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This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists
in two stages: (i) the detection of the cell’s nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed
via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of
the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the
image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence
variations are highly correlated with the changes of intracellular free Ca**. Additionally, it is introduced a new morphological called
medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling
and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an
experimental process shows evidence of the capabilities of the proposal.

1. Introduction which have been developed for analyzing Ca** either dynam-
ics or concentration. Fluorescent microscopy techniques are
frequently used to observe the variation of intercellular
Ca®" concentration applying chemical fluorescents indicator
as markers. Those indicators stimulate the cells causing

a fluorescence effect [6]. The fluorescence is detected by

Calcium (Ca®") is an ubiquitous intracellular ion signaling
responsible for controlling many cellular processes [1, 2].
Ca®" acts as second messenger triggering pathological events,
such as cells injury and death, as well as participating

in pathological conditions, such as hypertension, cardiac
arrhythmia, hematological problems, muscular diseases, and
hormonal disorders, among others [1, 3, 4]. The role of Ca**
in these diseases has just begun to be understood. Some Ca**
that induce pathological conditions have been found with
the help of substances that interfere with the movement or
activation of Ca** [3, 5]. Due to the importance of Ca**, there
are several numbers of optical and nonoptical techniques,

microscopy and CCD sensors. To compute the cells with the
greatest fluorescence variations, the user must select them
manually and analyze all the images in the sequence in
order to determine the changes of fluorescence over time.
However, it consumes time and human resources being
susceptible to error measuring. By such circumstance, the
process for segmenting the cells and the study of dynamics of
intracellular Ca®* represent the main objective in this paper.
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An important step in the study of intracellular Ca** con-
sists of the segmentation of each individual cell. The image
segmentation results are difficult because the environmental
changing conditions are usually uncontrollable. In the liter-
ature typically depending on the properties of the cells, the
segmentation method is proposed. For instance, some works
use neural networks approaches [7], hierarchical threshold
[8], or multiscale morphology [9], just to mention a few.

Watershed-plus-marker approach, on the other hand,
is the traditional image segmentation method based on
morphological mathematical [10, 11]. The success of this
method depends mainly on the correct detection of the
image’s markers. The markers can be detected manually or
automatically. Automatic approaches help the specialist to
save time and resources. However, there are factors that
affect the performance of an automatic detection of markers
such as noise, cells occlusions, and abrupt changes in the
images. Those factors can lead these algorithms to over-
and undersegmentation, that is, create regions containing
partial or multiple cells. In this sense, several approaches
have been developed for improving cell segmentation. In this
study, we introduce a method to analyze automatically the
intracellular calcium variation. This approach consists in two
stages: (1) the image enhancement and cell segmentation and
(2) the calcium variation modeling. The image enhancement
is carried out with a top-hat filter, which homogenizes the
luminance conditions. The process of cells segmentation is
performed using the marked-controlled watershed transform
and filters by reconstruction, which is used to detect markers
efficiently, after the homotopy of the gradient image was
computed. To measure the calcium intracellular variations,
the volume of each marked cell is computed. The procedure
consists of estimating the volume using the luminance inten-
sities for each marked cell along the time. After, least squares
fitting (LSF) method is applied to create a model of the behav-
ior of the variation of the fluorescence. The behavior model
created is considered as an exponential decreasing function.
To enhance the development of the model of the behavior of
calcium, a novel morphological filter named as medium filter
is introduced. This filter smoothes the fluorescence measures,
exploiting the under- and-overmodeling of reconstruction
operator, preserving the information structure of original
signal.

The paper is organized as follows. In the next section,
a review of some morphological filters is presented. In
Section 3, a method based on marked controlled watershed
transform to detect automatically the cells is shown. In
Section 4, we show the procedure to estimate the volume
of each marked cell starting from the fluorescence intensity
along time; after applied least squares fitting and morpho-
logical medium filter, the model of fluorescence behavior is
created. Finally, results and conclusions can be found in the
last section.

