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We present a high-capacity model for one-shot association learning (hetero-associative
memory) in sparse networks. We assume that basic patterns are pre-learned in networks
and associations between two patterns are presented only once and have to be learned
immediately. The model is a combination of an Amit-Fusi like network sparsely connected
to a Willshaw type network. The learning procedure is palimpsest and comes from earlier
work on one-shot pattern learning. However, in our setup we can enhance the capacity
of the network by iterative retrieval. This yields a model for sparse brain-like networks
in which populations of a few thousand neurons are capable of learning hundreds of
associations even if they are presented only once. The analysis of the model is based
on a novel result by Janson et al. on bootstrap percolation in random graphs.
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1. INTRODUCTION
In the last decades the problem of fast pattern learning has been
intensively studied. Amit and Fusi (1994) introduced a model
of auto-associative memory for sparsely coded patterns in fully
connected neuronal networks and showed that in this model an
ensemble of N neurons can store almost quadratically many pat-
terns before it starts forgetting old ones, even if each pattern is
only presented once. In this paper we consider hetero-associative
memory instead of auto-associative memory, i.e., relation learn-
ing instead of pattern learning. Moreover, we do not only require
fast learning, but also fast retrieval of the learned associations. We
incorporate this requirement into our model by considering for
each retrieval only the first spike of each neuron, ignoring all fur-
ther spikes. In particular, our model is spike-based rather than
rate-based.

Traditionally there have been two main models for hetero-
associative memory: the model by Willshaw et al. (1969) based
on clipped Hebbian learning, and the networks introduced
by Hopfield (1982) (see also Knoblauch et al., 2010 for a
review and comparison). Both achieve storage capacities close
to the information theoretic upper bound for sparsely coded
patterns (Knoblauch et al., 2010). The Hopfield networks are
rate-based and aim for convergence to a stable state through
auto-feedback, thus they are designed for retrieval in medium
or long time scale. The fast learning model in Amit and Fusi
(1994) falls in this category, and we compare with it in more detail
in Section 2.2. On the other hand, the Willshaw model is both
fast-learning and fast-retrieving, but high capacities come at the
cost of low retrieval accuracy (Buckingham and Willshaw, 1991).
Various ways have been found to overcome this issue, including
adaptive thresholds as in Buckingham and Willshaw (1991) and
bidirectional iterative retrieval schemes as in Sommer and Palm

(1998). Our model is related to the latter approach, except that we
are more restrictive in the retrieval procedure so that the model
is still fast-retrieving (cf. also Section 4.1): we consider a bipartite
graph with partite sets A and B, where all edges are directed from
A to B (“afferent edges”), and iterative retrieval is only achieved
by the edges in B (“recurrent edges”) (see Figure 1 for the setup).
In this respect, a similar retrieval scheme for the Willshaw model
has been studied by Knoblauch and Palm (2001), with the dif-
ference that they used inhibition to stop the spread of activity
after the pattern is activated, and that they use a global feedback
scheme for threshold control. The latter feature allowed for higher
fidelity of retrieval and for a threshold that it is independent of
the pattern size. While the Willshaw model may also serve as a
model of fast learning, we follow the approach in Amit and Fusi
(1994) and use binary Hebbian learning with pruning (see below)
so that the total number of synapses is unaffected by the number
of learned associations. However, in contrast to the model of Amit
and Fusi, since we only consider the first spike of each neuron,
a neuron can never go from state “active” to “inactive” since it
can not retract a spike that it elicited earlier. All these restrictions
are biologically motivated, and the biological background can be
found in more detail in Section 4.1.

The guiding idea for our model is that a pattern may be
stored locally in a cortical column of N ≈ 5000 neurons, but
that it is necessary to associate patterns in different columns
or even different regions of the brain. Therefore, the density
between different patterns is much lower than the density within
a pattern (Binzegger et al., 2004). The combination of low affer-
ent density and a population size of only 5000 neurons makes
it impossible to transfer the existing models for fast learning
straightforwardly (cf. Section 2.2). However, by making use of
recurrent connections (connections between neurons within a
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pattern) we are able to show that the resulting iterative retrieval
of the pattern allows our model to operate in the range prescribed
by biology (see Figure 2 for an example).

We analyze the model both mathematically and with simu-
lations. The mathematical analysis investigates the limiting case
N → ∞. Our main tool is the result of Janson et al. (2012)
for bootstrap percolation in a random graph. We extend their
result in order to analyze iterative retrieval of a pattern. As a
side effect of our calculation we also deduce optimal param-
eters for a high memory capacity. In particular, we find that
the desired plasticity has a non-trivial optimum: it should nei-
ther be too small nor too high, cf. Figure 3. Similarly, memory
capacity depends on the patterns size in a unimodular way, cf.
Figure 4, that is the pattern size should neither be too small nor
too big.

2. METHODS
2.1. MODEL OVERVIEW AND ASSUMPTIONS
2.1.1. Setup and terminology
Let G be a directed graph with vertex set V = A ∪ B where the
sets A and B are of equal size N (cf. Figure 1). Edges between
vertices of the same set are called recurrent, those from A to B
afferent. All edges between A and B are directed toward B. Edges
can be either weak or strong. A vertex gets activated if it is con-
nected to at least K active vertices by strong edges, where K is a
parameter of the model.

We consider the following learning problem. Let (Ai)i ≥ 0 and
(Bi)i ≥ 0 be sequences of random subsets (patterns) of A and B,
respectively, with sizes |Ai| = |Bi| = n for i ≥ 0. We sequentially
present each pair (Ai, Bi) once. At the presentation of each pair
we may change some of the afferent edges from strong to weak
or vice versa. In the recall phase we activate all vertices of Ai and
let activation propagate. The pair (Ai, Bi) is called memorized if
activation of the vertices in Ai leads to an activation of the vertices
in Bi. More precisely, we want to activate at least αfidn vertices in
Bi (fidelity), and at most αspcn vertices outside of Bi (specificity).
An insertion is considered successful if the pair is memorized right
after insertion.

