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Abstract
Rapid climate change is threatening biodiversity via habitat loss, range shifts, increases 
in invasive species, novel species interactions, and other unforeseen changes. Coastal 
and estuarine species are especially vulnerable to the impacts of climate change due 
to sea level rise and may be severely impacted in the next several decades. Species 
distribution modeling can project the potential future distributions of species under 
scenarios of climate change using bioclimatic data and georeferenced occurrence 
data. However, models projecting suitable habitat into the future are impossible to 
ground truth. One solution is to develop species distribution models for the present 
and project them to periods in the recent past where distributions are known to test 
model performance before making projections into the future. Here, we develop 
models using abiotic environmental variables to quantify the current suitable habitat 
available to eight Neotropical coastal species: four mangrove species and four 
salt marsh species. Using a novel model validation approach that leverages newly 
available monthly climatic data from 1960 to 2018, we project these niche models 
into two time periods in the recent past (i.e., within the past half century) when either 
mangrove or salt marsh dominance was documented via other data sources. Models 
were hindcast-validated and then used to project the suitable habitat of all species at 
four time periods in the future under a model of climate change. For all future time 
periods, the projected suitable habitat of mangrove species decreased, and suitable 
habitat declined more severely in salt marsh species.
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1  |  INTRODUC TION

Climate change is rapidly impacting biodiversity, and research over 
the past several decades has provided many key insights regarding 
how diverse species might respond to climate change in the near 
future (e.g., Franks et al.,  2007; Parmesan et al.,  2015; Sinervo 
et al., 2010; Tingley et al., 2012; Visser et al., 1998). Recent studies 
have demonstrated that climate change may have dramatic effects 
on organisms through population decline (Jenouvrier et al., 2009), 
extinction (e.g., Brook et al., 2008; Cahill et al., 2013), and shifts in 
geographic distributions (e.g., Kearney et al., 2009; Lafferty, 2009). 
In contrast, other species are predicted to have significant range 
expansions following climate change (e.g., Cudmore et al.,  2010; 
Soltis & Soltis, 2016). Whereas many species are vulnerable to the 
effects of climate change, there is mounting evidence that spe-
cies with exclusively coastal distributions are especially at risk and 
have  already undergone significant distributional shifts (Bowman 
et al., 2010; Ellison, 1993; Everitt et al., 2010; Feagin et al., 2005; 
Gilman et al., 2007; Howari et al., 2009; López-Medellín et al., 2011; 
Shearman,  2010; Williamson et al.,  2011). Climate change is pro-
jected to have a dramatic impact on coastal plant species in the 
near future (i.e., remainder of this century), but not all species and 
coastal plant communities will be affected in the same way (Bowman 
et al., 2010; Ellison, 1993; Everitt et al., 2010; Gilman et al., 2007; 
Shearman, 2010; Williamson et al., 2011 ). Some species will be se-
verely threatened by habitat loss and are predicted to experience a 
dramatic decrease in distribution (e.g., Feagin et al., 2005), whereas 
others may undergo shifts in their ranges (e.g., López-Medellín 
et al., 2011).

A critical threat to coastal communities is their hypothesized 
inability to move inland rapidly enough to keep pace with rapid 
changes in sea level rise (SLR) (Kirwan & Megonigal,  2013). SLR 
directly impacts species inhabiting coastal zones and leads to 
habitat change and eventual habitat loss for many taxa, including 
migratory shore birds (Iwamura et al.,  2013), salt marsh grasses 
(Adam,  2002), and gastropods (McFarlin et al.,  2015). Mendoza-
González et al. (2013) found striking impacts on coastal sand dune 
taxa in the Yucatán Peninsula of Mexico—they projected up to an 
85% reduction in suitable habitat for dune plant species by the 
end of the century. In Panama and Costa Rica, 40% of mangrove 
species are considered threatened (Polidoro et al.,  2010). Many 
studies have been conducted on relatively small spatial scales (e.g., 
in several neighboring estuaries) and have provided vital insights 
into how climate change is currently affecting, and will impact, the 
species in local coastal study sites (e.g., Stevens et al., 2006). While 
localized studies are crucial, they are also time-consuming, and 
rapid climate change means that we do not have the luxury of pro-
tracted studies to identify coastal areas where inhabitant species 
are vulnerable to climate change. A modeling approach can rapidly 
project the future suitable habitat for multiple coastal species over 
a wide geographic area. Such models, in concert with local studies, 
can provide a useful projection of climate change impact on coastal 
species.

Species distribution modeling (SDM) is a powerful tool for pro-
jecting where suitable habitat may exist in the future by using lay-
ers of environmental data (e.g., mean annual temperature, mean 
annual precipitation) and species occurrence data (e.g., georefer-
enced records in natural history collections). SDM has been used 
to predict species range shifts, invasions, and novel species interac-
tions in response to climate change (e.g., Gilman et al., 2010; Urban 
et al., 2012). SDM approaches can identify locations with suitable 
habitat for species, by using information where species currently 
live or have lived in the recent past. By quantifying environmental 
variables in discrete, predefined areas (e.g., 1 km2 patches across a 
landscape), researchers can identify abiotic environmental factors 
that make some areas more favorable than others for the survival 
of species of interest. Next, using models of past (e.g., climate pro-
jections for the mid-Holocene) or future (e.g., IPCC projections for 
future time periods) climate change, SDM analyses can be used to 
identify areas that had or will likely have suitable habitat for species 
of interest based on projected values of environmental variables in 
different time periods (e.g., Hodel et al., 2021).

