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Abstract
Rapid	climate	change	is	threatening	biodiversity	via	habitat	loss,	range	shifts,	increases	
in	invasive	species,	novel	species	interactions,	and	other	unforeseen	changes.	Coastal	
and	estuarine	species	are	especially	vulnerable	to	the	impacts	of	climate	change	due	
to	sea	level	rise	and	may	be	severely	impacted	in	the	next	several	decades.	Species	
distribution	modeling	can	project	the	potential	future	distributions	of	species	under	
scenarios	 of	 climate	 change	 using	 bioclimatic	 data	 and	 georeferenced	 occurrence	
data.	However,	models	projecting	suitable	habitat	 into	the	future	are	 impossible	to	
ground	truth.	One	solution	is	to	develop	species	distribution	models	for	the	present	
and	project	them	to	periods	in	the	recent	past	where	distributions	are	known	to	test	
model	 performance	 before	 making	 projections	 into	 the	 future.	 Here,	 we	 develop	
models	using	abiotic	environmental	variables	to	quantify	the	current	suitable	habitat	
available	 to	 eight	 Neotropical	 coastal	 species:	 four	 mangrove	 species	 and	 four	
salt	marsh	 species.	 Using	 a	 novel	model	 validation	 approach	 that	 leverages	 newly	
available	monthly	climatic	data	 from	1960	to	2018,	we	project	 these	niche	models	
into	two	time	periods	in	the	recent	past	(i.e.,	within	the	past	half	century)	when	either	
mangrove	or	salt	marsh	dominance	was	documented	via	other	data	sources.	Models	
were	hindcast-	validated	and	then	used	to	project	the	suitable	habitat	of	all	species	at	
four	time	periods	in	the	future	under	a	model	of	climate	change.	For	all	future	time	
periods,	the	projected	suitable	habitat	of	mangrove	species	decreased,	and	suitable	
habitat	declined	more	severely	in	salt	marsh	species.
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1  |  INTRODUC TION

Climate	change	is	rapidly	impacting	biodiversity,	and	research	over	
the	past	several	decades	has	provided	many	key	insights	regarding	
how	diverse	 species	might	 respond	 to	 climate	 change	 in	 the	 near	
future	 (e.g.,	 Franks	 et	 al.,	 2007;	 Parmesan	 et	 al.,	 2015;	 Sinervo	
et	al.,	2010;	Tingley	et	al.,	2012;	Visser	et	al.,	1998).	Recent	studies	
have	demonstrated	that	climate	change	may	have	dramatic	effects	
on	organisms	 through	population	decline	 (Jenouvrier	et	al.,	2009),	
extinction	(e.g.,	Brook	et	al.,	2008;	Cahill	et	al.,	2013),	and	shifts	in	
geographic	distributions	(e.g.,	Kearney	et	al.,	2009;	Lafferty,	2009).	
In	 contrast,	 other	 species	 are	 predicted	 to	 have	 significant	 range	
expansions	 following	 climate	 change	 (e.g.,	 Cudmore	 et	 al.,	 2010; 
Soltis	&	Soltis,	2016).	Whereas	many	species	are	vulnerable	to	the	
effects	 of	 climate	 change,	 there	 is	 mounting	 evidence	 that	 spe-
cies	with	exclusively	coastal	distributions	are	especially	at	risk	and	
have	 already	 undergone	 significant	 distributional	 shifts	 (Bowman	
et	al.,	2010;	Ellison,	1993;	Everitt	et	al.,	2010;	Feagin	et	al.,	2005; 
Gilman	et	al.,	2007;	Howari	et	al.,	2009;	López-	Medellín	et	al.,	2011; 
Shearman,	 2010;	Williamson	 et	 al.,	 2011).	 Climate	 change	 is	 pro-
jected	 to	 have	 a	 dramatic	 impact	 on	 coastal	 plant	 species	 in	 the	
near	future	(i.e.,	remainder	of	this	century),	but	not	all	species	and	
coastal	plant	communities	will	be	affected	in	the	same	way	(Bowman	
et	al.,	2010;	Ellison,	1993;	Everitt	et	al.,	2010;	Gilman	et	al.,	2007; 
Shearman,	2010;	Williamson	et	al.,	2011	).	Some	species	will	be	se-
verely	threatened	by	habitat	loss	and	are	predicted	to	experience	a	
dramatic	decrease	in	distribution	(e.g.,	Feagin	et	al.,	2005),	whereas	
others	 may	 undergo	 shifts	 in	 their	 ranges	 (e.g.,	 López-	Medellín	
et	al.,	2011).

A	 critical	 threat	 to	 coastal	 communities	 is	 their	hypothesized	
inability	 to	move	 inland	 rapidly	 enough	 to	 keep	 pace	with	 rapid	
changes	 in	 sea	 level	 rise	 (SLR)	 (Kirwan	&	Megonigal,	2013).	 SLR	
directly	 impacts	 species	 inhabiting	 coastal	 zones	 and	 leads	 to	
habitat	change	and	eventual	habitat	loss	for	many	taxa,	including	
migratory	 shore	 birds	 (Iwamura	 et	 al.,	 2013),	 salt	 marsh	 grasses	
(Adam,	2002),	 and	 gastropods	 (McFarlin	 et	 al.,	2015).	Mendoza-	
González	et	al.	(2013)	found	striking	impacts	on	coastal	sand	dune	
taxa	in	the	Yucatán	Peninsula	of	Mexico—	they	projected	up	to	an	
85%	 reduction	 in	 suitable	 habitat	 for	 dune	 plant	 species	 by	 the	
end	of	the	century.	 In	Panama	and	Costa	Rica,	40%	of	mangrove	
species	 are	 considered	 threatened	 (Polidoro	 et	 al.,	 2010).	 Many	
studies	have	been	conducted	on	relatively	small	spatial	scales	(e.g.,	
in	several	neighboring	estuaries)	and	have	provided	vital	 insights	
into	how	climate	change	is	currently	affecting,	and	will	impact,	the	
species	in	local	coastal	study	sites	(e.g.,	Stevens	et	al.,	2006).	While	
localized	 studies	 are	 crucial,	 they	 are	 also	 time-	consuming,	 and	
rapid	climate	change	means	that	we	do	not	have	the	luxury	of	pro-
tracted	studies	to	identify	coastal	areas	where	inhabitant	species	
are	vulnerable	to	climate	change.	A	modeling	approach	can	rapidly	
project	the	future	suitable	habitat	for	multiple	coastal	species	over	
a	wide	geographic	area.	Such	models,	in	concert	with	local	studies,	
can	provide	a	useful	projection	of	climate	change	impact	on	coastal	
species.

Species	distribution	modeling	(SDM)	is	a	powerful	tool	for	pro-
jecting	where	suitable	habitat	may	exist	in	the	future	by	using	lay-
ers	 of	 environmental	 data	 (e.g.,	 mean	 annual	 temperature,	 mean	
annual	 precipitation)	 and	 species	 occurrence	 data	 (e.g.,	 georefer-
enced	 records	 in	 natural	 history	 collections).	 SDM	has	 been	 used	
to	predict	species	range	shifts,	invasions,	and	novel	species	interac-
tions	in	response	to	climate	change	(e.g.,	Gilman	et	al.,	2010;	Urban	
et	al.,	2012).	SDM	approaches	can	 identify	 locations	with	suitable	
habitat	 for	 species,	 by	 using	 information	 where	 species	 currently	
live	or	have	 lived	 in	the	recent	past.	By	quantifying	environmental	
variables	 in	discrete,	predefined	areas	(e.g.,	1 km2	patches	across	a	
landscape),	 researchers	 can	 identify	 abiotic	 environmental	 factors	
that	make	some	areas	more	 favorable	 than	others	 for	 the	survival	
of	species	of	interest.	Next,	using	models	of	past	(e.g.,	climate	pro-
jections	for	the	mid-	Holocene)	or	future	(e.g.,	IPCC	projections	for	
future	time	periods)	climate	change,	SDM	analyses	can	be	used	to	
identify	areas	that	had	or	will	likely	have	suitable	habitat	for	species	
of	interest	based	on	projected	values	of	environmental	variables	in	
different	time	periods	(e.g.,	Hodel	et	al.,	2021).

