvanishing scalar spin chirality further replaces 
the spin-orbit interaction in giving rise to the anomalous Hall effect, also referred to as topological Hall effect in 
this context, which is closely related to the TOM both from microscopic and symmetry considerations16,26.

Revealing a diverse spectrum of complex noncollinear spin textures in real space, antiferromagnetic materi-
als such as Mn5S3

27–29, Nd30–33, Mn3GaN34,35, Mn3Ir36, and Mn3Ge37 provide an intriguing and rich playground 
to study unconventional magnetic properties and transport phenomena. In particular, disordered γ-FexMn1−x 
alloys are suggested by neutron diffraction measurements38,39 and first-principles calculations40–42 to exhibit for 
concentrations 0.35 <  x <  0.80 the so-called 3Q structure, which is a noncoplanar spin configuration forming as a 
result of a linear combination of spin-spirals with three distinct wave vectors Q43. In the case of such a 3Q state the 
total spin magnetization integrated over the unit cell of the crystal vanishes exactly since the spins point towards 
the center of the tetrahedron spanned by them (cf. Fig. 1). The 3Q noncollinear spin structure of disordered 
γ-FexMn1−x alloys thus renders these systems ideal candidates for investigating topological contributions to the 
OM and the accompanying anomalous Hall conductivity (AHC), as well as for estimating the efficiency of the 
scalar spin chirality as alternative degeneracy-breaking mechanism.

Here, based on first-principles electronic-structure calculations we evaluate topological orbital magnetism 
and anomalous Hall effect present in the noncoplanar antiferromagnet γ-FeMn even in absence of spin-orbit 
coupling. We ascribe the manifestation of these phenomena to the nontrivial topology of the underlying 3Q 
spin structure. By studying the dependencies of both OM and AHC on (i) strain, (ii) composition ratio, and (iii) 
real-space distribution of the spin texture, we identify the scalar spin chirality as driving mechanism which lifts 
the orbital degeneracy. Thus, disordered γ-FeMn is a prototypical topological orbital ferromagnet for which the 
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macroscopic magnetization is completely dominated by orbital magnetism prominent even without spin-orbit 
interaction.

Results
Although the noncoplanar spin texture of the 3Q state gives rise to a finite scalar spin chirality between any three 
neighbouring spins (cf. Fig. 1), the sum of these chiralities over the magnetic unit cell containing four atoms van-
ishes in the case of the face-centered-cubic (fcc) lattice of γ-FeMn. Thus, to investigate possible topological con-
tributions arising from the nontrivial spin texture in real space, we need to break the symmetry between the 
equivalent cross sections (111), (111), (111), and (111) of the fcc lattice (see Fig. 1), for example, by applying strain 
along the [111] direction16. As a consequence of this distortion, the chiralities of the individual cross sections do 
not cancel out such that we can expect the scalar spin chirality to manifest in the [111] component of both OM 
and AHC. To characterize the deformation of the crystal structure, we introduce the ratio δ =  d′ /d where d and d′  
refer to the distance between adjacent (111) planes in the undistorted and distorted case, respectively.

Applying a moderate strain along the [111] direction characterized by the parameter δ =  0.95, we present in 
Fig. 2a the resulting computed OM and AHC of selected antiferromagnetic γ-FexMn1−x alloys as a function of the 
position of the Fermi level and in absence of spin-orbit coupling. When we change the alloy composition from 
pure Mn over Fe0.5Mn0.5 to pure Fe, we observe that the energy dependence of the OM is qualitatively not altered 
except for a shift towards lower energies (see e.g. peaks marked by arrows in Fig. 2a). Since the electronic config-
urations of Fe and Mn atoms are close to each other, the electronic structures of the corresponding γ-FexMn1−x 
alloys are quite similar. This can be directly seen in the band structure of the corresponding alloys, which reveal a 
clear resemblance apart from a global energy shift, Fig. 2b. Remarkably, although OM and anomalous Hall effect 
are fundamentally related to each other, the energy dependencies of OM and AHC presented in Fig. 2a are not 
at all correlated. In contrast to the OM, the energy dependence of the AHC displays a more rich and complex 
oscillatory behavior underlining its strong sensitivity to the electronic structure. Moreover, the energy dependen-
cies of the AHC for different alloy concentrations are not related by a simple shift in energy. We verified that the 
values of both OM and AHC, which we display in Fig. 2a, are hardly affected by including spin-orbit coupling in 
our calculations.