SDM analyses use occurrence data and environmental data to 
predict the geographic space where abiotic conditions allow exis-
tence of a population or species. SDM analyses typically only take 
into account abiotic environmental factors to predict suitable hab-
itat, and biotic data are therefore not incorporated into the model. 
Despite a lack of biotic data, SDM still provides critical insights about 
a species' distribution on large spatial scales; it would be virtually 
impossible to collect biotic data on such a large scale. Another draw-
back of projecting suitable habitat into the future is the impossibility 
of ground-truthing modeling results. We propose a novel solution to 
this conundrum: constructing SDMs for the present and hindcast-
ing them into past time periods when species presence was docu-
mented to test model accuracy. To our knowledge, no other study 
has implemented this approach to validate SDMs before projecting 
into the future. Ground-truthing strategies were used in at least two 
other studies; Wogan (2016) used historical climate and occurrence 
data in a niche modeling framework to test the spatial transferability 
of SDMs, and Varma and Bebber (2019) used hindcast climate data 
and banana yield data to infer the impact of climate on yield in the 
past and projected into the future.

A recent analysis of historical images and topographic sheets 
detected shifts toward mangrove dominance in a mangrove-salt 
marsh ecotone after decades of oscillating dominance (Cavanaugh 
et al., 2019), and investigations using satellite imagery documented 
poleward shifts in mangrove distributions in North America over 
just the last few decades (Cavanaugh et al., 2014). On a more local 
scale, the ecotone in northeastern Florida that defines a transition 
from mangroves to salt marsh species has alternated between pe-
riods of occupancy by mangroves and salt marsh species on fine 
temporal scales (i.e., less than a decade; Cavanaugh et al.,  2019). 
Extreme low-temperature events are often attributed to be a cause 
of mangrove dieback, which would facilitate salt marsh dominance 
(Duke et al., 2017; Saintilan et al., 2014). Subsequent periods lacking 
extreme cold events may then promote mangrove invasion of salt 
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marshes (Cavanaugh et al.,  2014). The frequency of extreme cold 
events creates a dynamic mosaic of different ecosystem types on 
small spatial scales (Yando et al., 2016). Salt marshes are also vulner-
able to the environmental effects associated with climate change, 
such as drought events (Alber et al., 2008). Coarse-resolution mod-
eling studies in the southeastern United States identified areas 
where salt marshes are at risk for mangrove invasion in the future 
(areas in Florida, Louisiana, and Texas; Osland et al.,  2013). Using 
an SDM approach to examine the dynamics of mangrove communi-
ties under scenarios of climate change and SLR, Record et al. (2013) 
identified poleward shifts in some mangrove communities. Coastal 
ecosystems, notably salt marshes and mangroves, require further 
investigation using SDM at both a fine spatial resolution (i.e., using 
<5 km2 grid cells) and on a large scale (i.e., the Americas). In the pres-
ent study, we leverage known periods of dominance (Cavanaugh 
et al.,  2019) to validate SDMs that model present suitable habitat 
and hindcast into time periods where either mangrove species or 
salt marsh species dominated to determine if the model predicts the 
correct trend in each group.

For SDM analyses, the present is typically considered any time 
after 1950 (Hijmans et al.,  2005). However, with the release of 
WorldClim 2.1, bioclimatic variables are available for every month 
between 1960 and 2018, which enables SDM analyses at much finer 
temporal scales. We constructed SDMs for the present (which we 
define as 2013–2018) to infer locations of suitable habitat for eight 
species in the Neotropics. We then made projections into two time 
periods in the past that correspond to documented periods of ei-
ther mangrove or salt marsh dominance (Cavanaugh et al.,  2019). 
Specifically, our objectives were to (1) construct SDMs to infer suit-
able habitat for four mangrove species and four salt marsh species 
in the present; (2) validate SDMs by projecting the model backward 
to time periods in the recent past of known dominance by either 
mangroves (early 2000s) or salt marsh species (late 1980s) by using 
change in suitable habitat; (3) use projections of climate change to 
infer the putative suitable habitat available to these species in the 
future over three 20-year periods (2021–2040, 2041–2060, and 
2061–2080); and (4) compare current and future habitat suitability 
for mangrove and salt marsh species by quantifying changes in the 
geographic extent of species' suitable habitat from present to future.

2  |  METHODS

2.1  |  Data acquisition

We obtained specimen-based occurrence data for each species from 
iDigBio (Integrated Digitized Biocollections; idigb​io.org) and GBIF 
(Global Biodiversity Information Facility; gbif.org) and supplemented 
these data with locality data from personal collections for three 
mangrove species (Avicennia germinans, Laguncularia racemosa, 
Rhizophora mangle). Four of the species included in the analysis 
are mangroves (Avicennia germinans, black mangrove; Laguncularia 
racemosa, white mangrove; and Rhizophora mangle, red mangrove) or 

mangrove-associated species (Conocarpus erectus, buttonwood). For 
simplicity, these four species will hereafter be collectively referred 
to as “mangroves,” even though Conocarpus erecuts is not considered 
a true mangrove (Tomlinson, 2016). We also selected four salt marsh 
species (Batis maritima, turtleweed; Sesuvium portulacastrum, sea 
purslane; Spartina alterniflora, smooth cordgrass; and Sporobolus 
virginicus, seashore dropseed) for analyses. These four species were 
selected because they occur in close proximity to one another—
indicating the presence of salt marsh habitat—and because of their 
broad and exclusively coastal distributions in the Neotropics. We 
used SDM to investigate changes in suitable habitat for all eight 
species. The raw data were cleaned using standard approaches and 
R scripts (e.g., Marchant et al., 2017); duplicates and incorrect data 
(e.g., latitude and longitude of 0) were removed from the data set 
(all scripts used in this paper were deposited in GitHub [github.com/
richi​ehode​l/coast​al_ENM]), and all cleaned occurrence data, layers, 
and models were deposited in Dryad (https://doi.org/10.5061/
dryad.08kpr​r55b). We included species that had exclusively 
coastal or estuarine distributions, and only species with at least 50 
occurrence points (after cleaning) were used in the analyses. Given 
the complexities of the modeling approach, we focused on the 
Neotropics as opposed to a global analysis; only mangrove and salt 
marsh species with native ranges in the Americas were used (i.e., 
cosmopolitan species were excluded). Certain species that inhabit 
salt marshes, but that have extensive inland distributions, including 
freshwater wetlands, were excluded (e.g., Distichlis spicata).