Note that due to the presence of recurrent edges activation can
propagate: a small set of initially active vertices in Bi (arising from
activity in Ai) can eventually activate a much bigger set. More pre-
cisely, we start with an active set consisting of the vertices in Ai. In
the first round we then activate all vertices that have K neighbors
in Ai to which they are connected by strong edges. In the second
round all vertices get activated that are connected by K strong
edges to vertices in Ai or to vertices that were activated in the first
round, and so forth. Note that here we tacitly assume that sig-
nal propagation is so fast that activation can take place in rounds.
Since only strong edges count for activating a neuron, we define
the degree deg (v; S) of a vertex v with respect to a set S ⊂ V to be
the number of strong edges between v and S.

Observe that due to our setup the oldest associations have
the worst quality. Moreover, we choose a pruning parameter (see
below) in such a way that the expected number of strong edges
remains constant regardless of the number of shown relations,
i.e., the model is a palimpsest (see Nadal et al., 1986). (Note that
we take the point of view that the edges within a pattern are
fixed, while the afferent edges are plastic; that is, the model is

FIGURE 1 | Network setup and learning procedure. See Section 2.1 for a
more detailed explanation.

a palimpsest for association learning, not for pattern learning.)
We are thus interested in determining the maximum number M
(the capacity of the model) of additional associations that can be
learned so that the set A0 can still activate its partner B0.

We study learning in a sparse random setting. We assume
that afferent edges are present with probability ρaff, indepen-
dently. Before learning starts we turn every afferent edge strong
with probability raff, independently. Note that raff impacts how
many edges a vertex outside B0 receives from A0 which also
depends on n.
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FIGURE 2 | Capacity (M) vs. pattern size (n). The plots show the mean
number of associations that can be inserted until the first association is
no longer memorized. The blue curves correspond to a setup without
percolation (i.e., recurrent density is 0), while the red and yellow curve
correspond to percolation with recurrent degree 4 and 8 respectively. In
(A) ρaff = 0.2, raff = 0.1, p+ = 0.6; the values for K were chosen to give

stable results for n in a wide range. (B) Shows a sparser setup with
ρaff = 0.05. Here raff = 0.05, p+ = 0.6 and K is again chosen to optimize
capacity. In both experiments N = 5000 and the mean is over 500 trials
with standard deviation as shown; error bars represent standard mean
error. In both cases capacity was only considered if at least 99% of all
insertions were successful.

FIGURE 3 | Plasticity (afferent insertion probability, p+) vs. capacity for

different pattern sizes and values of K . The relevant parameters are
chosen as in Figure 2A where ρrecn = 4. Error bars represent standard
mean error and there are 100 trials per data point. We observe that values
close to the optimum can be obtained with relatively small insertion
probability. Note that the exact value of p+ is not very important as long as
it exceeds a certain threshold.

As we assume that patterns Bi correspond to “concepts” that
are already known, we insert recurrent edges as follows. Each edge
in B is present with probability ρrec independent of other edges
and all of them are initially weak. For each pattern Bi we turn all
the edges between pairs of vertices in it strong. In particular, B
corresponds to a sparsely connected Willshaw network.

2.1.2. Learning procedure
In order to learn an association (Ai, Bi) during its presentation we

• Turn each weak afferent edge between Ai and Bi strong (“insert
it”) with probability p+,

• Turn each strong afferent edge between A \ Ai and Bi weak
(“prune it”) with probability p−,

FIGURE 4 | This plot illustrates the same experiment as in Figure 2A,

but we vary raff and provide the data for different values of K (as

indicated in the plot). It shows that increasing raff can yield a higher
capacity but it comes at the price of only working for a small range of
possible pattern sizes. Each data point is the mean of 100 trials where
capacity is only considered if at least 99% of the insertions were
successful.

cf. Section 4.2 Note that the first step is a stochastic form of
Hebbian learning (Barrows, 1998). The second step is a normal-
ization step. Hence, we choose p− in such a way that the expected
degree for each vertex in Bi stays constant. Observe that the “ran-
domness” assumption means that a vertex b ∈ Bi is expected to
have ρaffn edges from vertices in Ai out of which an raff-fraction
are strong and (N − n)ρaff edges from vertices in A \ Ai out of
which also an raff-fraction are strong. The learning procedure
will thus, in expectation, turn (1 − raff)ρaffnp+ edges strong and
raffρaff(N − n)p− edges weak. We thus set

p− = 1 − raff

raff
· n

N − n
· p+. (1)
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2.2. COMPARISON WITH THE MODEL OF AMIT AND FUSI
Our model builds upon the work on the well-studied (Amit and
Fusi, 1994) model (AF model) and its extensions (cf. Battaglia and
Fusi, 1994; Brunel et al., 1998; Romani et al., 2008; Amit and
Huang, 2010). In particular, the learning paradigm is identical.
The main differences are:

- The AF model studies auto-associative memory instead of
hetero-associative memory. Thus, it considers only one popu-
lation of neurons (instead of two populations in our model),
and in the learning phase patterns are presented instead of
pairs of patterns. Consequently, the AF model does not need
to distinguish between recurrent and afferent connections. It is
well-known that association learning is easier to humans than
pattern learning (see Fanselow, 1990).

- All studies on the AF model assumed a complete underlying
graph. However, it is straightforward to extend the model to
sparse, randomly connected graphs, cf. below. The asymptotics
of the capacity remains the same; more precisely, both for the
complete graph and the sparse random graph, it is possible to
learn θ(N2/ log2 N) patterns before the first pattern is forgot-
ten. However, the density (probability of two neurons being
connected by a synapse) will enter via the constant hidden in
the θ-notation. Actually, it dramatically reduces the capacity for
neuron populations of size, say, N = 5000, i.e., for magnitudes
of N where neurophysiologically we may assume a constant
density (cf. below).

- The AF model investigates whether an activated pattern forms
an attractor state in the state space. Consequently, a pattern
is remembered in the AF model if every neuron in a pat-
tern A has at least K neighbors in A, and every neuron out-
side of A has less than K neighbors in A. This view is not
suited if the underlying graph is assumed to be a sparse ran-
dom graph, as there is always a constant probability that a
vertex has less than K (strong or weak) neighbors in the pat-
tern. A pattern containing such a vertex can then never be
in an attractor state, even if all the edges in the pattern turn
strong. We therefore require that only an αfid-fraction of the
pattern is activated, where 0 < αfid ≤ 1 is a parameter that
we may choose. For αfid = 1 we are back in the Amit-Fusi
model.