SDM	analyses	use	occurrence	data	 and	environmental	 data	 to	
predict	 the	 geographic	 space	where	 abiotic	 conditions	 allow	 exis-
tence	of	a	population	or	species.	SDM	analyses	typically	only	take	
into	account	abiotic	environmental	factors	to	predict	suitable	hab-
itat,	and	biotic	data	are	therefore	not	incorporated	into	the	model.	
Despite	a	lack	of	biotic	data,	SDM	still	provides	critical	insights	about	
a	 species'	distribution	on	 large	 spatial	 scales;	 it	would	be	virtually	
impossible	to	collect	biotic	data	on	such	a	large	scale.	Another	draw-
back	of	projecting	suitable	habitat	into	the	future	is	the	impossibility	
of	ground-	truthing	modeling	results.	We	propose	a	novel	solution	to	
this	conundrum:	constructing	SDMs	 for	 the	present	and	hindcast-
ing	them	into	past	time	periods	when	species	presence	was	docu-
mented	to	test	model	accuracy.	To	our	knowledge,	no	other	study	
has	implemented	this	approach	to	validate	SDMs	before	projecting	
into	the	future.	Ground-	truthing	strategies	were	used	in	at	least	two	
other	studies;	Wogan	(2016)	used	historical	climate	and	occurrence	
data	in	a	niche	modeling	framework	to	test	the	spatial	transferability	
of	SDMs,	and	Varma	and	Bebber	(2019)	used	hindcast	climate	data	
and	banana	yield	data	to	infer	the	impact	of	climate	on	yield	in	the	
past	and	projected	into	the	future.

A	 recent	 analysis	 of	 historical	 images	 and	 topographic	 sheets	
detected	 shifts	 toward	 mangrove	 dominance	 in	 a	 mangrove-	salt	
marsh	ecotone	after	decades	of	oscillating	dominance	 (Cavanaugh	
et	al.,	2019),	and	investigations	using	satellite	imagery	documented	
poleward	 shifts	 in	 mangrove	 distributions	 in	 North	 America	 over	
just	the	last	few	decades	(Cavanaugh	et	al.,	2014).	On	a	more	local	
scale,	the	ecotone	in	northeastern	Florida	that	defines	a	transition	
from	mangroves	to	salt	marsh	species	has	alternated	between	pe-
riods	 of	 occupancy	 by	mangroves	 and	 salt	 marsh	 species	 on	 fine	
temporal	 scales	 (i.e.,	 less	 than	 a	 decade;	 Cavanaugh	 et	 al.,	2019).	
Extreme	low-	temperature	events	are	often	attributed	to	be	a	cause	
of	mangrove	dieback,	which	would	facilitate	salt	marsh	dominance	
(Duke	et	al.,	2017;	Saintilan	et	al.,	2014).	Subsequent	periods	lacking	
extreme	cold	events	may	 then	promote	mangrove	 invasion	of	 salt	
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marshes	 (Cavanaugh	 et	 al.,	2014).	 The	 frequency	 of	 extreme	 cold	
events	 creates	a	dynamic	mosaic	of	different	ecosystem	 types	on	
small	spatial	scales	(Yando	et	al.,	2016).	Salt	marshes	are	also	vulner-
able	 to	 the	environmental	 effects	 associated	with	 climate	 change,	
such	as	drought	events	(Alber	et	al.,	2008).	Coarse-	resolution	mod-
eling	 studies	 in	 the	 southeastern	 United	 States	 identified	 areas	
where	salt	marshes	are	at	risk	for	mangrove	 invasion	 in	the	future	
(areas	 in	 Florida,	 Louisiana,	 and	Texas;	Osland	 et	 al.,	2013).	Using	
an	SDM	approach	to	examine	the	dynamics	of	mangrove	communi-
ties	under	scenarios	of	climate	change	and	SLR,	Record	et	al.	(2013)	
identified	poleward	shifts	in	some	mangrove	communities.	Coastal	
ecosystems,	 notably	 salt	marshes	 and	mangroves,	 require	 further	
investigation	using	SDM	at	both	a	fine	spatial	resolution	(i.e.,	using	
<5 km2	grid	cells)	and	on	a	large	scale	(i.e.,	the	Americas).	In	the	pres-
ent	 study,	 we	 leverage	 known	 periods	 of	 dominance	 (Cavanaugh	
et	 al.,	2019)	 to	validate	SDMs	 that	model	present	 suitable	habitat	
and	 hindcast	 into	 time	 periods	where	 either	mangrove	 species	 or	
salt	marsh	species	dominated	to	determine	if	the	model	predicts	the	
correct	trend	in	each	group.

For	SDM	analyses,	the	present	is	typically	considered	any	time	
after	 1950	 (Hijmans	 et	 al.,	 2005).	 However,	 with	 the	 release	 of	
WorldClim	2.1,	bioclimatic	variables	are	available	 for	every	month	
between	1960	and	2018,	which	enables	SDM	analyses	at	much	finer	
temporal	scales.	We	constructed	SDMs	for	 the	present	 (which	we	
define	as	2013–	2018)	to	infer	locations	of	suitable	habitat	for	eight	
species	in	the	Neotropics.	We	then	made	projections	into	two	time	
periods	 in	 the	past	 that	 correspond	 to	documented	periods	of	 ei-
ther	mangrove	 or	 salt	marsh	 dominance	 (Cavanaugh	 et	 al.,	2019).	
Specifically,	our	objectives	were	to	(1)	construct	SDMs	to	infer	suit-
able	habitat	for	four	mangrove	species	and	four	salt	marsh	species	
in	the	present;	(2)	validate	SDMs	by	projecting	the	model	backward	
to	 time	 periods	 in	 the	 recent	 past	 of	 known	dominance	 by	 either	
mangroves	(early	2000s)	or	salt	marsh	species	(late	1980s)	by	using	
change	in	suitable	habitat;	 (3)	use	projections	of	climate	change	to	
infer	the	putative	suitable	habitat	available	to	these	species	 in	the	
future	 over	 three	 20-	year	 periods	 (2021–	2040,	 2041–	2060,	 and	
2061–	2080);	and	(4)	compare	current	and	future	habitat	suitability	
for	mangrove	and	salt	marsh	species	by	quantifying	changes	in	the	
geographic	extent	of	species'	suitable	habitat	from	present	to	future.

2  |  METHODS

2.1  |  Data acquisition

We	obtained	specimen-	based	occurrence	data	for	each	species	from	
iDigBio	 (Integrated	 Digitized	 Biocollections;	 idigb	io.org)	 and	 GBIF	
(Global	Biodiversity	Information	Facility;	gbif.org)	and	supplemented	
these	 data	 with	 locality	 data	 from	 personal	 collections	 for	 three	
mangrove	 species	 (Avicennia germinans,	 Laguncularia racemosa,	
Rhizophora mangle).	 Four	 of	 the	 species	 included	 in	 the	 analysis	
are	mangroves	 (Avicennia germinans,	 black	mangrove;	 Laguncularia 
racemosa,	white	mangrove;	and	Rhizophora mangle,	red	mangrove)	or	

mangrove-	associated	species	(Conocarpus erectus,	buttonwood).	For	
simplicity,	these	four	species	will	hereafter	be	collectively	referred	
to	as	“mangroves,”	even	though	Conocarpus erecuts	is	not	considered	
a	true	mangrove	(Tomlinson,	2016).	We	also	selected	four	salt	marsh	
species	 (Batis maritima,	 turtleweed;	 Sesuvium portulacastrum,	 sea	
purslane;	 Spartina alterniflora,	 smooth	 cordgrass;	 and	 Sporobolus 
virginicus,	seashore	dropseed)	for	analyses.	These	four	species	were	
selected	 because	 they	 occur	 in	 close	 proximity	 to	 one	 another—	
indicating	the	presence	of	salt	marsh	habitat—	and	because	of	their	
broad	 and	 exclusively	 coastal	 distributions	 in	 the	Neotropics.	We	
used	 SDM	 to	 investigate	 changes	 in	 suitable	 habitat	 for	 all	 eight	
species.	The	raw	data	were	cleaned	using	standard	approaches	and	
R	scripts	(e.g.,	Marchant	et	al.,	2017);	duplicates	and	incorrect	data	
(e.g.,	 latitude	and	 longitude	of	0)	were	 removed	 from	the	data	set	
(all	scripts	used	in	this	paper	were	deposited	in	GitHub	[github.com/
richi	ehode	l/coast	al_ENM]),	and	all	cleaned	occurrence	data,	layers,	
and	 models	 were	 deposited	 in	 Dryad	 (https://doi.org/10.5061/
dryad.08kpr	r55b).	 We	 included	 species	 that	 had	 exclusively	
coastal	or	estuarine	distributions,	and	only	species	with	at	least	50	
occurrence	points	(after	cleaning)	were	used	in	the	analyses.	Given	
the	 complexities	 of	 the	 modeling	 approach,	 we	 focused	 on	 the	
Neotropics	as	opposed	to	a	global	analysis;	only	mangrove	and	salt	
marsh	 species	with	 native	 ranges	 in	 the	Americas	were	 used	 (i.e.,	
cosmopolitan	 species	were	excluded).	Certain	 species	 that	 inhabit	
salt	marshes,	but	that	have	extensive	inland	distributions,	including	
freshwater	wetlands,	were	excluded	(e.g.,	Distichlis spicata).