We acquired bioclimatic environmental layers from Worldclim 
2.1 (world​clim.org; Fick & Hijmans, 2017) for multiple time periods. 
The bioclimatic layers, which contain temperature and precipitation 
data for every continent except Antarctica, have been used exten-
sively and successfully in SDM studies (Booth, 2018). In Worldclim 
2.1, annual precipitation, maximum temperature, and minimum tem-
perature data are available for every month from 1960 to 2018 at 2.5 
arc minute resolution; these three variables can be used to calculate 
values of all 19 bioclimatic variables (Fick & Hijmans, 2017; Harris 
et al., 2014; Hijmans et al., 2017). We considered the present to be 
2013–2018, the 1980s salt marsh dominance period to be 1984–
1989, and the early 2000s mangrove dominance to be 2001–2006. 
These time periods were selected to capture the optimal amount of 
either mangrove or salt marsh dominance during each documented 
oscillation (Cavanaugh et al., 2019), and we selected these windows 
of time so that the present and past time periods were all 6 years. 
Although many of the study species may be longer-lived than each 
of the time periods (i.e., 6 years), we prioritized using time periods 
that captured either mangrove or salt marsh dominance. Due to the 
oscillations of mangrove versus salt marsh dominance, many individ-
ual plants were likely exterminated on short time scales. We used 
all occurrence data to construct an SDM for each species for our 
defined present time (2013–2018) regardless of when the specimens 
were collected. It would be ideal to use separate occurrence spec-
imens from each time period to assess SDM performance, but this 
was not possible with the temporal distribution of georeferenced 
data points. For each 6-year time period, we averaged the annual 

http://idigbio.org
http://gbif.org
http://github.com/richiehodel/coastal_ENM
http://github.com/richiehodel/coastal_ENM
https://doi.org/10.5061/dryad.08kprr55b
https://doi.org/10.5061/dryad.08kprr55b
http://worldclim.org
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precipitation, maximum temperature, and minimum temperature for 
each month (e.g., average values of these three variables were cal-
culated across the six January months, six February months, etc., 
in each time period) and used the resulting 12 monthly averages to 
calculate the standard 19 bioclimatic variable values using the “bio-
vars” function in the “dismo” R package for each 6-year time period 
(Hijmans et al., 2017). The standard 19 bioclimatic variables are not 
available on a monthly basis because some of them incorporate sea-
sonality and require data for at least 1 year. By using monthly data 
for annual precipitation, maximum temperature, and minimum tem-
perature variables, all of the 19 bioclimatic variables can be calcu-
lated (Hijmans et al., 2017).

All layers were then trimmed so that the extent of the study 
area was between −120 and −32 degrees longitude, and −36 and 
36 degrees latitude using custom scripts and the R package “ras-
ter” (Hijmans et al., 2015) and exported in ASCII format (Figure 1). 

This study area was selected because it included subtropical and 
tropical regions of both the Northern and Southern Hemispheres, 
captured the ecotone between mangrove and salt marsh species in 
both Hemispheres, and allowed for an expansion zone as some spe-
cies may expand their ranges in the future as the climate changes. 
Regions such as Hawaii, where some Neotropical mangrove species 
have been introduced, were not included in the study. We used an 
R script and the R package “raster” (Hijmans et al.,  2015) to mea-
sure the pairwise correlation of the 19 bioclimatic variables. When 
variables were correlated with one another (r > .7), only one of the 
layers was retained for subsequent analyses (Dormann et al., 2013). 
After removing correlated layers, we had a data set of six bioclimatic 
variables (BIO2, mean diurnal temperature range; BIO5, maximum 
temperature of warmest month; BIO6, minimum temperature of 
coldest month; BIO12, annual precipitation; BIO15, precipitation 
seasonality; BIO18, precipitation of warmest quarter). BIO6 and 

F I G U R E  1 The suitable habitat 
averaged for the four mangrove species 
(top) and the four salt marsh species 
(bottom) in the present (defined as 2013–
2018) for the entire geographic study 
region. For each plot the average suitable 
habitat is shown to in Table 2.
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BIO1 were highly correlated (r = .956), and BIO1 (mean annual tem-
perature) was excluded even though it is frequently included in SDM 
analyses because BIO6 has been identified as an important variable 
shaping range limits of coastal species (Tomlinson, 2016). All layers 
were clipped using the “mask” function in the “raster” R package 
(Hijmans et al., 2015) such that all cells with elevation greater than 
10 m were considered “no data” cells. This was done to ensure that 
the SDM analyses were not trained on inland regions representing 
areas where these coastal species do not occur.