Note that the requirement in the AF model is weakest pos-
sible in terms of attractor networks. For example, one might
ask what part of the state space is attracted into the pattern
state. For such question, the update rule may be important,
and it is known that iterative retrieval is superior to one-step-
retrieval (Schwenker et al., 1996). However, all such questions
break down if the pattern state is not a stable attractor.

- The other, and actually main, difference to the AF model is
that we consider hetero-associative memory instead of auto-
associative memory, i.e., we do not activate the pattern itself
(and require that it stays active), but we activate a pattern
Ai and investigate whether this pattern is able to activate its
“partner” Bi. Without recurrent edges this boils down to the
question whether all (or, cf. above, an αfid-fraction) of the
neurons in Bi have at least K neighbors in Ai. This spe-
cial case is equivalent to the question whether a pattern is
memorized in the AF model. With recurrent edges propaga-
tion of activity will allow us to show that we actually need
only a small fraction of the neurons in Bi to have at least K
neighbors in Ai; propagation of activity will then nevertheless
ensure that an αfid-fraction of the neurons in Bi is activated
(see Figure 5). In other words, the AF-model (or rather its
hetero-associative equivalent) may be viewed as a starting point
of our considerations, as we essentially copied the learning
rule and also focus on fast learning. However, as we consider
hetero-associative memory we are able to make use of recurrent
edges.

Our assumptions are motivated by facts known from neurophysi-
ology. We assume that the two neuronal ensembles are in different
areas of the brain. A neuron in the brain is connected to 10–20%
of its closest neighbors, and this number drops sharply with dis-
tance exceeding 200–300 µ (see Song et al., 2005; Le Bé et al.,
2006; Perin et al., 2011; Levy and Reyes, 2012). The size of the
input layer of a cortical column contains roughly N ≈ 5000 neu-
rons (Meyer et al., 2010). This is also roughly the number of
neurons within a ball of radius 300 µ (Beaulieu and Colonnier,
1983). The data from Kalisman et al. (2005) suggest that plau-
sible values for the densities within such neuron populations of
such a size are of the order of 0.1–0.2, while the afferent density is
substantially lower (Binzegger et al., 2004).

FIGURE 5 | Illustration of the degree distribution of vertices in B \ B0

(noise) and B0 (signal) w.r.t. A0. Left: Without recurrent edges, the overlap
of both distributions must be extremely small. Right: Percolation allows
activating the pattern via recurrent edges with fewer strong afferent edges.

This dramatically influences the location of the optimal activation threshold K
and the signal degree distribution can be much closer to the noise
distribution while the pattern is still memorized. The differences between
both scenarios are exaggerated to highlight the different mechanisms.
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3. RESULTS
3.1. THEORETICAL RESULTS
The effect of learning an association will diminish over time
due to later pruning steps. Clearly, this is most critical for the
association (A0, B0). In this section we thus analyze the recall
properties of this association only. Note that we do not aim
for precise asymptotics, but rather we give an intuition for the
underlying mechanisms of the process. Within the calculations
we will therefore make some simplifying assumptions (the Erdős-
Rényi assumption in Section 3.1.2 and the Janson assumption in
Section 3.1.4). In Section 3.1.5 we then discuss the effect of these
assumptions. In order to study whether we can activate pattern B0

by activating A0 we need to know the degree distribution of ver-
tices b ∈ B0 (for fidelity) and b ∈ B \ B0 (for specificity) into A0.
To do so we first consider the probability that a single, fixed edge
is strong.

3.1.1. Edge probabilities
Let a ∈ A0 be arbitrary. For b ∈ B we denote by psignal and pnoise

the probability Pr[{a, b}strong | {a, b}is an edge] in the cases b ∈
B0 and b ∈ B \ B0, respectively. First consider b ∈ B \ B0. After
presentation of (A0, B0) we have pnoise = raff as the learning pro-
cedure did not touch the edge {a, b}. We show by straightforward
induction that pnoise remains at this value regardless of how many
additional pairs (Ai, Bi) are learned, so

pnoise = raff (2)

at any time. Indeed, after presenting one more association
(Ai, Bi), {a, b} is strong with probability raff + (1 − raff)p+ if
a ∈ Ai (which happens with probability n/N) and with prob-
ability raff(1 − p−) if a 
∈ Ai (which happens with probability
(N − n)/N). Thus, Pr[{a, b}strong] = n

N · (raff + (1 − raff)p+) +
N−n

N · raff(1 − p−) = raff also in this case, where the last equality
follows from Equation (1).

In contrast, psignal changes after each association presentation.
Let us denote by psignal(i) the value after i additional associa-
tions were learned. Then psignal(0) = raff + (1 − raff)p+, and by
considering an argument similar as above we see that with each
new association the probability of an edge being strong drops as
follows:

psignal(i + 1) = N − n

N
psignal(i)+ n2

N2

(
psignal(i) + (psignal(i))p+)

+ n(N − n)

N2
psignal(i)(1 − p−)

= psignal(i)

(
1 − n2p+

N2raff

)
+ n2p+

N2
,

where the last inequality again follows from Equation (1). In par-
ticular, we find that the difference �(i) := psignal(i) − raff decays
exponentially with i:

�(i + 1) = psignal(i + 1) − raff

= psignal(i)

(
1 − n2p+

N2raff

)
+ n2p+

N2
− raff

= (
psignal(i) − raff

) (
1 − n2p+

N2raff

)

= �(i)

(
1 − n2p+

N2raff

)
.

Consequently, we obtain an explicit formula for psignal(i) as

psignal(i) = raff + β i(1 − raff)p+, (3)

where β := 1 − (n/N)2 · p+/raff. For short reference, we
will denote by psignal = psignal(M) the probability after M
presentations, where M is the capacity of the system cf. below.