We	 acquired	 bioclimatic	 environmental	 layers	 from	Worldclim	
2.1	(world	clim.org;	Fick	&	Hijmans,	2017)	for	multiple	time	periods.	
The	bioclimatic	layers,	which	contain	temperature	and	precipitation	
data	for	every	continent	except	Antarctica,	have	been	used	exten-
sively	and	successfully	in	SDM	studies	(Booth,	2018).	In	Worldclim	
2.1,	annual	precipitation,	maximum	temperature,	and	minimum	tem-
perature	data	are	available	for	every	month	from	1960	to	2018	at	2.5	
arc	minute	resolution;	these	three	variables	can	be	used	to	calculate	
values	of	all	19	bioclimatic	variables	 (Fick	&	Hijmans,	2017;	Harris	
et	al.,	2014;	Hijmans	et	al.,	2017).	We	considered	the	present	to	be	
2013–	2018,	 the	 1980s	 salt	marsh	 dominance	 period	 to	 be	 1984–	
1989,	and	the	early	2000s	mangrove	dominance	to	be	2001–	2006.	
These	time	periods	were	selected	to	capture	the	optimal	amount	of	
either	mangrove	or	salt	marsh	dominance	during	each	documented	
oscillation	(Cavanaugh	et	al.,	2019),	and	we	selected	these	windows	
of	time	so	that	the	present	and	past	time	periods	were	all	6 years.	
Although	many	of	the	study	species	may	be	longer-	lived	than	each	
of	 the	time	periods	 (i.e.,	6 years),	we	prioritized	using	time	periods	
that	captured	either	mangrove	or	salt	marsh	dominance.	Due	to	the	
oscillations	of	mangrove	versus	salt	marsh	dominance,	many	individ-
ual	plants	were	 likely	exterminated	on	short	 time	scales.	We	used	
all	 occurrence	data	 to	 construct	 an	SDM	 for	 each	 species	 for	our	
defined	present	time	(2013–	2018)	regardless	of	when	the	specimens	
were	collected.	It	would	be	ideal	to	use	separate	occurrence	spec-
imens	from	each	time	period	to	assess	SDM	performance,	but	this	
was	 not	 possible	with	 the	 temporal	 distribution	 of	 georeferenced	
data	points.	For	each	6-	year	 time	period,	we	averaged	 the	annual	

http://idigbio.org
http://gbif.org
http://github.com/richiehodel/coastal_ENM
http://github.com/richiehodel/coastal_ENM
https://doi.org/10.5061/dryad.08kprr55b
https://doi.org/10.5061/dryad.08kprr55b
http://worldclim.org
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precipitation,	maximum	temperature,	and	minimum	temperature	for	
each	month	(e.g.,	average	values	of	these	three	variables	were	cal-
culated	 across	 the	 six	 January	months,	 six	 February	months,	 etc.,	
in	each	time	period)	and	used	the	resulting	12	monthly	averages	to	
calculate	the	standard	19	bioclimatic	variable	values	using	the	“bio-
vars”	function	in	the	“dismo”	R	package	for	each	6-	year	time	period	
(Hijmans	et	al.,	2017).	The	standard	19	bioclimatic	variables	are	not	
available	on	a	monthly	basis	because	some	of	them	incorporate	sea-
sonality	and	require	data	for	at	least	1	year.	By	using	monthly	data	
for	annual	precipitation,	maximum	temperature,	and	minimum	tem-
perature	variables,	all	of	the	19	bioclimatic	variables	can	be	calcu-
lated	(Hijmans	et	al.,	2017).

All	 layers	 were	 then	 trimmed	 so	 that	 the	 extent	 of	 the	 study	
area	was	 between	−120	 and	 −32	 degrees	 longitude,	 and	 −36	 and	
36	 degrees	 latitude	 using	 custom	 scripts	 and	 the	 R	 package	 “ras-
ter”	(Hijmans	et	al.,	2015)	and	exported	in	ASCII	format	(Figure 1).	

This	 study	 area	was	 selected	 because	 it	 included	 subtropical	 and	
tropical	 regions	of	both	 the	Northern	and	Southern	Hemispheres,	
captured	the	ecotone	between	mangrove	and	salt	marsh	species	in	
both	Hemispheres,	and	allowed	for	an	expansion	zone	as	some	spe-
cies	may	expand	their	ranges	in	the	future	as	the	climate	changes.	
Regions	such	as	Hawaii,	where	some	Neotropical	mangrove	species	
have	been	introduced,	were	not	included	in	the	study.	We	used	an	
R	 script	 and	 the	R	package	 “raster”	 (Hijmans	et	 al.,	2015)	 to	mea-
sure	the	pairwise	correlation	of	the	19	bioclimatic	variables.	When	
variables	were	correlated	with	one	another	(r > .7),	only	one	of	the	
layers	was	retained	for	subsequent	analyses	(Dormann	et	al.,	2013).	
After	removing	correlated	layers,	we	had	a	data	set	of	six	bioclimatic	
variables	 (BIO2,	mean	diurnal	 temperature	 range;	BIO5,	maximum	
temperature	 of	 warmest	 month;	 BIO6,	 minimum	 temperature	 of	
coldest	 month;	 BIO12,	 annual	 precipitation;	 BIO15,	 precipitation	
seasonality;	 BIO18,	 precipitation	 of	 warmest	 quarter).	 BIO6	 and	

F I G U R E  1 The	suitable	habitat	
averaged	for	the	four	mangrove	species	
(top)	and	the	four	salt	marsh	species	
(bottom)	in	the	present	(defined	as	2013–	
2018)	for	the	entire	geographic	study	
region.	For	each	plot	the	average	suitable	
habitat	is	shown	to	in	Table 2.
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BIO1	were	highly	correlated	(r =	.956),	and	BIO1	(mean	annual	tem-
perature)	was	excluded	even	though	it	is	frequently	included	in	SDM	
analyses	because	BIO6	has	been	identified	as	an	important	variable	
shaping	range	limits	of	coastal	species	(Tomlinson,	2016).	All	layers	
were	 clipped	 using	 the	 “mask”	 function	 in	 the	 “raster”	 R	 package	
(Hijmans	et	al.,	2015)	such	that	all	cells	with	elevation	greater	than	
10	m	were	considered	“no	data”	cells.	This	was	done	to	ensure	that	
the	SDM	analyses	were	not	trained	on	inland	regions	representing	
areas	where	these	coastal	species	do	not	occur.