We further present in Fig. 2c the behavior of OM and AHC at the actual Fermi energy of γ-FexMn1−x, i.e., 
∆ = 0F , upon varying the concentration x. A moderate contraction (δ =  0.95) of the pure Mn crystal generates 

an OM of 0.1 μB per unit cell of four atoms, which monotonically decreases with increasing Fe concentration, 
leading to a sign change for x ≈  0.5 −  0.6 and ultimately to an OM of about − 0.1 μB per unit cell for pure Fe. 
Remarkably, this overall dependence on the alloy composition is reversed if we expand the lattice (δ >  1) along the 
[111] direction instead of contracting it. Within the experimentally confirmed region of the 3Q state in γ-FeMn, 
the OM ranges from − 0.05 to 0.1 μB per unit cell depending on the strain. In general, we find that applying larger 
strain leads to an enhanced magnitude of both OM and AHC since the symmetry-breaking between the formerly 
equivalent faces of the tetrahedron spanned by the four spins in the unit cell becomes more pronounced in this 
case. Although the magnitude of the OM in the noncoplanar antiferromagnet γ-FeMn is comparable to that of 
collinear transition-metal compounds, its unique topological nature renders the orbital magnetism studied here 
thoroughly distinct. In addition, while the orbital moment in conventional transition-metal systems is typically 
overshadowed by the large spin moment, the macroscopic magnetization in the spin-compensated material 
γ-FeMn is determined entirely by the OM. The concentration dependence of the AHC qualitatively follows the 
trend of the OM, in particular for δ >  1. We point out that the magnitude of the AHC in these alloys reaches 
gigantic values, especially in the vicinity of pure systems, constituting as much as 1000 S/cm in the experimentally 

Figure 1. Unit cell of face-centered-cubic γ-FeMn. Red arrows indicate the noncoplanar 3Q texture of spins 
pointing towards the center of the transparent green tetrahedron. The faces of the tetrahedron highlight 
equivalent planes of the undistorted lattice, and green arrows orthogonal to corresponding planes mark the 
directions [111], [111], and [111], respectively. The polar angle θ and the azimuthal angle ϕ are used to 
characterize the antiferromagnetic spin structure throughout this work. In the depicted case of the 3Q spin 
texture, ϕ =  45° and θ amounts to half of the tetrahedral angle, i.e., θ ≈  54.7°.
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confirmed region of the 3Q state in γ-FexMn1−x (see dashed lines in Fig. 2c). Such strong anomalous Hall effect in 
a spin-compensated material is remarkable, and we motivate experimental studies aimed at its detection. We 
checked that the influence of spin-orbit coupling on the values of OM and AHC, as presented in Fig. 2c, is negli-
gible. This promotes the noncoplanarity of the underlying spin texture as driving mechanism for these phenom-
ena in the bulk antiferromagnet γ-FeMn.

We show in Fig. 3b the reciprocal-space distribution of the orbital moment and the Berry curvature of the 
occupied states for the 3Q state of the pure Mn system with δ =  0.95 in the (111) plane including the Γ  point. Both 
quantities reveal pronounced sharp features associated with the Fermi surface lines (cf. Fig. 2b), and reflect the 
six-fold rotational symmetry associated with the (111) plane of the distorted lattice. While singular large negative 
contributions to the OM forming a circle around the Γ  point are due to the group of parabolic bands which cross 
the Fermi level close to Γ  along the paths Γ M and Γ K in Fig. 2b, the overall positive OM in this case is determined 
by large areas of the Brillouin zone providing small positive contributions. In analogy to the case of the energy 
dependence discussed before, the Berry curvature generally reveals a richer and more complex distribution in 
reciprocal space as compared to the orbital moment.