3.1.2. Degree distribution
In order to investigate propagation of activity we need to know
the degree distribution of vertices b ∈ B into A0. Assuming inde-
pendence of the probabilities that we computed in the last section,
we get

deg(b, A0) ∼ Bin(n, ρaff · pnoise)

= Bin(n, ρaff · raff) for b ∈ B \ B0 (4)

and

deg(b, A0) ∼ Bin(n, ρaff · psignal(i))

= Bin(n, ρaff · (raff + β i(1 − raff)p+)) for b ∈ B0,(5)

and all these distributions are independent.
For all asymptotic computations we assume that the edges are

independent.1 We call this the “Erdős-Rényi assumption,” since
it implies that the edges between A0 and B0 are given by an
Erdős-Rényi random bipartite graph model Bn,n;p for some edge
probability p. Similarly, we assume that the edges between A0 and
B \ B0 and the edges within B0 are given by Erdős-Rényi ran-
dom graphs Gn,p′ (for some different edge probability p′). Under
the “Erdős-Rényi assumption” Equations (4) and (5) are valid.
Clearly, we do make some error here; however, one can show that
the probability that the assumption is violated tends to zero for
N tending to infinity. Similar results are known for the Willshaw
model (Knoblauch, 2008). We abstain from estimating the error
for finite N, but instead provide some experimental evidence in
Section 3.2.

3.1.3. Learning without recurrent edges
In order to understand the effect of recurrent edges, we first con-
sider the case of no recurrent edges. This scenario is actually very
closely related to the AF model. Recall that the AF model assumes
that the input must be able to activate all neurons in the pattern
(αfid = 1.0). For a sparse setting this seems overly restricive. In
this section we thus also consider the case αfid = 0.5 (for which
the calculations below are particularly easy). As we will see the

1Strictly speaking, edge probabilities are not independent. For example, if
there exists 1 ≤ i ≤ M, a1, a2 ∈ A0 ∩ Ai and b ∈ B0 ∩ Bi then the events that
{a1, b} is strong respectively that {a2, b} is strong are positively correlated.
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benefits (in terms of memory capacity) of a such a seemingly
much smaller value is in fact quite moderate.

In the previous section we argued that we may assume the
degree distribution to be binomial. In this section we will fur-
thermore assume that for large enough values binomial distribu-
tions are well approximated by normal distributions.Recall from
Equation (3) that the expected probability for an edge between A0

and B0 to be strong is

psignal = psignal(i) = raff + β ipsignal(0),

where psignal(0) is the probability immediately after present-

ing association (A0, B0), and β =
(

1 − n2p+
N2raff

)
. Recall also that

the difference �(i) = psignal(i) − raff decays with each additional
pattern by a factor of β.

The memory capacity M is determined by three variables: the
factor β by which the differences �(i) decay, the initial differ-
ence �(0), and the minimal difference � for which the pattern
can still be retrieved. More precisely, the capacity is given by
M = logβ (�(0)/�).

As Amit and Fusi noticed in their seminal paper, in the N →
∞ limit it is possible to learn a large number of patterns by mak-
ing the decay factor β very close to one. More precisely, setting
n = θ( log N), the quotient �(0)/� turns out to be constant, and

M = log1/β (�(0)/�) = log (�(0)/�)

log (1/β)

= θ

(
1

log (1/β)

)
= θ

(
N2

n2

)
. (6)

Here we will investigate the effect of a smaller activity threshold
αfid. The value of αfid obviously does not change β and �(0). It
only affects the minimal difference �. So we need to estimate �

for various values of αfid.
The minimal difference � is determined by two requirements

on the activation threshold K. Firstly, K must be large enough
that no noise occurs. This is the case if the probability that a
neuron in B \ B0 has degree K is at most αspcn/N. Since we
assume the degree distribution of such neurons to be binomially
distributed with mean μspc = nρaffpnoise = nρaffraff and variance
σ 2

spc = nρaffraff(1 − ρaffraff), we use the normal approximation of
the binomial distribution to deduce that we need

αspcn

N
> Prob[N (μspc, σspc) ≥ K] ≈ 1√

2πσ 2
spc

e−(K− μspc)2/(2σ 2
spc)

,

or equivalently

K > nρaffraff + σspc

√√√√√2 log

⎛
⎝ N

αspcn
√

2πσ 2
spc

⎞
⎠. (7)

Secondly, K must be small enough that we can activate an αfid

fraction of B0. Similarly as above, this time using the normal
distribution with mean μfid = nρaffpsignal and variance σ 2

fid =
nρaffpsignal(1 − ρaffpsignal), we get for αfid = 1 − 1

n that

K < nρaffpsignal − σfid

√√√√√2 log

⎛
⎝ 1

αfid

√
2πσ 2

fid

⎞
⎠. (8)

If, on the other hand, we are satisfied with αfid = 0.5, then we
only need the mean of the distribution to be larger than K, so we
only need

K < nρaffpsignal (9)

in this case.
For αfid = 0.5 we may combine inequality Equation (7) and

(9) to obtain an explicit formula for the minimal difference � =
psignal − raff that is sufficient for recall:

� ≈ σspc

nρaff

√√√√√2 log

⎛
⎝ N

αspcn
√

2πσ 2
spc

⎞
⎠. (10)

Note that we need � < 1, as � is supposed to be a probability.
From this we deduce that n cannot be too small. More precisely,
we need n = 	( log N), as already observed by Amit and Fusi
(1994).

For αfid = 1 − 1
n , we may combine inequality Equation (7)

and (8) to get a bound on �. In this case, an explicit solution is
not possible. However, keeping in mind that � remains bounded
as N → ∞, we may rewrite psignal = raff + � to deduce

� >
σspc

nρaff

√√√√√2 log

⎛
⎝ N

αspcn
√

2πσ 2
spc

⎞
⎠

+ σfid

nρaff

√√√√√2 log

⎛
⎝ 1

αfid

√
2πσ 2

fid

⎞
⎠. (11)

Since σfid = θ(
√

n) the second term tends to 0. On the other hand
for n = θ( log N) the first term remains constant [and thus σspc =
θ(

√
log N)]. Therefore, we will get the same asymptotic behavior

for the memory capacity from Equations (10) and (11). Thus, in
the limit we will not see any difference (not even in the leading
constant factor). For small values of n and N, however, both terms
in Equation (11) are of the same order of magnitude. So here we
do see a difference between 100% activation and 50% activation.
Note however that even if both terms are of the same order of
magnitude we only gain a factor of ≈2—but we would gain much
more if we could replace the plus sign in Equation (11) by a minus
sign. Recurrent edges allow essentially that, as we will see in the
next section.