2.2  |  Species distribution modeling

The	 occurrence	 data	 obtained	 from	 digitized	 herbaria	 records	 and	
the	six	environmental	 layers	were	used	as	 input	for	the	SDM	analy-
ses.	SDM	uses	 the	occurrence	data	 for	each	 species	 in	 the	present	
to	identify	pixels	that	have	suitable	habitat	for	the	species	of	interest	
based	on	environmental	data.	We	used	the	maximum	entropy	algo-
rithm	implemented	in	MAXENT	v3.4.1	(Phillips	et	al.,	2006,	2017)	to	
conduct	SDM	analyses.	The	maximum	entropy	algorithm	uses	pres-
ence	data	 and	 random	background	 sampling	 to	develop	 the	model,	
and	it	has	been	shown	to	perform	well	with	presence-	only	data	(Elith	
et	al.,	2006;	Wisz	et	al.,	2008).	Optimal	settings	for	MAXENT	model	fit	
were	determined	using	the	“ENMevaluate”	function	in	the	ENMeval	R	
package	(Muscarella	et	al.,	2014).	We	investigated	regularization	multi-
pliers	from	0.5	to	4	at	intervals	of	0.5	and	the	following	features/com-
binations	of	 features:	 linear,	 linear/quadratic,	 linear/quadratic/hinge,	
linear/quadratic/hinge/product,	 linear/quadratic/product/threshold,	
and	 linear/quadratic/hinge/product/threshold.	 The	 “ENMevaluate”	
function	was	run	for	each	species,	using	the	same	10,000	background	
points,	occurrence	data	for	the	species	of	interest,	and	the	“maxnet”	
algorithm	with	the	“checkerboard2”	method.	The	ΔAICc	scores	for	all	
models	tested	for	each	species	were	compared	to	determine	the	op-
timal	model	to	be	inputted	into	MAXENT.	Other	non-	default	settings	
used	 include	 fivefold	 cross-	validation,	 a	minimum	 training	 presence	
threshold,	and	fading	by	clamping.	Cloglog	output	was	used	because	it	
produces	an	estimate	for	each	pixel	between	0	and	1	that	represents	
probability	of	presence	(Phillips	et	al.,	2017).

We	assessed	each	model's	prediction	ability	by	using	partial	re-
ceiver	operating	characteristic	(pROC),	which	measures	the	ratio	of	
the	 area	 under	 the	 receiver	 operating	 characteristic	 curve	 (AUC).	
AUC	 ranges	 from	0	 to	1	 and	measures	 the	model's	 ability	 to	pre-
dict	 suitable	 habitat,	 with	 1	 indicating	 perfect	 discrimination	 be-
tween	suitable	and	unsuitable	habitat.	The	pROC	is	the	ratio	of	the	
partial	AUC	divided	by	random	expectation,	and	it	can	range	from	
0	 to	 2,	 with	 1	 representing	 random	model	 performance	 (Escobar	
et	al.,	2018).	For	 independent	occurrence	points,	 this	metric	mea-
sures	the	relationship	of	omission	error	and	proportion	of	suitable	
area	under	conditions	of	low	omission	errors	(Peterson	et	al.,	2008).	
Jackknife	 tests	 of	 regularized	 training	 gain	were	 used	 to	measure	
the	relative	contribution	of	each	bioclimatic	variable	to	the	model.	
Average	habitat	suitability	values	 for	each	pixel	were	modeled	 for	
the	present,	past,	and	future	for	each	species,	and	these	values	were	

used	in	downstream	analyses.	For	a	given	region,	the	sum	of	habitat	
suitability	scores	was	considered	the	total	suitable	habitat.

2.3  |  SDM validation and projection into future

We	 measured	 each	 species'	 suitable	 habitat	 and	 how	 it	 was	
projected	to	change	from	the	present	to	the	past.	First,	we	defined	
an	 area	 representing	 the	 northeastern	 Florida	 ecotone	 used	 in	
previous	studies	 to	use	 for	hindcast	validations:	between	−82	and	
−80	degrees	longitude,	and	28	and	31	degrees	latitude	(Cavanaugh	
et	 al.,	 2019).	 For	 convenience,	 we	 hereafter	 refer	 to	 this	 region	
as	 “NE	 Florida.”	We	 considered	 the	 SDM	 to	 be	 properly	 fit	when	
it	 accurately	 inferred	 the	 anticipated	 relative	 change	 in	 suitable	
habitat	between	the	average	mangrove	species	and	the	average	salt	
marsh	species	for	all	past	time	periods	in	the	NE	Florida	validation	
region.	We	also	used	a	larger	geographic	region	(between	−87	and	
−79	degrees	longitude,	and	24	and	31	degrees	latitude)	to	test	if	the	
hindcast	validations	were	consistent	when	a	larger	region	was	used;	
we	hereafter	refer	to	this	region	as	“Florida”	for	simplicity.

Once	 the	 SDMs	 were	 hindcast-	validated,	 the	 same	 approach	
was	used	to	infer	projected	change	in	suitable	habitat	for	the	three	
time	periods	in	the	future.	To	project	future	values	of	environmental	
variables,	we	used	a	widely	used	and	well-	validated	climate	model—	
the	 CNRM-	CM6-	1	 model,	 which	 is	 a	 fully	 coupled	 atmosphere–	
ocean	general	 circulation	model	 developed	by	Centre	National	 de	
Recherches	Météorologiques	(CNRM)	for	the	sixth	generation	of	the	
IPCC	Coupled	Model	 Intercomparison	Project	6	 (CMIP6),	and	with	
the	shared	socioeconomic	pathway	245	(Eyring	et	al.,	2016).	This	cli-
mate	model	was	selected	because	it	 is	one	of	49	used	in	the	most	
recent	IPCC	CMIP6,	is	compatible	with	the	WorldClim	2.1	data	used	
for	 hindcast	 analyses	 (https://world	clim.org/data/cmip6/	cmip6	
clima	te.html),	and	the	shared	socioeconomic	pathway	was	selected	
because	it	represents	a	central	part	of	the	range	of	plausible	future	
pathways.	SDMs	for	the	full	geographic	study	region	were	projected	
into	both	the	past	and	future	time	periods.	Future	time	periods	were	
determined	by	availability	of	WorldClim	2.1	data.

3  |  RESULTS

3.1  |  Species distribution modeling

For	 all	 mangrove	 species,	 the	 most	 important	 bioclimatic	 variable	
in	 terms	of	model	contribution	was	BIO6	 (minimum	temperature	of	
coldest	month)	 (Table 1).	For	all	 salt	marsh	species	except	Sesuvium 
portulacastrum,	BIO6	was	one	of	the	two	most	important	bioclimatic	
variables.	Additionally,	all	salt	marsh	species	had	BIO12	(annual	precip-
itation)	as	one	of	the	two	most	important	variables	(Table 1).	We	used	
between	69	and	449	georeferenced	occurrence	points	per	species	for	
SDM	(Tables	S1	and	S2,	Figure	S1).	Model	parameters	were	optimized	
for	each	species	using	ΔAICc	scores	(Table	S3).	The	pROC	scores	indi-
cated	good	model	performance	across	all	species	(Figure	S2).

https://worldclim.org/data/cmip6/cmip6climate.html
https://worldclim.org/data/cmip6/cmip6climate.html
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3.2  |  Model validation

The	 SDM	 results	 were	 hindcasted	 into	 past	 time	 periods	 when	
relative	 mangrove	 species	 versus	 salt	 marsh	 species	 dominance	
was	known	on	several	geographic	scales	(Figure 2; Figures S3–	S5).	
There	were	not	specific	expectations	as	to	whether	mangrove	spe-
cies	or	salt	marsh	species	would	exhibit	an	increase	or	decrease	in	
suitable	habitat	relative	to	the	present;	rather,	we	expected	that	

in	 periods	 of	 dominance	 by	 one	 group,	 there	would	 be	 a	 larger	
increase	 or	 smaller	 decrease	 in	 suitable	 habitat	 for	 that	 group	
relative	 to	 the	 other	 group.	 In	 the	NE	 Florida	 validation	 region,	
average	mangrove	 suitable	habitat	was	 smallest	 in	 the	period	of	
salt	marsh	dominance	 (1984–	1989),	 larger	 in	 the	period	of	man-
grove	dominance	(2001–	2006),	and	largest	in	the	present	(2013–	
2018;	Table 2,	Figure 3).	These	trends	were	consistent	when	each	
mangrove	species	was	considered	separately.	Meanwhile,	average	

TA B L E  1 For	each	species,	the	percent	contribution	of	each	bioclimatic	variable	to	the	species	distribution	model;	the	two	variables	with	
the	highest	percent	contribution	are	shown	in	bold.

Species
Avicennia 
germinans

Conocarpus 
erectus

Laguncularia 
racemosa

Rhizophora 
mangle

Batis 
maritima

Sesuvium 
portulacastrum

Spartina 
alterniflora

Sporobolus 
virginicus

BIO2 9.8 1.6 9.2 4.8 11.9 19.8 10.3 13.9

BIO5 2.4 4.9 2.4 1.8 0.2 5.1 1.4 21.5

BIO6 45.0 69.6 46.8 52.7 14.4 11.7 41.7 24.6

BIO12 16.8 5.0 15.4 15.5 55.2 28.7 30.8 24.4

BIO15 19.8 5.2 14.3 4.6 9.4 19.1 8.1 8.4

BIO18 6.3 13.7 11.9 20.5 9.0 15.8 7.8 7.3

Note:	The	first	four	taxa	listed	are	mangrove	species	and	the	last	four	are	salt	marsh	species.	BIO2,	mean	diurnal	temperature	range;	BIO5,	maximum	
temperature	of	warmest	month;	BIO6,	minimum	temperature	of	coldest	month;	BIO12,	annual	precipitation;	BIO15,	precipitation	seasonality;	BIO18,	
precipitation	of	warmest	quarter.