2.2  |  Species distribution modeling

The occurrence data obtained from digitized herbaria records and 
the six environmental layers were used as input for the SDM analy-
ses. SDM uses the occurrence data for each species in the present 
to identify pixels that have suitable habitat for the species of interest 
based on environmental data. We used the maximum entropy algo-
rithm implemented in MAXENT v3.4.1 (Phillips et al., 2006, 2017) to 
conduct SDM analyses. The maximum entropy algorithm uses pres-
ence data and random background sampling to develop the model, 
and it has been shown to perform well with presence-only data (Elith 
et al., 2006; Wisz et al., 2008). Optimal settings for MAXENT model fit 
were determined using the “ENMevaluate” function in the ENMeval R 
package (Muscarella et al., 2014). We investigated regularization multi-
pliers from 0.5 to 4 at intervals of 0.5 and the following features/com-
binations of features: linear, linear/quadratic, linear/quadratic/hinge, 
linear/quadratic/hinge/product, linear/quadratic/product/threshold, 
and linear/quadratic/hinge/product/threshold. The “ENMevaluate” 
function was run for each species, using the same 10,000 background 
points, occurrence data for the species of interest, and the “maxnet” 
algorithm with the “checkerboard2” method. The ΔAICc scores for all 
models tested for each species were compared to determine the op-
timal model to be inputted into MAXENT. Other non-default settings 
used include fivefold cross-validation, a minimum training presence 
threshold, and fading by clamping. Cloglog output was used because it 
produces an estimate for each pixel between 0 and 1 that represents 
probability of presence (Phillips et al., 2017).

We assessed each model's prediction ability by using partial re-
ceiver operating characteristic (pROC), which measures the ratio of 
the area under the receiver operating characteristic curve (AUC). 
AUC ranges from 0 to 1 and measures the model's ability to pre-
dict suitable habitat, with 1 indicating perfect discrimination be-
tween suitable and unsuitable habitat. The pROC is the ratio of the 
partial AUC divided by random expectation, and it can range from 
0 to 2, with 1 representing random model performance (Escobar 
et al., 2018). For independent occurrence points, this metric mea-
sures the relationship of omission error and proportion of suitable 
area under conditions of low omission errors (Peterson et al., 2008). 
Jackknife tests of regularized training gain were used to measure 
the relative contribution of each bioclimatic variable to the model. 
Average habitat suitability values for each pixel were modeled for 
the present, past, and future for each species, and these values were 

used in downstream analyses. For a given region, the sum of habitat 
suitability scores was considered the total suitable habitat.

2.3  |  SDM validation and projection into future

We measured each species' suitable habitat and how it was 
projected to change from the present to the past. First, we defined 
an area representing the northeastern Florida ecotone used in 
previous studies to use for hindcast validations: between −82 and 
−80 degrees longitude, and 28 and 31 degrees latitude (Cavanaugh 
et al.,  2019). For convenience, we hereafter refer to this region 
as “NE Florida.” We considered the SDM to be properly fit when 
it accurately inferred the anticipated relative change in suitable 
habitat between the average mangrove species and the average salt 
marsh species for all past time periods in the NE Florida validation 
region. We also used a larger geographic region (between −87 and 
−79 degrees longitude, and 24 and 31 degrees latitude) to test if the 
hindcast validations were consistent when a larger region was used; 
we hereafter refer to this region as “Florida” for simplicity.

Once the SDMs were hindcast-validated, the same approach 
was used to infer projected change in suitable habitat for the three 
time periods in the future. To project future values of environmental 
variables, we used a widely used and well-validated climate model—
the CNRM-CM6-1 model, which is a fully coupled atmosphere–
ocean general circulation model developed by Centre National de 
Recherches Météorologiques (CNRM) for the sixth generation of the 
IPCC Coupled Model Intercomparison Project 6 (CMIP6), and with 
the shared socioeconomic pathway 245 (Eyring et al., 2016). This cli-
mate model was selected because it is one of 49 used in the most 
recent IPCC CMIP6, is compatible with the WorldClim 2.1 data used 
for hindcast analyses (https://world​clim.org/data/cmip6/​cmip6​
clima​te.html), and the shared socioeconomic pathway was selected 
because it represents a central part of the range of plausible future 
pathways. SDMs for the full geographic study region were projected 
into both the past and future time periods. Future time periods were 
determined by availability of WorldClim 2.1 data.

3  |  RESULTS

3.1  |  Species distribution modeling

For all mangrove species, the most important bioclimatic variable 
in terms of model contribution was BIO6 (minimum temperature of 
coldest month) (Table 1). For all salt marsh species except Sesuvium 
portulacastrum, BIO6 was one of the two most important bioclimatic 
variables. Additionally, all salt marsh species had BIO12 (annual precip-
itation) as one of the two most important variables (Table 1). We used 
between 69 and 449 georeferenced occurrence points per species for 
SDM (Tables S1 and S2, Figure S1). Model parameters were optimized 
for each species using ΔAICc scores (Table S3). The pROC scores indi-
cated good model performance across all species (Figure S2).

https://worldclim.org/data/cmip6/cmip6climate.html
https://worldclim.org/data/cmip6/cmip6climate.html
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3.2  |  Model validation

The SDM results were hindcasted into past time periods when 
relative mangrove species versus salt marsh species dominance 
was known on several geographic scales (Figure 2; Figures S3–S5). 
There were not specific expectations as to whether mangrove spe-
cies or salt marsh species would exhibit an increase or decrease in 
suitable habitat relative to the present; rather, we expected that 

in periods of dominance by one group, there would be a larger 
increase or smaller decrease in suitable habitat for that group 
relative to the other group. In the NE Florida validation region, 
average mangrove suitable habitat was smallest in the period of 
salt marsh dominance (1984–1989), larger in the period of man-
grove dominance (2001–2006), and largest in the present (2013–
2018; Table 2, Figure 3). These trends were consistent when each 
mangrove species was considered separately. Meanwhile, average 

TA B L E  1 For each species, the percent contribution of each bioclimatic variable to the species distribution model; the two variables with 
the highest percent contribution are shown in bold.