3.1.4. Learning with recurrent edges: percolation
In the previous section we derived that the number of patterns

that can be learned satisfies M ≈ N2raff
n2p+ log

(
�(0)
�

)
, where �(0) =

psignal(0) − raff is the difference between signal and noise at start
and � is the minimal difference for which retrieval is possible.
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While this formula is asymptotically very satisfactory, it fails to
give good results for realistic values like N = 5000 and raff = 0.1.
Working out the numbers one sees that then the fraction �(0)

�

will be extremely close to 1 or even less than 1 (in which case no
learning is possible at all). We have also seen that decreasing αfid

from 1.0 to, say, 0.5 has no dramatic effect as it only increases �

by a factor of roughly two. Similarly, allowing more noise only
increases � by a small, constant factor.

In this section we show that using recurrent edges and per-
colation theory can overcome this problem for small constants.
Figure 5 illustrates the underlying idea. Without recurrent edges
one has to ensure that the degree distributions of the signal and
the noise are so far apart that one can choose an activation thresh-
old K such that the noise distribution has only a tiny part to the
left (as these are the vertices that will get activated outside the pat-
tern), while the signal distribution should have a small part to the
right of K (as these are the vertices within the pattern that will not
get activated). Using iterative retrieval allows to essentially move
the two distribution on top of each other, as the condition for the
signal is replaced by “activate a small fraction” instead of “activate
almost everything.”

Percolation or, more precisely, bootstrap percolation was stud-
ied by Janson et al. (2012) for random graphs. Given an Erdős-
Rényi graph Gn,p and a random subset A of active vertices of size
|A| = a. Percolation studies the question for which sizes of A (as
a function of the size of the graph n and the edge density p) activ-
ity spreads to all (or at least almost all) vertices. Activity spreads
according to a K-threshold rule, i.e., a vertex turns active if it
has at least K active neighbors and once it turns active it remains
active. Janson et al. (2012) gave a complete characterization of all
occurring cases and phenomena. We do not state their result for-
mally, but instead give a sketch of their proof. Subsequently, we
then show how it can be transferred to our setting.

Let us recall the setup: we are given a random graph Gn,p and
we start with a (random) subset A of size |A| = a of active vertices.
Instead of immediately activating all vertices with enough active

neighbors, we expose the random graph Gn,p step by step by the
following, equivalent process.

Consider a set U of unexposed vertices and a set E of exposed
vertices. At the beginning we initialize U with the vertices from A
and let E start empty. Every time we expose a vertex from U (by
removing it from U , adding it to E and exposing the edges from
it to V \ E) we add newly active vertices to U . If U gets empty at
some point in time we add a random (unexposed) vertex to it.

In order for the process to percolate one needs that at every
time t there are still unexposed vertices, i.e., the set U is non-
empty. Observe that at time t (that is, when |E| = t) every vertex
in V \ E has revealed exactly t (potential) edges. That is, it is
active at time t with probability p′ = Pr[Bin(t, p) ≥ K]. Let S(t)
denote the set of vertices in V \ A that are active at time t and
let s(t) = |S(t)|. Then s(t) is distributed as Bin(n − a, p′). Since
we assume the process to percolate, the t exposed vertices are all
active. Hence, the size of U at time t is s(t) + a − t.

So we percolate if and only if for all t we have Bin(n − a, p′) >

t − a. In Janson et al. (2012), the authors proved that for large n
we may replace the binomial distribution by its expectation (we
call this the Janson assumption). Thus, we percolate if and only if
we have

(n − a) Pr[Bin(t, p) ≥ K] > t − a for all t ≥ 0. (12)

Essentially, one can read off the conditions for percolation from
Equation (12), cf. Janson et al. (2012) for the formal derivation.
The key point is that whenever the edge probability is sufficiently
high (e.g., p ≥ (1 + δ) log n/n, for any δ > 0) then we only need
to activate a set A of size � (npK )−1/(K−1) = o(n) in order to have
(almost) full percolation with high probability.

We now transfer these results to the learning scenario studied
in this paper. If we assume that within Bi the edges form a random
graph with density ρrec then the above percolation result tells us
that we only have to activate a tiny portion of Bi directly in order
to achieve full activation of Bi. Figure 6 illustrates this effect. As

FIGURE 6 | Change of activity inside the pattern as more competing

associations are learned. (A) The x-axis denotes the number of
associations exposed to the model and the y-axis gives the mean
number of active vertices over 20 trials. We compare the activity due to
afferent edges only (blue) and after percolation via recurrent edges (red).
The dashed yellow curves give examples of single instances of the
process after percolation. Note that since fidelity is 80% we count the
pattern as being activated if we percolate to at least 112 vertices. Thus,
in expectation we can learn 182 patterns for this choice of parameters.

(B) Mean ratio of strong edges to all edges over 20 trials. We compare
the density of strong edges amongst present edges between A0 and B0

and between A0 and B \ B0. As expected, due to normalization of strong
edges the density toward B \ B0 remains fixed. Note also that the
fidelity threshold from (A) induces a density threshold, dashed green
line. Above threshold percolation works but below it does not. Here the
value of the threshold is ≈ 0.33. For both plots N = 5000, n = 140,
K = 12, p+ = 0.6, raff = 0.1, ρaff = 0.2, and the recurrent degree is 8. For
both figures the error bars represent standard mean error.
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Figure 6A shows, it suffices to activate even a small bootstrap
afferently in order to activate the whole pattern by percolation.
Moreover, observe the threshold effect: while the afferent density
stays above some threshold value, percolation activates almost the
complete pattern; below this threshold, activity does not spread.
This is the basis for our analysis: once we know the threshold,
we can compute how the afferent density evolves over time to
determine when it hits the threshold (Figure 6B).