F I G U R E  2 For	the	NE	Florida	validation	region,	the	projected	suitable	habitat	is	shown	for	the	two	past	hindcast-	validation	time	periods,	
as	well	as	the	present,	and	for	three	future	time	periods.	The	average	mangrove	suitable	habitat	is	shown	in	(a)	and	average	salt	marsh	
suitable	habitat	is	shown	in	(b).	For	each	plot	the	average	suitable	habitat	is	shown	in	Table 2.
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salt	 marsh	 suitable	 habitat	 was	 smallest	 in	 the	 period	 of	 man-
grove	dominance	(2001–	2006),	 larger	 in	the	period	of	salt	marsh	
dominance	 (1984–	1989),	 and	 largest	 in	 the	present	 (2013–	2018;	
Table 2,	Figure 3).	However,	this	trend	was	only	matched	by	two	

of	the	individual	salt	marsh	species	(Sesuvium portulacastrum	and	
Sporobolus virginicus).	 In	 the	 larger	 Florida	 validation	 region,	 all	
results	had	the	same	qualitative	trends	as	in	the	NE	Florida	hind-
cast	 validation	 region	 (Table 2; Figure S6).	Considering	 the	 ratio	

TA B L E  2 For	the	four	mangrove	species	(top),	the	measure	of	habitat	suitability	is	shown	for	each	of	the	three	regions	examined	for	all	six	
time	periods.

Region Time period
Avicennia 
germinans Conocarpus erectus

Laguncularia 
racemosa Rhizophora mangle Average mangrove

NE	Florida 1984–	1989 127.4 24.9 68.5 40.5 65.3

2001–	2006 140.7 28.8 75.6 42.3 71.8

2013–	2018 196.9 41.7 150.9 87.9 119.4

2021–	2040 177.7 33.6 103.4 70.0 96.2

2041–	2060 173.9 34.5 92.1 67.5 92.0

2061–	2080 175.0 28.4 75.5 63.8 85.7

Florida 1984–	1989 1141.8 526.7 1051.7 740.9 865.3

2001–	2006 1299.4 501.4 1090.5 825.9 929.3

2013–	2018 1502.3 731.9 1445.3 1332.0 1252.9

2021–	2040 1381.8 687.7 1227.0 1086.3 1095.7

2041–	2060 1363.6 692.5 1134.9 1018.0 1052.2

2061–	2080 1428.9 633.2 1145.8 1032.4 1060.1

Americas 1984–	1989 12,928.4 11,707.3 10,947.2 11,172.9 11,688.9

2001–	2006 14,242.3 11,144.4 11,518.6 11,021.2 11,981.6

2013–	2018 13,878.3 11,047.5 10,674.8 10,949.7 11,637.6

2021–	2040 13,566.9 10,914.5 10,227.8 9740.8 11,112.5

2041–	2060 13,882.7 10,401.4 9304.6 8713.3 10,575.5

2061–	2080 14,395.7 9821.3 7948.7 7987.3 10,038.2

Region Time period Batis maritima
Sesuvium 
portulacastrum Spartina alterniflora

Sporobolus 
virginicus Average salt marsh

NE	Florida 1984–	1989 258.4 198.4 280.5 185.0 230.6

2001–	2006 271.7 148.3 288.9 163.1 218.0

2013–	2018 265.4 217.1 306.5 237.4 256.6

2021–	2040 261.5 243.2 273.9 273.8 263.1

2041–	2060 250.8 247.2 276.4 273.8 262.0

2061–	2080 254.2 261.5 278.9 256.5 262.8

Florida 1984–	1989 1597.5 1163.5 1137.0 1271.9 1292.5

2001–	2006 1708.6 686.2 1371.2 1010.2 1194.0

2013–	2018 1635.6 929.3 1339.7 1391.3 1324.0

2021–	2040 1583.5 1161.6 1169.3 1456.6 1342.7

2041–	2060 1549.0 1230.1 1123.7 1461.9 1341.2

2061–	2080 1578.5 1305.5 1216.6 1330.6 1357.8

Americas 1984–	1989 1,4517.5 12,383.0 8084.7 13,812.8 12,199.5

2001–	2006 15,197.3 12,776.0 8406.6 13,329.2 12,427.3

2013–	2018 14,524.1 12,578.8 8272.7 13,230.8 12,151.6

2021–	2040 13,875.3 10,805.1 6192.8 12,122.5 10,748.9

2041–	2060 14,878.5 9902.6 5814.7 11,527.0 10,530.7

2061–	2080 15,496.8 10,102.2 6094.5 10,607.0 10,575.1

Note:	For	each	species,	habitat	suitability	was	calculated	by	the	sum	of	all	Cloglog	values	in	each	study	region.	The	NE	Florida	and	Florida	regions	
were	used	for	model	hindcast	validation	and	their	geographic	extent	is	defined	in	the	text.	The	average	habitat	suitability	across	all	mangrove	species	
is	shown	in	the	rightmost	column.	The	analogous	values	for	the	four	salt	marsh	species	are	displayed	in	the	bottom	half	of	the	table.
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of	 mangrove:salt	 marsh	 suitable	 habitat	 also	 demonstrated	 the	
utility	 of	 hindcast	 validation	 (Table 3).	 In	 NE	 Florida,	 the	 ratio	
of	 mangrove:salt	 marsh	 suitable	 habitat	 was	 greater	 in	 the	 pe-
riod	 of	 mangrove	 dominance	 than	 in	 the	 salt	 marsh	 dominance	
time	period	 (Table 3).	This	 trend	held	 in	both	Florida	and	on	the	
larger	geographic	scale	(i.e.,	the	Americas;	Table 3).	Based	on	the	
above	results,	we	consider	the	model	to	be	validated	by	hindcast	
ground-	truthing.

3.3  |  Projecting future distributions

In	 the	NE	 Florida	 region,	 the	 hindcast-	validated	 SDMs	 displayed	
contrasting	 results	 between	 mangrove	 and	 salt	 marsh	 species	
when	 projected	 from	 the	 present	 to	 all	 future	 time	 periods.	 In	

the	 future	 time	periods,	 there	was	 a	 projected	 small	 decrease	 in	
average	mangrove	 suitable	 habitat	 relative	 to	 the	 present	 and	 a	
projected	 small	 increase	 in	 salt	marsh	 suitable	 habitat	 (Figure 3,	
Table 2).	 These	 trends	 also	broadly	held	 in	 the	Florida	 validation	
region	(Table 2; Figure S6).	However,	on	the	large	geographic	scale	
(i.e.,	the	Americas),	there	was	a	decrease	in	suitable	habitat	relative	
to	 the	present	 in	both	average	mangrove	and	average	salt	marsh	
suitable	habitat	(Tables 2	and	4,	Figure 4; Figures S7	and	S8).	These	
trends	applied	to	all	species	except	the	mangrove	species	Avicennia 
germinans	 and	 the	 salt	marsh	 species	Batis maritima,	 which	 each	
underwent	 small	 predicted	 increases	 in	 suitable	 habitat	 in	 the	
time	 periods	 2041–	2060	 and	 2061–	2080	 relative	 to	 the	 present	
(Figure 4,	Table 5).	In	future	time	periods,	the	ratio	of	mangrove:salt	
marsh	suitable	habitat	was	more	similar	to	the	past	period	of	man-
grove	 dominance	 versus	 the	 salt	 marsh	 dominance	 time	 period	

F I G U R E  3 The	SDM-	defined	suitable	
habitat	for	the	time	periods	in	the	
past	used	to	validate	the	model	on	the	
smallest	spatial	scale	(NE	Florida),	in	the	
present,	and	projected	into	the	future.	
The	total	suitable	habitat	available	for	
each	mangrove	species	(top)	and	each	salt	
marsh	species	(bottom)	is	shown	using	
colored	circles.	The	average	across	all	four	
species	is	shown	in	colored	diamonds.
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(Table 3).	In	the	NE	Florida	and	Florida	validation	regions,	the	ratio	
of	mangrove:salt	marsh	suitable	habitat	was	greater	in	the	present	
than	it	was	in	any	other	time	period	and	was	typically	greater	in	the	
future	versus	 the	past	 (Table 3).	On	the	 largest	geographic	scale,	
the	ratio	was	greatest	in	the	near	future	time	periods	(2021–	2040,	
2041–	2060;	Table 3).