2. Concepts of Morphological Filtering

2.1. Basic Notions of Morphological Filtering. Mathematical
morphology is mainly based on the so-called increasing
transformations [12-14]. A transformation T is increasing if
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for all pairs of functions f and g, with f < g = T'(f) < T(g).
In other words, increasing transformations preserve the order
of the relation. A second property is the idempotence; that is,
a transformation T is idempotent if and only if T(T(f)) =
T(f). The basic morphological filters are the morphological
opening y,z and the morphological closing ¢,z with a
given structuring element, where B represents the elementary
structuring element (3 x 3 pixels, e.g.) containing its origin
and p is an homothetic parameter. Thus, the morphological
opening and closing are given, respectively, by

Y,uBf (X) = 6[43 (SMB (f)) > (pny (X) = syB (6;43 (f)) >
@

where the morphological erosion sﬂB( f(x)) and dilation
8HB(f(x)) are expressed as &up = feuB:xw— innyHBf(x+y)
and 8,5(f) = f @& uB: x — sup,.,pf(x - y).

Henceforth, the set B will be suppressed rendering, the
expressions ¥, and y,p are equivalent (y, = y,5). When the
parameter y is equal to one, all parameters are suppressed

(85 = 0).

2.2. Opening (Closing) by Reconstruction. The notion of
reconstruction is a very useful concept provided by MM.
Reconstruction transformations are built by means of the
geodesic transformations. In a gray-level case, the geodesic
dilation 8}(g) (resp., the geodesic erosion s}(g)) withg < f
(resp., g > f) of size 1 given by 5}(9) = f N Og(g) (resp.,
e}(g) = f V eg(g)) is iterated until idempotence. Consider
two functions f and g, with f > g (f < g). Reconstruction
transformations of the marker function g in f, using geodesic

dilations and erosions, expressed by R(f,g) and R*(f,g),
respectively, are defined by

R(f,g) = lim &7 (g) = e;e;---€; (9),
(2)
R*(f.9) = lim &}(g) = e,e; €} (9).

When the marker function g is equal to the erosion or the
dilation of the original function in (2), the opening and the
closing by reconstruction are obtained:

7, (f) = lim &7 (e, (1)),
G (f) = lim &} (3,(f)).

3. Automatic Detection of Cells

The watershed-plus-marker approach transformation is a tra-
ditional image segmentation method based in mathematical
morphology [10, 13]. However, this transformation makes use
of an extensive set of morphological filters. This transform is
used for segmenting images avoiding the oversegmentation
[11]. The oversegmentation criterion consists of setting an
upper limit in the number of minima regions detected. This
process is performed with the minima impositions over the
markers, exploiting homotopy property of the operators.
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However, it needs to make some assumptions to use this
approach. The most important assumption consists of the fact
that that the minima represent the center of the object (in
the cell case, the core of it); a second assumption consists
of the gradient estimation, such that the fact that it could be
performed with morphological operators.

3.1. Marker Detection. Due to the features of the images, the
nucleus of each cell is used as regional minimum. As matter
of fact, a regional minimum M of a gray-scale image I is a
connected component of pixels with uniform altitude without
lower neighbors. Before computing the minima, the nucleus
of the cells is mainly dark, surrounded by brighter region
composed by the cytoplasm. However, the local luminance
conditions of each cell differ singly to each other, affecting
the detection of the nucleus. For the homogenization of
luminance conditions the top-hat transform is used as a local
contrast correction filter.

For the {I;},. be sequence of image. The top-hat transfor-
mation is defined as follows:
Thw,p () = (L) (x) =y (I;) (%) (4)

where the dimensions of structuring element are related with
the luminance conditions of the scenario; in such a way, the
luminance distribution in the image may be approximated
with the morphological opening y,. Whenever the dimension
of structuring element becomes proportionally similar to
the image dimension, it would represent global luminance
sources affectations; on the other hand, small dimensions
represent local luminance variations effects. This process is
illustrated in Figure 1, where each process step is showed and
in certain steps the image has been coded in pseudocolor to
point out the effects involved at each step.

The direct appliance of the maxima transform detects
all the maxima, including noise data, as it is appreciated
in Figure 2(b). To avoid the extra minima detection, the
image is enhanced with a closing by reconstruction operator.
This operator allow grouping by all connected local minima,
discarding the majority of noise effects. The closing by
reconstruction uses a unitary structuring to approximate
the original image. For illustration proposes in Figure 2(c)
is appreciated the effect of apply the filter in the minima
detection process. Observe that some cell nucleus are well
detected, but others are omitted; due to the acquisition
process the cytoplasm is not completely closed. This situation
can be fixed using subsequent images, where additional
minima are correctly detected. Thus, in order to obtain the
maximum number of minima, a function that captures the
occurrence of the minima in the sequence is constructed.
Let {I;};s and {M}, 4 be the images of the sequence and the
images containing the detected minima, respectively. M;(x) is
a binary image such that it takes 1 value if the point x belongs
to a regional minimum and 0 values otherwise. After using
the subsequent frames, summation I,,, is built as follows:

L, (x) = Y M (x). (5)

ieS
The surface I,,, is drawn in Figure 2(d). Analyzing Figures 2(c)
and 2(d), the majority of true minima are detected. Other

big areas are pointed out in the figure. They are discarded
by a thresholding criterion. In the case of study, each cell is
typically about four pixel of radius, which can be discovered
using an opening by reconstruction filter. As complementary,
a closing operator with a structure of 3 pixels of dimension is
used to connect insolated regions. The process is illustrated
in Figure 2. First, a morphological closing of size 3 is applied
to fill the small holes; the results can be appreciated in
Figure 2(c) (before closing filter) and Figure 2(e) (after clos-
ing filter). Next, applying the summation I,,, (Figure 2(d)), the
minima are found, and finally the regions with big and small
areas are discarded, denoting the cells.

3.2. Gradient Operator. The watershed-plus-marker ap-
proach makes use of the gradient operator to impose the
markers. In this sense, the morphological gradient can be
used as contrast detector. Let I(x) be a function defined in
7? and B the basic structuring element of 3 x 3 dimensions,
centered at point x. Then, the transformation is defined as
follows for a discrete space:

Vil (x) = 851 (x) — g5l (x). (6)

There are other two versions of gradients in mathematical
morphology, the internal and the external gradients defined,
respectively, as follows:

Vil (x) =1(x) —egl (x),

(7)
Vil (x) = 651 (x) — I (x).

Figures 3(b) and 3(c) show the internal and external gradients
of the image in Figure 3(a). However, the indistinct use of
any gradient approach has the consequence where the border
should present double border. Typically they correspond
to the cell generated among the nucleus of the cell and
cytoplasm and the other one between the cytoplasm and the
background of the image. The drawback to detect efficiently
the true border in the image is an open task; then to
deal with it, several tests have been applied to the images.
Experimentally it is appreciated that external gradient offers
smoother and thick borders (see Figure 3(c)), instead of
internal gradient offering defined and clear borders as it is
illustrated in Figure 3(c).

3.3. Imposed of Minima by Reconstruction. Once the markers
cells signals are detected, these are imposed with their
minima on the gradient image. To carry out this task the
following procedure is performed. Let M and g be the set
of markers computed as commented above and the gradient
image, respectively. After, two news functions are built: the
first one consists of a thresholding function f(x), which is
defined as f(x) = 255ifx ¢ M and f(x) = 0ifx € M,
while the second one is built through the gradient image
as g'(x) = gx)ifx ¢ Mand g(x) = 0if x € M.
Furthermore, the dual morphological reconstruction of f(x)
inside of g'(x) is made, denoted by R*(g’, f). The function
R*(g', f) only has the minima of M, such that the watershed
transformation is applied. Figure 3(d) illustrates the results
getting after applying watershed segmentation.
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(c)

(d)

FIGURE 1: (a) Original image, (b) original image in pseudocolor before background correction, (c) opening morphological, and (d) image

after background correction.

4. Modeling the Intracellular
Calcium Dynamic

In this section, we deal with the problem of modeling the
intracellular calcium dynamic. The procedure consists in
three parts: the estimation of the calcium volume, the fitting
of an exponential curve, and the calculus of the error.

4.1. Estimating Cell's Volume. The cell intensities are highly
related to the amount of calcium contained in each cell. Then,
the task of creating a model of the behavior of calcium in
each cell is managed computing the volume of each cell in the
image. The historical measures of time are used to represent
the evolution of the dynamic of the variation of calcium for
each particular cell. The historical measures of volumes are
denoted by {V, (i)},s» where the subindex » corresponds to
a particular cell and i represent the particular volume for
the time stamp ith. The volume is estimated with a discrete
approximation of the integral as follows:

v [ ey

Xi JYi

(8)

X5 s

V= ZZf (x,y)AyAx, for Ax=Ay=1.
Xi Vi

4.2. Modeling Intracellular Calcium Variations. As it is appre-
ciated in Figure 4, the dynamics of the calcium stimulus
has an exponential behavior. Then, the purpose consists of
creating a model of the decreasing behavior stimuli suffered
by each cell, where the region of interest is located among
the global maxima and the end of the signal. However, due
to the noise, it is not possible to detect easily the maximum.
To attenuate this inconvenience, an automatic process is
performed detecting the maxima for the function {V, (i)};.
The process consists of a sequential alternating filter in one-
dimensional scenario. The alternating filter is constituted by
a sequence of one closing by reconstruction followed by one
opening by reconstruction ¢, (¥, (V))(i) where the size of u
is varied into the interval [0, k]. The filter undermodels the
original signal, smoothing the signal wave and allowing the
detection of the global maxima efficiently.