It remains to determine the threshold. Actually, our situa-
tion is even better than the one studied in Janson et al. (2012):
every vertex in Bi has an afferent degree into Ai distributed as
Bin(n, ρaffpsignal). For some vertices this degree will be at least K
and they thus get activated immediately. Other may have degree
almost K, but the recurrent edges to the vertices that were acti-
vated immediately will bring the degree above K, etc. For a formal
study we proceed similarly as above: we consider a set U of unex-
posed vertices that at t = 0 contains all vertices whose afferent
degree is at least K. While percolation runs we again add active
vertices to U . Observe that in this scenario a vertex of Bi is active
at time t with probability

p′ = Pr[Bin(n, ρaffpsignal) + Bin(t, ρrec) ≥ K]
= Pr[Bin(n, ρaffpsignal) ≥ K]

+
K − 1∑
i = 0

Pr[Bin(n, ρaffpsignal) = i] · Pr[Bin(t, ρrec) ≥ K − i].

Again we denote by S(t) the set of vertices in Bi that are active at
time t and let s(t) = |S(t)|. Then s(t) is distributed as Bin(n, p′).
In order to percolate we need s(t) > t for all 0 ≤ t < n. Replacing
the binomial distribution by its expectation (as we may do under
the Erdős-Rényi assumption by Janson et al., 2012) we obtain that
we percolate if and only if

n · Pr[Bin(n, ρaffpsignal) + Bin(t, ρrec) ≥ K] > t for all t ≥ 0.(13)

For a fixed value of ρrec Equation (11) thus allows us to determine
the probability of edges being strong afferently psignal that we need
in order to achieve percolation.

We close this section with the remark that while percolation
has a dramatic effect for finite values, it does not change the
asymptotics of the memory capacity. To see this observe that we
need to be able to activate at least one vertex in Bi due to the affer-
ent edges alone. By a similar argument as for Equation (11), we
thus get

�percolation >
σspc

nρaff

√√√√√2 log

⎛
⎝ N

αspcn
√

2πσ 2
spc

⎞
⎠

− σfid

nρaff

√√√√√2 log

⎛
⎝ n√

2πσ 2
fid

⎞
⎠. (14)

Note that the main change compared to Equation (11) is the sign
of the second term. As before, for N → ∞, the first term will

remain constant [for n = θ( log N)], while the second term will
tend to 0. Hence, we will not see any difference in the asymptotic
capacity. The influence of percolation is limited to finite values of
N; but, as we saw in Figure 4, the differences of the two models
are substantial for values of N and ρaff as they occur in the brain.

3.1.5. Error estimates
The calculations in the previous sections rely on some approxi-
mations that are all valid in the N → ∞ limit. There are three
sources of errors that need consideration:

1. The Erdős-Rényi assumption (independence) may not hold.
2. The Janson assumption [cf. Equations (12) and (13)] may not

hold.
3. There is an error term that comes from replacing the binomial

distribution by a normal approximation.

In the previous section we handled (1) and (2) by arguing that
in the limit the probability that at least one these properties
does not hold tends to zero. By then analyzing the situation
under the condition that the Janson assumption and the Erdős-
Rényi assumption do hold, cf. Equation (12), we get an estimate
for what happens in the “typical” case. Unfortunately, to actu-
ally quantify the errors seems very hard, as for example, the
paper Janson et al. (2012) does not provide precise bounds for
the probability that (2) is violated.

In this section we thus show experimentally that the errors
induced by the approximations (1)–(3) are indeed small for the
chosen parameters. For each K, Figure 9 contains four curves:

a) The simulation result;
b) We use simulations to estimate the threshold for percolation

psignal in an Erdős-Rényi random graph, and computed the
capacity by Equation (6);

c) We use the Janson assumption in Equation (13) for t =
0, . . . , αfidn to estimate psignal, and compute the capacity by
Equation (6);

d) We use Equation (13) to estimate psignal as in (b), but with the
binomial distributions replaced by normal approximations.
Then we compute again the capacity by Equation (6).

The four curves quantify the errors 1–3 in the following way:

• In (b) we use the Erdős-Rényi assumption, but nothing else. So
the difference between a and b quantifies the error of type 1.

• In (c) we use the Erdős-Rényi assumption and the Janson
assumption. So the difference between b and c quantifies the
error of type 2.

• In (d) we use the Erdős-Rényi assumption, the Janson assump-
tion, and the normal approximations. So the difference
between c and d quantifies the error of type 3. Finally, the dif-
ference between a and d quantifies the overall contribution of
all three error sources.

To compare the errors to the second order terms in Equations (11)
and (14), recall that these terms are at least the difference between
the capacities with and without recurrent edges, up to error terms
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of type 1, 2, and 3. Therefore, we also plotted the capacity without
recurrent edges for different K (including the K that maximizes
the capacity). It is clearly visible that the difference between the
capacity with recurrent edges (highest blue curve) and the capac-
ity without recurrent edges (highest violett curve) is much larger
than the error terms. Thus, the errors of type 1, 2, and 3 are small
for plausible parameter values.

3.1.6. The optimal plasticity constant
From our consideration, we can derive the optimal value for the
plasticity p+. Note first that the minimal difference � = psignal −
raff for which we can still recall is independent of p+, regard-
less of α and regardless of whether we use percolation. Since the
capacity is

M = log (�(0)/�)

log (1/β)
= log

(
(1 − raff)p+

�

)
1

log (1/β)

≈ log

(
(1 − raff)p+

�

) (
N2raff

n2p+

)
, (15)

we essentially need to maximize a function of the form
log (c1p+) · (c2/p+). Such a function takes its maximum at p+ =
e/c1, where e = 2.718 . . .. Hence, the optimal p+ is

p+ = e�

1 − raff
.

For the case without recurrent edges this resembles the findings
in Romani et al. (2008). For the maximal capacity we hence get

M ≈ log

(
(1 − raff)p+

�

) (
N2raff

n2p+

)
(16)

= N2raff(1 − raff)

n2e�
.

Note that M is not independent of ρaff since � ∼ 1/
√

ρaff.

3.1.7. Noise tolerance
We study two types of noise tolerance, so called query noise, where
the activation of A0 is imperfect and recurrent noise, where we
start the recall with active vertices in B \ B0.