4  |  DISCUSSION

SDM	approaches	that	use	species	occurrence	data	and	environmen-
tal	 variables	 are	 valuable	 tools	 that	 can	 project	 future	 changes	 in	
suitable	habitat,	but	one	unavoidable	 limitation	of	 these	models	 is	
the	 impossibility	of	ground-	truthing	the	accuracy	of	 the	models	 in	
the	future.	Here,	we	use	a	novel	validation	approach:	external	data	
on	the	relative	dominance	of	mangrove	and	salt	marsh	species	in	the	
previous	century	in	an	ecotone	in	NE	Florida	were	used	to	validate	
our	SDMs	before	projecting	them	into	the	future.	We	demonstrate	
a	new	way	for	researchers	to	ground-	truth	SDMs	to	 increase	con-
fidence	when	projecting	 SDMs	 into	novel	 geographic	 or	 temporal	

space.	We	apply	the	hindcast-	validation	method	to	project	the	po-
tential	future	impacts	of	climate	change	on	coastal	angiosperm	spe-
cies,	 but	 our	 approach	 can	 be	 applied	 to	 a	 variety	 of	 research	
objectives	using	SDMs	and	to	many	different	taxa	across	the	Tree	
of	 Life.	 Using	 hindcast-	validated	 SDMs,	 our	 projections	 suggest	 a	
decline	in	suitable	habitat	in	the	future	for	nearly	all	mangrove	and	
salt	marsh	species	investigated	(Figure 4).	In	most	future	time	peri-
ods,	the	ratio	of	mangrove:salt	marsh	suitable	habitat	is	projected	to	
increase	relative	to	the	present	across	the	Americas	(Table 3).	Below,	
we	contextualize	and	discuss	the	results	and	offer	recommendations	
for	future	research	using	hindcast-	validated	SDMs.

When	validating	hindcast	models,	although	the	trends	averaged	
across	 mangrove	 species	 and	 salt	 marsh	 species	 were	 consistent	
with	expectations	based	on	documented	dominance,	individual	spe-
cies	did	not	always	follow	the	expected	trend.	For	example,	 in	NE	
Florida,	 the	 salt	marsh	 species	Batis maritima	 and	Spartina alterni-
flora	exhibited	slightly	higher	suitable	habitat	scores	during	the	pe-
riod	of	mangrove	dominance	(2001–	2006)	versus	the	period	of	salt	
marsh	dominance	(1989–	1984).	Although	there	are	species-	specific	
differences	when	hindcasting,	nevertheless	the	averaged	results	by	
species	 type	 (mangrove	 vs.	 salt	marsh)	 all	 indicated	 proper	model	
validation	(Figures 2	and	3,	Tables 2–	5; Figures S3–	S6).	We	followed	
other	 large-	scale	mangrove	studies	 that	grouped	 together	and	av-
eraged	 species	 results	 to	 identify	 overarching	 trends	 (e.g.,	Osland	
et	al.,	2013;	Record	et	al.,	2013),	and	we	also	present	results	for	each	
species	separately	(Table 5).

Overall,	our	results	confirm	findings	of	mangrove-	salt	marsh	os-
cillations	in	the	NE	Florida	ecotone	on	the	Atlantic	coast	of	Florida	
reported	 in	Cavanaugh	et	al.	 (2019).	The	present	study	also	 inves-
tigated	a	much	 larger	 geographic	 scope	and	 therefore	 reveals	 key	
insights	 about	 the	 future	 dynamics	 between	 mangrove	 and	 salt	
marsh	species	at	their	range	limit	in	the	Southern	Hemisphere	and	in	
the	more	central	portions	of	these	species'	ranges.	On	a	large	geo-
graphic	scale,	in	most	future	time	periods,	the	ratio	of	mangrove:salt	
marsh	suitable	habitat	is	projected	to	increase	relative	to	the	pres-
ent	 (Table 3).	However,	 for	most	mangrove	and	salt	marsh	species	
studied,	suitable	habitat	declines	in	the	future	time	periods	relative	
to	the	present.	Therefore,	future	environmental	conditions	are	pro-
jected	to	be	detrimental	to	both	species	types,	but	they	will	be	more	
favorable	to	mangroves,	which	may	mean	an	increase	in	mangrove	
dominance	at	the	expense	of	salt	marsh	species.	 It	 is	possible	that	
SLR	could	create	new	inland	habitats	suitable	for	mangrove	and/or	
salt	marsh	species,	although	it	is	very	difficult	for	many	plant	species	
to	colonize	new	areas	quickly	enough	 to	keep	pace	with	changing	
climates	(Corlett	&	Westcott,	2013).

4.1  |  Novelty and limitations of hindcast- 
validated SDMs

We	consider	 the	hindcast	validation	approach	 to	be	an	 innovative	
way	to	use	the	fine	temporal	scale	of	WorldClim	2.1	data	to	ground-	
truth	SDMs	and	a	template	for	how	future	SDM	investigations	can	

TA B L E  3 The	ratio	of	modeled	mangrove:salt	marsh	suitable	
habitat	for	each	time	period	and	each	of	the	three	study	regions.

Time period NE Florida
Florida 
peninsula Americas

1984–	1989 0.283 0.669 0.958

2001–	2006 0.330 0.778 0.964

Present 0.465 0.946 0.958

2021–	2040 0.366 0.816 1.034

2041–	2060 0.351 0.785 1.004

2061–	2080 0.326 0.781 0.949

TA B L E  4 The	percent	change	in	suitable	habitat	between	the	
present	and	the	time	period	listed.

Time period Species type

Region

NE Florida Florida Americas

1984–	1989 Mangrove −45.3 −30.9 0.4

Salt	marsh −10.1 −2.4 0.4

2001–	2006 Mangrove −39.8 −25.8 3.0

Salt	marsh −15.0 −9.8 2.3

2021–	2040 Mangrove −19.4 −12.5 −4.5

Salt	marsh 2.5 1.4 −11.5

2041–	2060 Mangrove −22.9 −16.0 −9.1

Salt	marsh 2.1 1.3 −13.3

2061–	2080 Mangrove −28.2 −15.4 −13.7

Salt	marsh 2.4 2.6 −13.0

Note:	Within	each	time	period,	the	percent	change	in	habitat	suitability	
averaged	across	the	four	mangrove	species	(top)	and	four	salt	marsh	
species	(bottom)	is	shown.	In	the	past,	the	1984–	1989	time	period	was	
dominated	by	salt	marsh	species,	and	the	2001–	2006	time	period	was	
defined	by	mangrove	dominance.
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validate	models	 before	 projecting	 them	 into	 the	 future	 or	 distant	
past	 (i.e.,	mid-	Holocene	or	earlier).	When	species	have	ample	geo-
referenced	 data	 from	 different	 time	 periods	 between	 1960	 and	
2018	and/or	there	are	external	data	sources	that	can	confirm	spe-
cies	presence	at	specific	times	in	the	past,	hindcast-	validated	SDMs	
are	a	powerful	tool	for	verifying	models	that	will	be	used	to	project	
future	suitable	habitat.	Researchers	can	follow	our	approach	of	con-
structing	models	for	the	present	and	hindcasting	them,	or	 if	 there	
are	 sufficient	 temporally	 diverse	occurrence	data,	 SDMs	could	be	
constructed	for	time	periods	in	the	past	(e.g.,	1960–	1980)	and	vali-
dated	using	time	periods	closer	to	the	present	(e.g.,	2000–	2018)	be-
fore	being	used	to	project	future	suitable	habitat.	Our	methods	will	
be	easier	to	apply	in	certain	species;	the	large	availability	of	coastal	
photographs	from	many	time	periods	and	the	relatively	low	species	
richness	of	mangrove	 and	 salt	marsh	 communities	 compared	with	

other	 communities	 facilitated	our	 analyses.	However,	 future	 stud-
ies	on	different	species	could	leverage	other	data	sources,	such	as	
flora	 and	 fauna	 checklists,	 to	 confirm	 species	 presence	 at	 certain	
time	periods.