Figure 5 illustrates the detection of a representative max-
imum detected that corresponds to a connected element in
one dimension space. The center of the connected element
represents the maxima location, such that it is estimated with
the mean of the connected elements; that is, c({x; | x; €
R(x;, xj)}) = (1/n) Y., x;, such that R(x;, x;) is an equivalent
relation of the connectivity criterion. The behavior of the
dynamic of the calcium for each particular cell should be
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(a)

(b)

J

(e)

(d)
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FIGURE 2: (a) Input image, (b) regional minima of original image, (c) minima obtained after applied closing by reconstruction, (d) function
constructed from the minimum of the sequence of image, (e) morphological closing ¢,_;, (f) minima obtained by the difference: M;(x) =
M;(x) — y3-¢M;(x), and (g) set of markers obtained by the function I,,,(x).

modeled as a polynomial decay time-decreasing function as
follows:

€)

where «; are the polynomial parameters, where the data
used is taken from the maxima to the end of the data. The

parameter estimation is performed by least squares the follow
a
-1
expression [ : :| = (XX) X"y,suchthatX = [x" ... x"],
aYl
for x data vertical vector. The order of polynomial is estimated

-1
from (X"X)  expression as follows: for a higher order n,
-1

the SVD decomposition of matrix (xTx) = sxvlis
used. The rank of matrix is estimated when normalized
information of eigenvalues represents 99.99% of information;
this is 7, 0,/ YL, 0; > 0.9999, where each o; is taken

o 0

from matrix ¥ = [ Lo :| and ' represent the polynomial
oﬂ
order for fitting. For illustration purposes in Figure 6, a fitting

sample is showed. The exponential help to model and analyze
the decrease of the intensity registered in each cell.

4.3. Error Model Fitting. The correct construction of model
over data is defined by introducing two measures of error:
BIAS error and RMSE error. The first one is a measure of error
modeling. The second measure is a precision error modeling
criterion. The bias error provides information about how the
model fits real data. Negative bias error means that model
is undermodeling the data; that is, the model is a function
under real data. Consequently, positive bias error represents
overmodeling. Values near to zero mean that the model
catches the dynamic of real data. Formally, bias error is
defined as Bias(x,x") = Y., x — x", where x represent
real data and x* estimated data. Note that when BIAS is
equal to zero it does not mean that the model is correct. It
means that the same proportions of measures are below and
under for real data. Then to quantify the precision error the
RMSE is used. This error is the average of absolute differences
among real and modeling data. RMSE is defined as follows:
RMSE(x, x™) /) YL, (x* - x)* where x* represent
modeling function and x real data.
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(d)

FIGURE 3: (a) Input image, (b) internal gradient, (c) external gradient, and (d) segmented cells.
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FIGURE 4: Cells volume curves over time showing an exponential
decreasing behavior.

4.4. Enhancement of Data. Although the least squared
method offers the optimal model, it depends on the data
measurement having normal distribution. Then, by the
nature of the model, it results hard in verifying that these
measures have a normal distribution. As a consequence it
is necessary to enhance the data in order to facilitate the
convergence of the approach. For simplicity, it is assumed
that any signal V, (i), resulted from the calculation of the
volume of an # cell for an i time, is affected by additive noise
with zero mean as follows:

V, =V +N, (10)

where V! is the signal free noise and N,, is the additive noise
with mean zero. In fact N,, has zero mean; the true signal
data V* is located into min{dom(N,)} and max{dom(N,,)}
values. However, given N,, is a random variable, it locally
should not present a zero mean, making it difficult to estimate
the V' value. To figure it out, it is needed to analyze
locally the information, inferring the trend, and make an
estimation of the expected value. The proposal consists of
exploiting certain properties of operators taken from mor-
phology operators. The reconstruction operators are useful
because they approximate a surface by iterating successively a
marker, getting the other surface that has similar topological
properties. The approximation does not keep the original
level of detail of its shape, such that it depends on the
form and properties of structural element used. It should be
considered inconvenient, but, in practical terms, it is its major
advantage in sense and it represents the main trend of the
original data, eliminating variations less than the structural
element (high frequencies) of the original signal and resulting
in a new signal that under- or overmodels the original data.
Considering the basic operators by reconstruction (open-
ing and closing), the property of extensive or antiextensive,
respectively, cause the fact that the application of each one
over a signal V,, results in 9, (V) or ¢, (V) signals such as
under- or overmodeling the original. Both of them remain
as the global trend of the topological information of V.
Consequently, the residual presents important topological
information. However, the distribution of the data changes
slightly: the shape of the derivative of the original and the
approximated signal is different, changing the statistical prop-
erties of its PDFs. Figure 7 presents the probability density
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FIGURE 5: (a) Original signal that has multiple maxima caused by the noise interference. (b) Filtered signal presents a smoothing wave in