Species
Avicennia 
germinans

Conocarpus 
erectus

Laguncularia 
racemosa

Rhizophora 
mangle

Batis 
maritima

Sesuvium 
portulacastrum

Spartina 
alterniflora

Sporobolus 
virginicus

BIO2 9.8 1.6 9.2 4.8 11.9 19.8 10.3 13.9

BIO5 2.4 4.9 2.4 1.8 0.2 5.1 1.4 21.5

BIO6 45.0 69.6 46.8 52.7 14.4 11.7 41.7 24.6

BIO12 16.8 5.0 15.4 15.5 55.2 28.7 30.8 24.4

BIO15 19.8 5.2 14.3 4.6 9.4 19.1 8.1 8.4

BIO18 6.3 13.7 11.9 20.5 9.0 15.8 7.8 7.3

Note: The first four taxa listed are mangrove species and the last four are salt marsh species. BIO2, mean diurnal temperature range; BIO5, maximum 
temperature of warmest month; BIO6, minimum temperature of coldest month; BIO12, annual precipitation; BIO15, precipitation seasonality; BIO18, 
precipitation of warmest quarter.

F I G U R E  2 For the NE Florida validation region, the projected suitable habitat is shown for the two past hindcast-validation time periods, 
as well as the present, and for three future time periods. The average mangrove suitable habitat is shown in (a) and average salt marsh 
suitable habitat is shown in (b). For each plot the average suitable habitat is shown in Table 2.
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salt marsh suitable habitat was smallest in the period of man-
grove dominance (2001–2006), larger in the period of salt marsh 
dominance (1984–1989), and largest in the present (2013–2018; 
Table 2, Figure 3). However, this trend was only matched by two 

of the individual salt marsh species (Sesuvium portulacastrum and 
Sporobolus virginicus). In the larger Florida validation region, all 
results had the same qualitative trends as in the NE Florida hind-
cast validation region (Table  2; Figure S6). Considering the ratio 

TA B L E  2 For the four mangrove species (top), the measure of habitat suitability is shown for each of the three regions examined for all six 
time periods.

Region Time period
Avicennia 
germinans Conocarpus erectus

Laguncularia 
racemosa Rhizophora mangle Average mangrove

NE Florida 1984–1989 127.4 24.9 68.5 40.5 65.3

2001–2006 140.7 28.8 75.6 42.3 71.8

2013–2018 196.9 41.7 150.9 87.9 119.4

2021–2040 177.7 33.6 103.4 70.0 96.2

2041–2060 173.9 34.5 92.1 67.5 92.0

2061–2080 175.0 28.4 75.5 63.8 85.7

Florida 1984–1989 1141.8 526.7 1051.7 740.9 865.3

2001–2006 1299.4 501.4 1090.5 825.9 929.3

2013–2018 1502.3 731.9 1445.3 1332.0 1252.9

2021–2040 1381.8 687.7 1227.0 1086.3 1095.7

2041–2060 1363.6 692.5 1134.9 1018.0 1052.2

2061–2080 1428.9 633.2 1145.8 1032.4 1060.1

Americas 1984–1989 12,928.4 11,707.3 10,947.2 11,172.9 11,688.9

2001–2006 14,242.3 11,144.4 11,518.6 11,021.2 11,981.6

2013–2018 13,878.3 11,047.5 10,674.8 10,949.7 11,637.6

2021–2040 13,566.9 10,914.5 10,227.8 9740.8 11,112.5

2041–2060 13,882.7 10,401.4 9304.6 8713.3 10,575.5

2061–2080 14,395.7 9821.3 7948.7 7987.3 10,038.2

Region Time period Batis maritima
Sesuvium 
portulacastrum Spartina alterniflora

Sporobolus 
virginicus Average salt marsh

NE Florida 1984–1989 258.4 198.4 280.5 185.0 230.6

2001–2006 271.7 148.3 288.9 163.1 218.0

2013–2018 265.4 217.1 306.5 237.4 256.6

2021–2040 261.5 243.2 273.9 273.8 263.1

2041–2060 250.8 247.2 276.4 273.8 262.0

2061–2080 254.2 261.5 278.9 256.5 262.8

Florida 1984–1989 1597.5 1163.5 1137.0 1271.9 1292.5

2001–2006 1708.6 686.2 1371.2 1010.2 1194.0

2013–2018 1635.6 929.3 1339.7 1391.3 1324.0

2021–2040 1583.5 1161.6 1169.3 1456.6 1342.7

2041–2060 1549.0 1230.1 1123.7 1461.9 1341.2

2061–2080 1578.5 1305.5 1216.6 1330.6 1357.8

Americas 1984–1989 1,4517.5 12,383.0 8084.7 13,812.8 12,199.5

2001–2006 15,197.3 12,776.0 8406.6 13,329.2 12,427.3

2013–2018 14,524.1 12,578.8 8272.7 13,230.8 12,151.6

2021–2040 13,875.3 10,805.1 6192.8 12,122.5 10,748.9

2041–2060 14,878.5 9902.6 5814.7 11,527.0 10,530.7

2061–2080 15,496.8 10,102.2 6094.5 10,607.0 10,575.1

Note: For each species, habitat suitability was calculated by the sum of all Cloglog values in each study region. The NE Florida and Florida regions 
were used for model hindcast validation and their geographic extent is defined in the text. The average habitat suitability across all mangrove species 
is shown in the rightmost column. The analogous values for the four salt marsh species are displayed in the bottom half of the table.
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of mangrove:salt marsh suitable habitat also demonstrated the 
utility of hindcast validation (Table  3). In NE Florida, the ratio 
of mangrove:salt marsh suitable habitat was greater in the pe-
riod of mangrove dominance than in the salt marsh dominance 
time period (Table 3). This trend held in both Florida and on the 
larger geographic scale (i.e., the Americas; Table 3). Based on the 
above results, we consider the model to be validated by hindcast 
ground-truthing.