Finally, we explicitly scrutinize the effect of the antiferromagnetic spin distribution in real space on orbital 
magnetism and anomalous Hall effect. We do this by varying the polar angle θ which defines the details of the 
spin texture (cf. Fig. 1), while keeping the other characteristic angle ϕ fixed to the value of 45°, as in the calcula-
tions reported above. Tuning the parameter θ effectively allows us to control the value of the scalar spin chirality 
κ between three neighbouring spins according to the following relation:

κ θ θ θ∝ .( ) cos sin (1)2

Apparently, κ(θ) is zero for the cases of θ =  0° (also known as the 1Q state) and θ =  90° (known as the 2Q 
state), and it becomes maximal for half of the tetrahedral angle (i.e., θ ≈  54.7°) in the 3Q structure as indicated 
by the thin dotted line in Fig. 3a. In the latter figure also the dependence of the [111] component of both OM 
and AHC on the polar angle θ for the pure Mn system with δ =  0.95 is shown. Reaching its maximum of about 
0.1 μB per unit cell for the 3Q structure, the θ-dependence of the OM falls almost perfectly onto the κ(θ) curve. 
The small deviations between the two quantities are the consequence of changes in the fine details of the elec-
tronic structure of the system as θ is varied. The nice agreement between the OM and κ in γ-FeMn is a clear 
indication that in this class of compounds the OM is directly proportional to the emergent magnetic field as 
given by the scalar spin chirality, with the constant of proportionality playing the role of a topological orbital 
susceptibility. On the other hand, the dependence of the AHC on the polar angle θ is more complex and cannot 
be directly related to the simple angular dependence of κ(θ) but originates rather in higher-order terms. As a 
result, in contrast to the OM, the value of the AHC exhibits a local minimum for the 3Q spin texture. To prove 
that the origin of both OM and AHC lies purely in the real-space distribution of spins, we perform calcula-
tions including the effect of spin-orbit coupling. We find that the OM values hardly change upon taking the 

Figure 2. Influence of strain and composition ratio. (a) The only nonvanishing component of orbital 
magnetization (OM) and anomalous Hall conductivity (AHC) at the strain δ =  0.95 as a function of the 
Fermi energy for the 3Q spin structure and several concentrations x of the γ-FexMn1−x alloy. Arrows mark 
characteristic features, which shift towards lower energies with increasing x. (b) The corresponding electronic 
band structures for x =  0.0 and x =  0.5 exhibit strong similarities due to the close nature of Fe and Mn. (c) The 
only nonvanishing component of OM and AHC at the actual Fermi energy as a function of the concentration x 
for the 3Q spin structure and various strains δ. Dotted vertical lines bound the experimentally confirmed region 
of the 3Q state. In all cases (a–c) spin-orbit coupling was not included in the calculations, and the unit cell (uc) 
is the magnetic unit cell of four atoms.
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spin-orbit interaction into account, and likewise the corresponding changes in the AHC driven by the modifi-
cation of the electronic structure due to spin-orbit interaction are insignificant, see Fig. 3a.

Discussion
Our results clearly demonstrate that the noncoplanar bulk antiferromagnet γ-FeMn is a prototypical topological 
orbital ferromagnet (TOF). The emergent magnetic field associated with the scalar spin chirality of the 3Q state 
completely replaces the spin-orbit coupling as lifting mechanism of the orbital moment quenching. In TOFs of 
the type discussed here, nonzero charge and orbital currents are the consequence of the spin chirality in the dis-
torted crystal leading to purely topological contributions to orbital magnetism and anomalous Hall effect. We fur-
ther expect noncoplanar magnets to exhibit analogously a topological spin Hall effect (see also ref. 44) stemming 
solely from the nontrivial topology of the spin texture, without any reference to spin-orbit coupling.

In a wider context, as compared to the spin of electrons, the orbital degrees of freedom offer higher flexibility 
regarding their internal structure and the size of orbital moments, rendering them versatile operational building 
blocks in the field of orbitronics. In this respect, TOFs as a new class of materials occupy a special place since their 
nontrivial orbital magnetism is a direct consequence of complex spin arrangement. This means that the properties 
of TOFs can be directly tuned by altering the latter spin distribution, e.g., via electric-field-induced spin torques45 
or by modifying the strength of the spin-spin interactions. Our calculations also clearly indicate that both magni-
tude and sign of the TOM in TOFs can be controlled efficiently by means of proper electronic-structure engineer-
ing through application of strain and variation of the concentration in alloys. The magnitude of 0.1 μB per unit cell 
in the studied γ-FeMn can be enhanced even further by considering thin films with noncollinear spin textures18.