which the global maximum is easy to detect.
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FIGURE 6: Fitting an exponential curve over the volume of cell
behavior.

function (PDF) approximated via its histogram after appli-
cation over a signal V,,. The histogram of opening operator
presents a negative deviation, which means that the surface
approximated is undermodeled. On the other hand, when we
apply a closing operator, it overmodels the original signal and
its histogram is deviated to the positive side of the range.
The proposal consists of mixing both filters, preserving
the statistical information of the original signal. Noise effects
are represented by the high frequencies. These frequencies
must be discarded preserving the global trend of original
signal V. The discarded frequencies are directly related to the
size of the structural element and the sampling process; that
is, given a structural element of size k, it represents a tempo-
rality of kf, where f is the mean frequency of acquisition of
V,. Then the process of filtering f(V,,) is statistical consistent
if and only if V', minus V,, preserve the following equality:

p(V,-V)=G(0,0). (11)

This is, the density distribution function of the difference
between filtered data and original data is a normal
distribution centered at the origin. The development of
correct statistical filter must satisfy (9), where it is appreciated
that opening and closing reconstruction operators provide
negative and positive bias information of the approximated
surface. The original signal is enveloped by the opening
reconstruction and closing reconstruction, respectively, such
that y,, (V) <V, < ¢,,(V). Consequently, for estimating V,,
using y,; (V) and ¢, (V) and considering that E[{N, ,}] =0,
and approximation to V,, is

W) = af (V) + 0,0, (V), (12)

where «; and «, are values between [0, 1] and its sum is the
unit. In case that )7#L(V) and (])’#L(V) use the same structural
element, &, = a, = 0.5.In other cases these values would vary
depending on effects of the geometry in the reconstruction
process. The filter described above is denoted as a medium
reconstruction filter. An extension of this filter implies a
sequential form, where the properties of the structural ele-
ment used in reconstruction stage should be varied as follows:
let p(uL, k) be a function that returns a structural element
with particular properties for k instant; sequential version of
medium reconstruction filter is defined as

f:(;u,,k) (V) = fi(yL,k) . f:(;u_,k—l) (V)oon f:(ML,l) (V).
(13)

Note that function p(uL, k) would vary the size and the topol-
ogy of the structural element. The topology and size will affect
the model that fits the data. The effect of applying the medium
filter by reconstruction is illustrated in Figure 8, where in
Figure 8(a) are presented the original data (blue color) and
the filtered data (red color). As is appreciated, filtered signal
follows the main trend of the original signal, discarding
the high frequencies, and always statistical properties are
kept as it is appreciated in Figure 8(b). This figure shows the
difference of filtered image and original. This property makes
it ideal for filtering data, improving the results when raw
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FIGURE 8: (a) Matching of original data and filtered data with the morphological medium filter. (b) Histogram of differences from original
surface and reconstructed surface, as noted, the expected value is centered in zero and would be considered as a normal distribution.

data fit the exponential decreasing function. For a detailed
analysis the bias and RMSE error are showed for the case of
filter and nonfilter signal. Bias error behaves to close in both
scenarios; but the RMSE is deeply reduced, which means that
the fitting process results are better, after filter data (Table 1).