3.3  |  Projecting future distributions

In the NE Florida region, the hindcast-validated SDMs displayed 
contrasting results between mangrove and salt marsh species 
when projected from the present to all future time periods. In 

the future time periods, there was a projected small decrease in 
average mangrove suitable habitat relative to the present and a 
projected small increase in salt marsh suitable habitat (Figure  3, 
Table  2). These trends also broadly held in the Florida validation 
region (Table 2; Figure S6). However, on the large geographic scale 
(i.e., the Americas), there was a decrease in suitable habitat relative 
to the present in both average mangrove and average salt marsh 
suitable habitat (Tables 2 and 4, Figure 4; Figures S7 and S8). These 
trends applied to all species except the mangrove species Avicennia 
germinans and the salt marsh species Batis maritima, which each 
underwent small predicted increases in suitable habitat in the 
time periods 2041–2060 and 2061–2080 relative to the present 
(Figure 4, Table 5). In future time periods, the ratio of mangrove:salt 
marsh suitable habitat was more similar to the past period of man-
grove dominance versus the salt marsh dominance time period 

F I G U R E  3 The SDM-defined suitable 
habitat for the time periods in the 
past used to validate the model on the 
smallest spatial scale (NE Florida), in the 
present, and projected into the future. 
The total suitable habitat available for 
each mangrove species (top) and each salt 
marsh species (bottom) is shown using 
colored circles. The average across all four 
species is shown in colored diamonds.
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(Table 3). In the NE Florida and Florida validation regions, the ratio 
of mangrove:salt marsh suitable habitat was greater in the present 
than it was in any other time period and was typically greater in the 
future versus the past (Table 3). On the largest geographic scale, 
the ratio was greatest in the near future time periods (2021–2040, 
2041–2060; Table 3).

4  |  DISCUSSION

SDM approaches that use species occurrence data and environmen-
tal variables are valuable tools that can project future changes in 
suitable habitat, but one unavoidable limitation of these models is 
the impossibility of ground-truthing the accuracy of the models in 
the future. Here, we use a novel validation approach: external data 
on the relative dominance of mangrove and salt marsh species in the 
previous century in an ecotone in NE Florida were used to validate 
our SDMs before projecting them into the future. We demonstrate 
a new way for researchers to ground-truth SDMs to increase con-
fidence when projecting SDMs into novel geographic or temporal 

space. We apply the hindcast-validation method to project the po-
tential future impacts of climate change on coastal angiosperm spe-
cies, but our approach can be applied to a variety of research 
objectives using SDMs and to many different taxa across the Tree 
of Life. Using hindcast-validated SDMs, our projections suggest a 
decline in suitable habitat in the future for nearly all mangrove and 
salt marsh species investigated (Figure 4). In most future time peri-
ods, the ratio of mangrove:salt marsh suitable habitat is projected to 
increase relative to the present across the Americas (Table 3). Below, 
we contextualize and discuss the results and offer recommendations 
for future research using hindcast-validated SDMs.

When validating hindcast models, although the trends averaged 
across mangrove species and salt marsh species were consistent 
with expectations based on documented dominance, individual spe-
cies did not always follow the expected trend. For example, in NE 
Florida, the salt marsh species Batis maritima and Spartina alterni-
flora exhibited slightly higher suitable habitat scores during the pe-
riod of mangrove dominance (2001–2006) versus the period of salt 
marsh dominance (1989–1984). Although there are species-specific 
differences when hindcasting, nevertheless the averaged results by 
species type (mangrove vs. salt marsh) all indicated proper model 
validation (Figures 2 and 3, Tables 2–5; Figures S3–S6). We followed 
other large-scale mangrove studies that grouped together and av-
eraged species results to identify overarching trends (e.g., Osland 
et al., 2013; Record et al., 2013), and we also present results for each 
species separately (Table 5).

Overall, our results confirm findings of mangrove-salt marsh os-
cillations in the NE Florida ecotone on the Atlantic coast of Florida 
reported in Cavanaugh et al.  (2019). The present study also inves-
tigated a much larger geographic scope and therefore reveals key 
insights about the future dynamics between mangrove and salt 
marsh species at their range limit in the Southern Hemisphere and in 
the more central portions of these species' ranges. On a large geo-
graphic scale, in most future time periods, the ratio of mangrove:salt 
marsh suitable habitat is projected to increase relative to the pres-
ent (Table 3). However, for most mangrove and salt marsh species 
studied, suitable habitat declines in the future time periods relative 
to the present. Therefore, future environmental conditions are pro-
jected to be detrimental to both species types, but they will be more 
favorable to mangroves, which may mean an increase in mangrove 
dominance at the expense of salt marsh species. It is possible that 
SLR could create new inland habitats suitable for mangrove and/or 
salt marsh species, although it is very difficult for many plant species 
to colonize new areas quickly enough to keep pace with changing 
climates (Corlett & Westcott, 2013).