While	a	 strength	of	our	approach	 is	 the	magnitude	of	 the	geo-
graphic	range	investigated,	this	also	adds	associated	limitations.	We	
validated	 the	models	 using	 data	 from	 previous	 decades	 in	 the	NE	
Florida	ecotone,	but	projected	future	suitable	habitat	on	a	geographic	
extent	larger	than	the	validation	area.	Ideally,	there	would	be	external	
data	sources	 that	could	be	used	 for	hindcast	validation	 from	other	
geographic	 regions,	 but	 to	 our	 knowledge	 there	 are	 no	 such	 data	
sources	on	the	same	timescale	as	the	northeastern	Florida	ecotone	
data.	The	future	projection	results	from	our	study	align	well	with	pre-
dictions	 in	a	 small	 region	of	 the	Northern	Hemisphere	 (Cavanaugh	
et	al.,	2019);	therefore,	it	is	reasonable	to	project	our	SDMs	beyond	

F I G U R E  4 The	SDM-	defined	
suitable	habitat	for	the	time	periods	
in	the	past,	present,	and	future	on	the	
large	geographic	scale	(Americas).	The	
total	suitable	habitat	available	for	each	
mangrove	species	(top)	and	each	salt	
marsh	species	(bottom)	is	shown	using	
colored	circles.	The	average	across	all	four	
species	is	shown	in	colored	diamonds.
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that	limited	geographic	region	(i.e.,	Florida)	because	they	could	lead	
to	critical	insights	about	the	future	of	these	species	in	other	regions	
(e.g.,	a	mangrove-	salt	marsh	ecotone	in	southern	Brazil).

A	 caveat	 associated	with	 our	 study	 is	 that	 there	were	 insuffi-
cient	occurrence	points	for	each	species	in	each	time	period,	given	
the	short	duration	of	the	time	periods	 (i.e.,	6 years).	Therefore,	we	

TA B L E  5 Within	each	time	period,	the	percent	change	in	suitable	habitat	is	listed	for	each	of	the	four	mangrove	species	(top)	and	each	of	
the	four	salt	marsh	species	(bottom)	for	each	st	region.

Time period Species

Region

NE Florida Florida Americas

1984–	1989 Avicennia germinans −35.3 −34.0 −6.9

Conocarpus erectus −40.3 −28.0 6.0

Laguncularia racemosa −54.6 −27.2 2.6

Rhizophora mangle −53.9 −44.4 2.0

Batis maritima −2.6 −2.3 −0.1

Sesuvium portulacastrum −8.6 25.2 −1.6

Spartina alterniflora −8.5 −15.1 −2.3

Sporobolus virginicus −22.1 −8.6 4.4

2001–	2006 Avicennia germinans −28.5 −13.5 2.6

Conocarpus erectus −30.9 −31.5 0.9

Laguncularia racemosa −49.9 −24.5 7.9

Rhizophora mangle −51.9 −38.0 0.7

Batis maritima 2.4 4.5 4.6

Sesuvium portulacastrum −31.7 −26.2 1.6

Spartina alterniflora −5.7 2.4 1.6

Sporobolus virginicus −31.3 −27.4 0.7

2021–	2040 Avicennia germinans −9.8 −8.0 −2.2

Conocarpus erectus −19.4 −6.0 −1.2

Laguncularia racemosa −31.4 −15.1 −4.2

Rhizophora mangle −20.4 −18.4 −11.0

Batis maritima −1.5 −3.2 −4.5

Sesuvium portulacastrum 12.0 25.0 −14.1

Spartina alterniflora −10.6 −12.7 −25.1

Sporobolus virginicus 15.0 4.7 −8.4

2041–	2060 Avicennia germinans −11.7 −9.2 0.1

Conocarpus erectus −17.3 −5.4 −5.8

Laguncularia racemosa −39.0 −21.5 −12.8

Rhizophora mangle −23.2 −23.6 −20.4

Batis maritima −5.5 −5.3 2.4

Sesuvium portulacastrum 13.9 32.4 −21.2

Spartina alterniflora −9.8 −16.1 −29.7

Sporobolus virginicus 15.3 5.1 −12.9

2061–	2080 Avicennia germinans −11.1 −4.9 3.7

Conocarpus erectus −31.9 −13.5 −11.1

Laguncularia racemosa −50.0 −20.7 −25.5

Rhizophora mangle −27.4 −22.5 −27.1

Batis maritima −4.2 −3.5 6.7

Sesuvium portulacastrum 20.5 40.5 −19.7

Spartina alterniflora −9.0 −9.2 −26.3

Sporobolus virginicus 8.0 −4.4 −19.8

Note:	In	the	past,	the	1984–	1989	time	period	was	dominated	by	salt	marsh	species,	and	the	2001–	2006	time	window	was	a	period	of	mangrove	
dominance.



12 of 16  |     HODEL et al.

followed	a	standard	assumption	in	SDM	analyses	that	the	present	is	
any	time	after	1950	(Hijmans	et	al.,	2005).	We	used	all	occurrence	
data	to	construct	an	SDM	for	our	defined	present	time	(2013–	2018)	
regardless	of	when	the	specimens	were	collected.	While	this	is	not	
an	 ideal	approach	and	 it	would	be	preferable	to	have	tens	or	hun-
dreds	of	specimen	records	for	each	time	period,	that	was	impossible	
with	 the	datasets	used.	We	view	the	use	of	hindcast	validation	of	
SDMs	 as	 a	 valuable	 step	 forward	 for	 studies	 of	 this	 kind,	 despite	
this	caveat.

One	known	limitation	of	SDMs	is	the	difficulty	in	incorporating	
biotic	 interactions	 (e.g.,	 competition	 or	 mutualisms)	 into	 a	 model.	
Especially	at	 large	scales,	biotic	 interactions	can	have	a	significant	
effect	on	the	predictive	and	explanatory	power	of	models	based	on	
bioclimatic	data	(Araújo	&	Luoto,	2007).	Some	studies	have	success-
fully	addressed	biotic	interactions	on	a	spatial	scale	orders	of	mag-
nitude	smaller	than	the	present	study	area	(e.g.,	Crase	et	al.,	2015).	
Bardou	et	al.	(2021)	incorporated	species-	specific	physiological	data	
to	 refine	 distribution	models	 of	mangrove	 species	 on	 the	Atlantic	
and	Pacific	coasts	of	North	America.	However,	 it	 remains	prohibi-
tively	difficult	to	incorporate	biotic	interactions	into	an	SDM	frame-
work	 on	 a	 large	 (i.e.,	 continental)	 spatial	 scale.	 For	 this	 study,	we	
prioritized	using	 a	 large	 geographic	 extent	 to	 infer	 future	 suitable	
habitat	in	the	ecotones	in	the	Southern	Hemisphere	as	opposed	to	
investigating	species	interactions	on	a	very	limited	geographic	scale.	
We	could	project	the	future	environmental	niche	of	a	species,	but	
we	 could	 not	 fully	 understand	 how	 species	 interactions,	 such	 as	
competition,	may	affect	a	species'	environmental	niche	in	the	future.	
Although	our	SDM	approach	does	not	explicitly	consider	species	in-
teractions,	SDMs	can	be	used	to	interpret	interactions	between	spe-
cies	or	groups	of	species.	We	measured	whether	a	species	or	species	
type	(mangrove	vs.	salt	marsh)	was	projected	to	increase	or	decrease	
in	suitable	habitat.	Any	increase	or	decrease	in	suitable	habitat	may	
impact	 other	 species	 that	 occupy	 similar	 geographic	 ranges.	 Even	
though	 both	 species	 types	 are	 projected	 to	 decrease	 in	 suitable	
habitat	in	the	future,	the	fact	that	the	ratio	of	mangrove:salt	marsh	
suitable	habitat	skews	in	favor	of	mangroves	suggests	interactions	
between	 the	 species	 with	 a	 likely	 result	 of	 mangroves	 occupying	
coastal	habitats	at	the	expense	of	salt	marsh	species.