While the topological Hall effect relates to higher-order terms in κ, the connection between the finite TOM 
and the scalar spin chirality as driving force is particularly intimate as apparent from Fig. 3a. Therefore, we spec-
ulate that an inverse effect should be observable in terms of an increased magnetostructural coupling in non-
coplanar antiferromagnets46,47. That is, we claim that the systems of the type discussed here will experience a 
pronounced topological orbital magnetostriction due to the interaction of the TOM with an applied external mag-
netic field, leading to changes in the crystallographic structure as a result of maximizing the energy gain due to 
this interaction. In particular, owing to the opposite sign of the TOM with respect to tensile or compressive strain 
along [111] direction in γ-FeMn, it would be possible to expand or compress the crystal along the [111] axis by 
changing the orientation of an applied magnetic field along this axis.

Figure 3. Influence of spin texture. (a) The [111] component of orbital magnetization and anomalous Hall 
conductivity as a function of the polar angle θ, which characterizes the antiferromagnetic spin texture, for the 
strain δ =  0.95 and the concentration x =  0.0. Spin-orbit coupling was additionally taken into account for the 
open blue data points. The dotted black line denotes the angular dependence of the spin chirality, Eq. (1), and 
the insets present the multiple-Q structures at θ =  0°, 54.7°, and 90°. The unit cell (uc) is the magnetic unit cell 
containing four atoms. (b) Reciprocal-space distribution of the orbital moment m[111] and the Berry curvature 
Ω[111] for the 3Q state in absence of spin-orbit coupling. Note the logarithmic color scale in case of the Berry 
curvature.
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Methods
Using the full-potential linearized augmented plane-wave code FLEUR48, we performed self-consistent density 
functional theory calculations of the electronic structure of disordered γ-FeMn alloys within the virtual crystal 
approximation (VCA) by adapting the nuclear numbers under conservation of charge neutrality. Applying the 
VCA to this type of disordered systems is well-suited as it avoids any spurious crystallinity-induced effects related 
to periodic arrangements of Fe and Mn atoms. Furthermore, in contrast to the anomalous Hall effect49, a coherent 
description of orbital magnetism in the presence of disorder has not been developed so far. Exchange and corre-
lation effects were treated in the generalized-gradient approximation of the PBE functional50. We have chosen a 
muffin-tin radius of 2.29a0 and the lattice constant of the undistorted fcc lattice was 6.86a0. When we applied 
strain to expand or contract the lattice along the [111] direction, according deformations of the transverse crystal 
directions were taken into account employing the Poisson’s ratio ν =  0.27. The plane-wave cutoff was . −a3 8 0

1 and 
the Brillouin zone was sampled using an equidistant 12 ×  12 ×  12-mesh of k points. The magnitdue of the local 
spin moments amounts to about 2 μB depending on both the applied strain and the fixed spin structure that we 
imposed in our calculations.

To unambiguously compute the OM, we applied a recently developed Berry phase theory4–7 expressing the 
OM as a genuine bulk property of the ground-state wave functions:

�
E E∫= ∂ × + − ∂M e k u H u

2
Im [d ] ( 2 ) , (2)k k k k k kn n F n

where k is the crystal momentum, [dk] stands for π∑ kd /(2 )n
occ 3 with the summation restricted to all occupied 

bands n below the Fermi energy F , |ukn〉  is an eigenstate of the lattice-periodic Hamiltonian Hk =  e−ik·r Heik·r to 
the band energy  kn, and e >  0 is the elementary positive charge. Within this framework, the AHC can be 
expressed as

∫σ = − ∂ × ∂ .
e k u uIm [d ] (3)k k k kn n

2



Both orbital moment m and Berry curvature Ω in reciprocal space as displayed in Fig. 3b were obtained from 
the relations ∫=M km k( )[d ] and  ∫σ Ω= ke k/ ( )[d ]2 , respectively.

The Brillouin zone integration in Eqs (2) and (3) can be performed efficiently through Wannier interpola-
tion51–53. Based on an 8 ×  8 ×  8 k-mesh, we constructed 72 maximally-localized Wannier functions out of 102 
energy bands54,55 with the frozen window extending up to about 5 eV above the Fermi energy. Finally, conver-
gence of OM and AHC was achieved using interpolation meshes of 128 ×  128 ×  128 and 256 ×  256 ×  256 k-points, 
respectively.
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