4.1  |  Novelty and limitations of hindcast-
validated SDMs

We consider the hindcast validation approach to be an innovative 
way to use the fine temporal scale of WorldClim 2.1 data to ground-
truth SDMs and a template for how future SDM investigations can 

TA B L E  3 The ratio of modeled mangrove:salt marsh suitable 
habitat for each time period and each of the three study regions.

Time period NE Florida
Florida 
peninsula Americas

1984–1989 0.283 0.669 0.958

2001–2006 0.330 0.778 0.964

Present 0.465 0.946 0.958

2021–2040 0.366 0.816 1.034

2041–2060 0.351 0.785 1.004

2061–2080 0.326 0.781 0.949

TA B L E  4 The percent change in suitable habitat between the 
present and the time period listed.

Time period Species type

Region

NE Florida Florida Americas

1984–1989 Mangrove −45.3 −30.9 0.4

Salt marsh −10.1 −2.4 0.4

2001–2006 Mangrove −39.8 −25.8 3.0

Salt marsh −15.0 −9.8 2.3

2021–2040 Mangrove −19.4 −12.5 −4.5

Salt marsh 2.5 1.4 −11.5

2041–2060 Mangrove −22.9 −16.0 −9.1

Salt marsh 2.1 1.3 −13.3

2061–2080 Mangrove −28.2 −15.4 −13.7

Salt marsh 2.4 2.6 −13.0

Note: Within each time period, the percent change in habitat suitability 
averaged across the four mangrove species (top) and four salt marsh 
species (bottom) is shown. In the past, the 1984–1989 time period was 
dominated by salt marsh species, and the 2001–2006 time period was 
defined by mangrove dominance.
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validate models before projecting them into the future or distant 
past (i.e., mid-Holocene or earlier). When species have ample geo-
referenced data from different time periods between 1960 and 
2018 and/or there are external data sources that can confirm spe-
cies presence at specific times in the past, hindcast-validated SDMs 
are a powerful tool for verifying models that will be used to project 
future suitable habitat. Researchers can follow our approach of con-
structing models for the present and hindcasting them, or if there 
are sufficient temporally diverse occurrence data, SDMs could be 
constructed for time periods in the past (e.g., 1960–1980) and vali-
dated using time periods closer to the present (e.g., 2000–2018) be-
fore being used to project future suitable habitat. Our methods will 
be easier to apply in certain species; the large availability of coastal 
photographs from many time periods and the relatively low species 
richness of mangrove and salt marsh communities compared with 

other communities facilitated our analyses. However, future stud-
ies on different species could leverage other data sources, such as 
flora and fauna checklists, to confirm species presence at certain 
time periods.

While a strength of our approach is the magnitude of the geo-
graphic range investigated, this also adds associated limitations. We 
validated the models using data from previous decades in the NE 
Florida ecotone, but projected future suitable habitat on a geographic 
extent larger than the validation area. Ideally, there would be external 
data sources that could be used for hindcast validation from other 
geographic regions, but to our knowledge there are no such data 
sources on the same timescale as the northeastern Florida ecotone 
data. The future projection results from our study align well with pre-
dictions in a small region of the Northern Hemisphere (Cavanaugh 
et al., 2019); therefore, it is reasonable to project our SDMs beyond 

F I G U R E  4 The SDM-defined 
suitable habitat for the time periods 
in the past, present, and future on the 
large geographic scale (Americas). The 
total suitable habitat available for each 
mangrove species (top) and each salt 
marsh species (bottom) is shown using 
colored circles. The average across all four 
species is shown in colored diamonds.
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that limited geographic region (i.e., Florida) because they could lead 
to critical insights about the future of these species in other regions 
(e.g., a mangrove-salt marsh ecotone in southern Brazil).

A caveat associated with our study is that there were insuffi-
cient occurrence points for each species in each time period, given 
the short duration of the time periods (i.e., 6 years). Therefore, we 

TA B L E  5 Within each time period, the percent change in suitable habitat is listed for each of the four mangrove species (top) and each of 
the four salt marsh species (bottom) for each st region.