In the case of query noise we activate A0 with λ precision,
λ ∈ [0, 1], meaning that we activate λn vertices chosen u.a.r. from
A0 and (1 − λ)n vertices chosen u.a.r. from A \ A0. Note that
since there are n vertices active in A at the start of percolation
every vertex in B \ B0 expects the same amount of inputs as if A0

was activated with precision λ = 1 so the specificity constraint is
unaffected. However, for vertices in B0 they now expect to receive
λnpsignal + (1 − λ)nraff signals from A. We thus have that we can
still recall B0 after i insertions of competing associations if

λ(psignal(i) − raff) > �.

One easily checks that the difference in capacity between precision
1 and precision λ is

log1/β (1/λ) = θ

(
N2 log (1/λ)

n2

)
.

For recurrent noise with m noisy vertices the bootstrap consists of
A0 and m vertices chosen u.a.r. from B \ B0. In this case the acti-
vation of B0 w.r.t. the fidelity requirement is not affected but we
run the risk of percolation within B. Note that the edges within
B are not independently strong so we cannot directly apply the
percolation theory for Erdős-Rényi graphs. However, empirical
observations (see Figure 7B) indicate that there is still a thresh-
old phenomenon occurring for percolation which depends on
the number of patterns stored in B. Moreover, the same figure
shows that the capacity of the system is extremely stable against
recurrent noise.

3.2. EXPERIMENTAL RESULTS
The theoretical results obtained in Section 3.1 are for the limiting
case N → ∞. It is not possible to obtain explicit error terms since
the error terms for the threshold density psignal in the bootstrap
percolation are not known explicitly. For this reason we test our
results in a bioplausible range with N = 5000 neurons in A and
B each (cf. Section 2.2).

For all the relevant figures we perform one shot learning as
described in Section 2.1.2. In order to realize a recurrent density
of ρrec within the patterns we proceed as follows: we initialize the
set B as a random graph with edge probability ρrec with all the
edges weak. When we insert a pattern in B we turn all the edges
inside the pattern strong. In that way we inherit the density of ρrec

for each pattern from the global density within B.
Figure 2 demonstrates how memory capacity depends on the

pattern size n when all parameters of the process are fixed and
chosen in some optimal way, as argued below. The capacity is
the expected number of associations which can be inserted until
the first association cannot be recalled any more (due to pruning
and/or noise). Throughout we chose αfid = 0.8 and αspc = 1.0 as
parameters for fidelity and specificity.

In general, a fixed set of parameters ρaff, raff, ρrec, p+, and K
will only work for a finite range of values for n: if n is too large,
then noise is too large and the specificity criterion is violated. On
the other hand, if n is too small, then we will not be able to satisfy
the fidelity condition even immediately after learning.

In the following figures we illustrate the connections between
the various parameters for the case ρaff = 0.2. In the figures we
only show data points for which reliability was at least 99%,
meaning that in 99% of the cases the first association could be
recalled before competing associations were inserted.

Figure 8 demonstrates the effect of varying the probability of
afferent edges being strong, i.e., raff, for a fixed value of n (here
n = 100). As it turns out, for each K the curve is unimodular and
the maximal values of these curves are also unimodular. The fig-
ure shows the best K for recurrent degree 0 respectively 4. It is
worthwhile to note that for fixed K the curves drop sharply if raff

exceeds a certain value (as then noise takes over). However, for
ρrec > 0 this drop is less dramatic, making the setup more stable.

Figure 8 seems to indicate that a value of raff ≈ 0.25 is a good
choice. In order to test that we compared in Figure 4 the effect of
raff. We found that while for larger raff the maximum value that we
can achieve is indeed higher, this comes at the price of robustness.
More precisely, for larger values of raff the curves (for a fixed K),
tend to be very pointed, while for smaller raff we can have plateaus
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with almost the same value. This is the reason for our choice of
raff = 0.1 in Figure 2.

Figure 3 illustrates our choice of p+ = 0.6. We see that when
the remaining parameters are fixed, we essentially get a thresh-
old phenomenon: p+ needs to be sufficiently large, but a further
increase does not have a positive effect any more (but may
even decrease performance). Intuitively, this phenomenon occurs
because percolation within B becomes possible with a bootstrap
of size n before the association is forgotten afferently. A further
increase of p+ thus only increases this effect and therefore does
not increase the learning capacity.

Now we are ready to explain our choice of parameters for
Figure 2A: we chose raff = 0.1 and p+ = 0.6, as suggested by
Figures 3, 8. The figure on the right side of Figure 2 shows a sim-
ilar plot for ρaff = 0.05. Here it turned out that raff = 0.05 yields
better results (due to the smaller memory capacity), so we chose
this value, and the learning probability is again p+ = 0.6. For
both cases, and each expected recurrent degree, K was chosen so
that we obtain stable results for n in a wide range. In the case of
zero recurrent degree, the sparsity enforces a small value of K to
allow learning at all; in turn, this means that no value of K works
for a large interval, so we chose K = 3 which yields the best (even
though still quite small) capacity for large n’s.

Figure 7 demonstrates the two types of noise tolerance we
study. In the case of query noise, Figure 7A, we choose our
parameters as in Figure 2A with n = 100, K = 12, and ρrecn = 8.
In this setting the model is able to satisfy the fidelity requirement
with λ = 0.7 and even after 100 insertions of competing asso-
ciations the relation (A0, B0) can still tolerate λ = 0.8. For the
recurrent noise we observe that with only a few patterns stored
recurrently in B the model does not react to recurrent noise
at all. This happens because either the necessary bootstrap size
for percolation is too large or percolation within B is simply
impossible due to the density of strong recurrent edges being too
low. However, once sufficiently many patterns have been inserted
in B percolation becomes possible and we observe a threshold
behavior, see Figure 7B.

Figure 9 gives an example of quadratic growth with three
theoretical predictions for comparison that quantify the dif-
ferent approximations made in the theoretical predictions, cf.
Section 3.1.5.