Some	 projections	 of	 suitable	 habitat	 occurred	 outside	 of	 the	
documented	ranges	of	many	of	these	coastal	species.	For	example,	
several	mangrove	 species	were	 projected	 to	 have	 suitable	 habitat	
adjacent	 to	 the	Amazon	River,	hundreds	of	kilometers	 inland	from	
their	actual	historically	observed	ranges	(Figure 1).	The	model	used	
abiotic	 factors	 to	 determine	 habitat	 suitability,	 and	 therefore	 the	
SDM	analyses	identified	the	pixels	that	contain	suitable	habitat	for	
each	species.	These	inland	suitability	scores	>0	may	indicate	a	mis-
fit	model,	but	we	consider	this	unlikely;	it	is	unsurprising	that	some	
of	these	regions	would	be	categorized	as	moderately	suitable	hab-
itat	given	that	our	SDMs	are	based	on	abiotic	bioclimatic	variables.	
Virtually	 all	 inland	 regions	 that	were	 classified	 as	 suitable	 habitat	
were	adjacent	 to	 rivers,	 and	 likely	competition	 from	 rapidly	grow-
ing	 riparian	 flora	 or	 physical	 dispersal	 limitations	 would	 prevent	
coastal	species	from	colonizing	these	regions	(Tomlinson,	2016).	In	

fact,	 there	are	several	documented	 instances	of	mangrove	species	
occurring	substantially	inland	(e.g.,	>50 km	inland)	in	the	Sundarbans	
in	Bangladesh	(Cornforth	et	al.,	2013)	and	in	the	Yucatán	peninsula	
(Aburto-	Oropeza	et	al.,	2021),	and	several	salt	marsh	species	often	
occur	 tens	 of	 kilometers	 inland	 (Costa	 &	 Davy,	 2013).	 Moreover,	
there	are	biotic	explanations	 for	 the	 regions	of	unexpected	 inland	
suitable	habitat.	Competition	from	fast-	growing	freshwater	vascular	
plants	has	often	been	cited	as	the	reason	that	mangroves	are	only	
found	in	coastal	habitats	(Simberloff,	1983;	Tomlinson,	2016;	Wang	
et	 al.,	2011).	Most	 inland	 regions	where	mangroves	 or	 salt	marsh	
species	 could	 occur	 due	 to	 environmental	 tolerances,	 but	 are	 not	
present	 due	 to	 competition,	 have	 relatively	 low	 suitability	 scores	
(Figures 1	and	2; Figures S3–	S5,	S7,	S8).	We	take	this	as	evidence	
that	the	models	are	performing	well;	 inland	areas	with	 implausible	
habitat	suitability	are	regions	where	environmental	conditions	per-
mit	species	existence,	but	biotic	interactions	(i.e.,	competition	from	
fast-	growing	riparian	species)	explain	the	absence	of	coastal	taxa	in	
these	 inland	regions.	However,	 rapid	SLR	 in	the	future,	which	was	
not	explicitly	modeled,	could	mean	that	 inland	areas	may	soon	ex-
perience	increased	salinity	in	the	water,	rendering	the	environment	
unsuitable	for	freshwater	riparian	species	and	enabling	colonization	
by	mangrove	and/or	salt	marsh	species.

4.2  |  Prospects and conclusions

We	 should	 carefully	monitor	 areas	where	 novel	 overlaps	 of	 salt	
marsh	 and	 mangrove	 species	 are	 projected,	 as	 species	 in	 these	
areas	could	be	vulnerable	to	decline.	Some	processes	that	may	be	
exacerbated	by	climate	change,	such	as	 flooding,	can	have	a	dif-
ferent	 impact	on	mangrove	versus	salt	marsh	communities	 (Cruz	
et	 al.,	 2020;	 Schaeffer-	Novelli	 et	 al.,	 2016).	 The	 relative	 impor-
tance	 of	 climatic	 variables	 in	 our	 SDMs	 indicates	 that	 different	
factors	may	 be	more	 important	 for	 determining	 suitable	 habitat	
for	each	community—	cold	temperature	events	for	mangroves	and	
annual	 precipitation	 for	 salt	marsh	 species	 (Table 1).	 As	 the	 cli-
mate	changes,	a	decrease	in	cold	events	means	mangrove	species	
will	have	 the	potential	 to	occupy	areas	 that	are	currently	 inhab-
ited	by	salt	marsh	or	estuarine	plant	species.	Meanwhile,	changes	
in	flooding	and/or	precipitation	may	enable	salt	marsh	species	to	
dominate	in	habitats	that	become	unsuitable	for	mangroves	(Cruz	
et	al.,	2020).

There	is	a	fixed	(or	diminishing)	amount	of	coastal	land;	any	range	
increases	will	 come	at	 the	expense	of	other	 coastal	plant	 species.	
Although	SLR	could	drastically	affect	coastal	and	estuarine	regions	
by	creating	new	suitable	habitat	for	mangrove	and/or	salt	marsh	spe-
cies,	it	will	be	challenging	for	plant	species	to	occupy	newly	available	
habitat	as	the	climate	changes	rapidly	(Corlett	&	Westcott,	2013).	In	
the	majority	of	cases	(e.g.,	Atlantic	coast	of	North	America),	regions	
that	 are	 historically	 salt	 marshes	 will	 become	 suitable	 habitat	 for	
mangrove	species	based	on	our	projections.	Several	ecological	stud-
ies	on	small	scales	(e.g.,	Florida,	Louisiana,	Texas)	have	already	doc-
umented	mangrove	 invasions	of	 salt	marshes	 (Osland	et	 al.,	2013,	
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2020),	which	had	negative	impacts	on	native	flora	and	fauna.	Based	
on	our	SDM	results,	areas	other	than	the	Gulf	of	Mexico	that	may	
be	at	risk	include	southern	Brazil.	In	southern	Brazil,	the	salt	marsh-	
mangrove	ecotone	is	 in	flux	due	to	both	human	over-	development	
and	 the	 climate-	induced	poleward	 shifts	 in	mangroves	 (Schaeffer-	
Novelli	et	al.,	2016).	The	overlap	of	mangrove	species	and	salt	marsh	
species	in	the	future	will	probably	be	detrimental	to	salt	marsh	spe-
cies	 and	may	have	a	negative	 impact	on	mangrove	 species—	biotic	
interactions	with	native	species	may	mean	that	abiotic	projections	
of	suitable	habitat	overestimate	their	actual	future	range.	Given	the	
large	spatial	extent	of	our	study,	we	view	our	results	as	a	broad	char-
acterization	of	likely	future	trends	in	mangrove	and	salt	marsh	dis-
tributions,	which	should	be	further	investigated	by	localized	studies.

The	projected	future	distribution	change	for	the	mangrove	spe-
cies	modeled	in	this	paper	will	likely	not	only	negatively	impact	salt	
marsh	species,	but	may	also	have	unanticipated	effects	on	the	many	
taxa	that	depend	on	mangroves	for	survival.	Many	other	organisms,	
including	birds,	fish,	invertebrates,	algae,	and	other	plants	(Cannicci	
et	 al.,	 2008;	 Lefebvre	 &	 Poulin,	 1997;	 Nagelkerken	 et	 al.,	 2000; 
Rodriguez	 &	 Stoner,	 1990;	 Tomlinson,	 2016),	 rely	 on	 mangroves.	
Some	 species	 experience	 range	 shifts	 to	 keep	pace	with	 a	 chang-
ing	 climate;	 initial	 research	 suggests	 that	 mangroves	 are	 able	 to	
spread	just	quickly	enough	to	adjust	to	climate	change	(Cavanaugh	
et	al.,	2014;	Saintilan	et	al.,	2014).	However,	it	is	unclear	if	the	animal	
species	 depend	 on	mangroves	 for	 food,	 shelter,	 and/or	 reproduc-
tion	will	be	able	to	shift	their	ranges	similarly	as	the	climate	changes.	
Some	taxa	are	extirpated	when	species	they	depend	on	experience	
even	minor	range	shifts	 (Foster,	2001).	Additionally,	as	the	various	
species	that	inhabit	communities	will	likely	experience	range	shifts	
at	different	rates,	 there	 is	great	potential	 for	novel	community	as-
semblages	in	the	future,	as	salt	marsh	flora	and	fauna	interact	with	
mangrove	taxa	(Lurgi	et	al.,	2012).	Our	models	can	project	the	future	
suitable	habitat	of	mangrove	and	salt	marsh	plants,	but	it	is	very	dif-
ficult	to	predict	how	novel	biotic	interactions	may	impact	the	biodi-
versity	associated	with	these	two	communities.
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