5. Results and Discuss

The proposal described above is tested under an experimental
method that consists of analyzing a sequence of images that
contains cells, which are exited applying Flour 4, in order to
measure the effect over Ca** belonging to each cell and char-
acterizing its behavior. The process is illustrated in Figure 9.
The process diagram sums up the sequence of processing
steps done over the sequence. The sequence of images
was acquired from biological researchers of the Institute
of Neurobiology, Campus UNAM-UAQ. The sequence was
obtained from cells of Xenopus laevis frog. The calcium is

measured indirectly with its excitation via Fluo-4 (by Molec-
ular Probes). The optical material consists of a microscopy
of fluorescence, setting up in an Olympus camera sensor
IX71 at 485 to 520 wavelength sensitivity nm (excitation-
emission, respectably); finally the images were acquired with
fast acquisition camera (Evolution QEi Media Cybernetics),
at 30 frames per second (Fps) with a resolution of 320 x
240 pixels. Finally, for testing purposes, 1,000 images have
been selected, which represents temporary a sequence of 33-
second length. The cell detection is a tough task because there
are many factors which inside directly in the analysis process,
as the nonhomogeneity luminance conditions of the images
and the conditions that present the cells of interest. After
the image acquisition, the following task consists of finding
out and segmenting each cell. This process is performed via
watershed approach. However, starting from the first frame
acquired does not warrant correct cell detection. To make
more robust the cell process detection, for each image, the
cells are detected, as described in the third th section. Once
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TaBLE 1: Errors of modeling with/without use of a median recon-
struction filter.

Cell Filtering Without filter
BIAS RMSE BIAS RMSE

1 0.0996 0.0415 0.0967 385.1000
2 0.5179 0.4742 0.1611 1304.4000
3 0.6913 1.7530 0.3772 7913.6000
4 1.1718 1.2087 0.3229 2906.9000
5 0.6538 0.7799 0.2144 2339.9000
6 0.7412 1.0012 0.1904 2306.6000
7 1.3467 1.2601 0.2079 1718.6000
8 1.1380 1.3794 0.2082 2282.1000
9 0.5010 0.4614 0.1823 1566.5000
10 1.4760 11212 0.1832 1198.6000
11 1.4346 0.9506 0.1091 620.1000
12 1.1730 1.6871 0.3167 4.1090
13 0.3320 0.2412 0.1132 0.5596
14 0.3510 0.1794 0.1601 703.2000
15 0.7043 0.7558 0.2293 2077.9000
16 1.6021 3.0539 0.2142 2721.2000
17 0.2594 0.1767 0.1605 999.4000
18 0.1688 0.0566 0.1144 343.6000

s N

Image acquisition
N J
s = N
Cell detection
N J
s Ll N
Calcium measuring
N J
s ~ N
Fitting exponential model
N J
s = N
Analysis of results
N J

FIGURE 9: BlocK’s diagram of the proposal.

the cells are detected, the neighborhood around the cell is
considered to analyze the calcium concentration. The calcium
concentration is performed by the measure of the luminance
of each cell. The relation between the luminance intensity of
the cell is highly correlated with the calcium concentration;
that is, cells with high luminance have major calcium con-
centration. Next, the creation of the model of behavior results
in a difficult task, because the behavior observed is not linear
with the use of autoregression methods being inappropriate
[15]. Then, discarding the times where the cell started to
become excited, the dynamic of decreasing is modeled with
an exponential function via least square method. The selected
data includes the maxima location to the vanishing exited
behavior. As recreated better the model, before applying least
squared, the median filter by reconstruction is applied, which

12000
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8000 .-

6000 L

Volume of cells

4000

LU S —

0 100 200 300 400 500 600 700 800

Frames

—— Volume of cell
—— Fitting curve

(b)

FIGURE 10: (a) Cells segmented, (b) curves calculated by the least
squares fitting.

improve the accuracy of the modeling. Finally the results
are showed in Figure 10. Observe, in Figure 10(a), that the
cells are detected and the dynamic modeled as exponential
superposed over measured data is showed (Figure 10(b)).
The use of filter dismisses the high frequencies smoothing
the behavior of luminance variations. The dismissing of
high frequencies adds extra accuracy warranting that the
exponential fitting has more significance, although the data
are affected by noise effects. Finally, the way of how the
cells were segmented represents a framework to analyze the
intracellular calcium, which segment automatically the set of
cells. This process is convenient in the sense that many of
microscopic dynamics could be analyzed efficiently providing
better information to the biologists.

6. Conclusions

In this paper, an automatic method for the study of intracel-
lular calcium based on a marked controlled watershed trans-
form for segmenting stage is presented. A new filter based
on reconstruction operators is introduced. Then, having a
high precision of cell segmenting and efficient ways to discard
the noise measurement result the base for an automatic
frameworks analysis as the experimentation shows. Finally,
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the reconstruction operators applied over one dimension data
results usefully in the development of filters that help to create
models of the dynamic of the calcium.
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