4. DISCUSSION
4.1. MODEL ASSUMPTIONS
4.1.1. Synapses and learning
The synapses in our model only have two states: they are either
weak or strong. The learning rule follows the Hebbian paradigm
“fire together, wire together,” followed by a normalization step.
Learning mechanisms in the brain are more complicated. In
particular, for spike-timing dependent plasticity (STDP) the tim-
ing of pre- and post-synaptic spike is crucial. However, it has
been shown by Abbott and Nelson (2000); Gerstner and Kistler
(2002a,b) that STDP resembles Hebbian learning when there is

FIGURE 8 | Strong edge density (probability of afferent edges being

strong, raff) vs. capacity for n = 100. The labels on the curves denote
which value of K was used to generate it. The blue curve for K = 11 and
red curve for K = 13 maximize capacity. Here N = 5000, ρaff = 0.2, and
p+ = 1. Each data point is the mean of 100 samples and the error bars
represent standard mean error.

FIGURE 7 | Resilience of recall against noise. We look at two types of
noise, an imperfect activation of A0 (query noise, A), and interference
within B \ B0 (recurrent noise, B). In the case of query noise we u.a.r.
activate λn vertices in A0 and (1 − λ)n vertices in A \ A0. We observe a
threshold in λ for recall which depends on the number of inserted
competing associations. A further discussion of the query noise can be
found in Section 3.1.7. For recurrent noise we activate together with A0

a fixed amount of vertices in B \ B0. For recurrent noise we activate
together with A0 a fixed amount of vertices chosen u.a.r. in B \ B0. We
also observe a threshold in how many such vertices the model can
tolerate which depends on the number of patterns stored recurrently
within B. For both figures the parameters of the process are the same
as in Figure 2A with n = 100, K = 12, and ρrecn = 8, and error bars
represent standard mean error.
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FIGURE 9 | Demonstration of quadratic growth and comparison

between simulation and theoretical predictions (A). (B) displays the
same data but scaled by N2 to estimate the constant of the leading
term. In case of the simulation, whole curve, the error bars represent
standard mean error for 25 trials and the envelope represents the
standard deviation. The dashed curve, (b), is calculated using a theoretical
prediction where first �percolation is estimated using a simulation. The
simulation determines the smallest psignal for which percolation is still
possible for a pattern pair in an Erdős-Rényi random graph and the
estimator is an average over 500 such trials. The dashed curve is then
obtained using Equation (6). The dotted curve, (c), is also calculated using

a theoretical prediction. There we estimate �percolation using Equation (12)

such that it is satisfied for t = 0, . . . , αfidn and use Equation (6) again to
obtain the curve. Finally the dot-dashed curve, (d), is the prediction
where �percolation is obtained by replacing the binomial distributions in
Equation (12) by normal distributions. For a further discussion on these
predictions, b, c, and d, and their importance we refer the reader to
Section 3.1.5. All parameters in this figure are fixed except for N, they
are the same as in Figure 2A with n = 100 and ρrecn = 8. Note that for
a fixed K the growth stops when the specificity constraint becomes
violated due to afferent noise. However, this can be accounted for by
altering the parameters, we refer to Section 3.1.3 for a further discussion.

no systematic time shift between different inputs, and at the same
time it normalizes the input of each neuron (see Kempter et al.,
1999; Abbott and Nelson, 2000; Song et al., 2000; Abbott and
Gerstner, 2004; Gilson et al., 2010).

The question whether synapses are binary is unsettled and
vividly disputed in Graupner and Brunel (2010); Barbour
et al. (2007); Satel et al. (2009). However, some STDP exper-
iments indicate that synapses in the hippocampus are indeed
binary: synapses that have been potentiated by an STDP pro-
tocol can not be potentiated a second time, but can be
depressed again, and vice versa as in Petersen et al. (1998);
O’Connor et al. (2005). Also, while such experiments last for
minutes, the change is sudden and strong (a factor of 2–3,
see Petersen et al., 1998; O’Connor et al., 2005). These find-
ings are compatible with our assumptions of stochastic Hebbian
learning.

4.1.2. Activity and dynamics
It is well-known that the brain encodes some information in the
firing rate of neurons, and many computational papers take this
point of view (e.g., Amit and Fusi, 1994). However, there are
also other ways the brain encodes and processes information.
E.g., when humans are asked to discriminate between pictures
of animals and non-animals, then task-related eye-saccades can
be observed after 120 ms (Kirchner and Thorpe, 2006). This
amazing speed indicates that feedback loops or rate based encod-
ing do not play a role for these ultra-fast processes, since each
region in the brain has only 10–20 ms to process and transmit
the signal. Thus, it seems that at least some type of hypothesis
forming is done in a single feed-forward sweep of information,
based on one or only very few spikes per neuron. Various other

physiologic and psychologic experiments came to similar conclu-
sions (Thorpe and Imbert, 1989; Allison et al., 1999; Liu et al.,
2002; Crouzet et al., 2010; ’t Hart et al., 2013, see also Johnson
and Olshausen, 2002 for a review). We designed our model to fit
a sweep of activity as described above, and thus we only count
whether a neuron emits at least one spike, ignoring any further
spikes of this neuron. Janson et al. (2012) proved that such a
sweep is extremely fast: For a pattern with n vertices it takes at
most time O( log log n) if the transmission delays of all edges is
1. In our context n = O( log N), so percolation only needs time
O( log log log N). If the transmission delays are drawn from an
exponential distribution with mean 1, then Einarsson et al. (2014)
showed that the sweep is even faster: it takes at most constant
time, independent of n.

4.2. PATTERN SIZES AND PLASTICITY
Our simulations show that stochastic Hebbian learning enables
sparsely connected neuronal ensembles to perform one shot
association learning. There is a tradeoff between reliability and
capacity. For smaller pattern sizes the successfully inserted pat-
terns can be memorized for a long time yielding a large expected
capacity. However, a large portion of the insertions for small
patterns are not successful, even with their optimal plasticity
parameter p+ = 1. For larger patterns the optimum p+ is <1
and every pattern is stored successfully but the capacity drops

proportional to N2

n2 . By keeping n fixed and varying the plas-
ticity parameter we have a similar tradeoff: if plasticity is too
small associations are poorly stored in the first place but if it
is too large the ongoing activity in the network will rapidly
overwrite older associations. For a fixed population size N the
optimum plasticity parameter decays proportional to 1√

n
. Since
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the growth rate of the capacity is quadratic we have that eventually
every neuron will take part in multiple associations. This turns
out to be the case even for N = 5000 in a sparsely connected
network.
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