Time period Species

Region

NE Florida Florida Americas

1984–1989 Avicennia germinans −35.3 −34.0 −6.9

Conocarpus erectus −40.3 −28.0 6.0

Laguncularia racemosa −54.6 −27.2 2.6

Rhizophora mangle −53.9 −44.4 2.0

Batis maritima −2.6 −2.3 −0.1

Sesuvium portulacastrum −8.6 25.2 −1.6

Spartina alterniflora −8.5 −15.1 −2.3

Sporobolus virginicus −22.1 −8.6 4.4

2001–2006 Avicennia germinans −28.5 −13.5 2.6

Conocarpus erectus −30.9 −31.5 0.9

Laguncularia racemosa −49.9 −24.5 7.9

Rhizophora mangle −51.9 −38.0 0.7

Batis maritima 2.4 4.5 4.6

Sesuvium portulacastrum −31.7 −26.2 1.6

Spartina alterniflora −5.7 2.4 1.6

Sporobolus virginicus −31.3 −27.4 0.7

2021–2040 Avicennia germinans −9.8 −8.0 −2.2

Conocarpus erectus −19.4 −6.0 −1.2

Laguncularia racemosa −31.4 −15.1 −4.2

Rhizophora mangle −20.4 −18.4 −11.0

Batis maritima −1.5 −3.2 −4.5

Sesuvium portulacastrum 12.0 25.0 −14.1

Spartina alterniflora −10.6 −12.7 −25.1

Sporobolus virginicus 15.0 4.7 −8.4

2041–2060 Avicennia germinans −11.7 −9.2 0.1

Conocarpus erectus −17.3 −5.4 −5.8

Laguncularia racemosa −39.0 −21.5 −12.8

Rhizophora mangle −23.2 −23.6 −20.4

Batis maritima −5.5 −5.3 2.4

Sesuvium portulacastrum 13.9 32.4 −21.2

Spartina alterniflora −9.8 −16.1 −29.7

Sporobolus virginicus 15.3 5.1 −12.9

2061–2080 Avicennia germinans −11.1 −4.9 3.7

Conocarpus erectus −31.9 −13.5 −11.1

Laguncularia racemosa −50.0 −20.7 −25.5

Rhizophora mangle −27.4 −22.5 −27.1

Batis maritima −4.2 −3.5 6.7

Sesuvium portulacastrum 20.5 40.5 −19.7

Spartina alterniflora −9.0 −9.2 −26.3

Sporobolus virginicus 8.0 −4.4 −19.8

Note: In the past, the 1984–1989 time period was dominated by salt marsh species, and the 2001–2006 time window was a period of mangrove 
dominance.
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followed a standard assumption in SDM analyses that the present is 
any time after 1950 (Hijmans et al., 2005). We used all occurrence 
data to construct an SDM for our defined present time (2013–2018) 
regardless of when the specimens were collected. While this is not 
an ideal approach and it would be preferable to have tens or hun-
dreds of specimen records for each time period, that was impossible 
with the datasets used. We view the use of hindcast validation of 
SDMs as a valuable step forward for studies of this kind, despite 
this caveat.

One known limitation of SDMs is the difficulty in incorporating 
biotic interactions (e.g., competition or mutualisms) into a model. 
Especially at large scales, biotic interactions can have a significant 
effect on the predictive and explanatory power of models based on 
bioclimatic data (Araújo & Luoto, 2007). Some studies have success-
fully addressed biotic interactions on a spatial scale orders of mag-
nitude smaller than the present study area (e.g., Crase et al., 2015). 
Bardou et al. (2021) incorporated species-specific physiological data 
to refine distribution models of mangrove species on the Atlantic 
and Pacific coasts of North America. However, it remains prohibi-
tively difficult to incorporate biotic interactions into an SDM frame-
work on a large (i.e., continental) spatial scale. For this study, we 
prioritized using a large geographic extent to infer future suitable 
habitat in the ecotones in the Southern Hemisphere as opposed to 
investigating species interactions on a very limited geographic scale. 
We could project the future environmental niche of a species, but 
we could not fully understand how species interactions, such as 
competition, may affect a species' environmental niche in the future. 
Although our SDM approach does not explicitly consider species in-
teractions, SDMs can be used to interpret interactions between spe-
cies or groups of species. We measured whether a species or species 
type (mangrove vs. salt marsh) was projected to increase or decrease 
in suitable habitat. Any increase or decrease in suitable habitat may 
impact other species that occupy similar geographic ranges. Even 
though both species types are projected to decrease in suitable 
habitat in the future, the fact that the ratio of mangrove:salt marsh 
suitable habitat skews in favor of mangroves suggests interactions 
between the species with a likely result of mangroves occupying 
coastal habitats at the expense of salt marsh species.

Some projections of suitable habitat occurred outside of the 
documented ranges of many of these coastal species. For example, 
several mangrove species were projected to have suitable habitat 
adjacent to the Amazon River, hundreds of kilometers inland from 
their actual historically observed ranges (Figure 1). The model used 
abiotic factors to determine habitat suitability, and therefore the 
SDM analyses identified the pixels that contain suitable habitat for 
each species. These inland suitability scores >0 may indicate a mis-
fit model, but we consider this unlikely; it is unsurprising that some 
of these regions would be categorized as moderately suitable hab-
itat given that our SDMs are based on abiotic bioclimatic variables. 
Virtually all inland regions that were classified as suitable habitat 
were adjacent to rivers, and likely competition from rapidly grow-
ing riparian flora or physical dispersal limitations would prevent 
coastal species from colonizing these regions (Tomlinson, 2016). In 

fact, there are several documented instances of mangrove species 
occurring substantially inland (e.g., >50 km inland) in the Sundarbans 
in Bangladesh (Cornforth et al., 2013) and in the Yucatán peninsula 
(Aburto-Oropeza et al., 2021), and several salt marsh species often 
occur tens of kilometers inland (Costa & Davy,  2013). Moreover, 
there are biotic explanations for the regions of unexpected inland 
suitable habitat. Competition from fast-growing freshwater vascular 
plants has often been cited as the reason that mangroves are only 
found in coastal habitats (Simberloff, 1983; Tomlinson, 2016; Wang 
et al.,  2011). Most inland regions where mangroves or salt marsh 
species could occur due to environmental tolerances, but are not 
present due to competition, have relatively low suitability scores 
(Figures 1 and 2; Figures S3–S5, S7, S8). We take this as evidence 
that the models are performing well; inland areas with implausible 
habitat suitability are regions where environmental conditions per-
mit species existence, but biotic interactions (i.e., competition from 
fast-growing riparian species) explain the absence of coastal taxa in 
these inland regions. However, rapid SLR in the future, which was 
not explicitly modeled, could mean that inland areas may soon ex-
perience increased salinity in the water, rendering the environment 
unsuitable for freshwater riparian species and enabling colonization 
by mangrove and/or salt marsh species.

4.2  |  Prospects and conclusions

We should carefully monitor areas where novel overlaps of salt 
marsh and mangrove species are projected, as species in these 
areas could be vulnerable to decline. Some processes that may be 
exacerbated by climate change, such as flooding, can have a dif-
ferent impact on mangrove versus salt marsh communities (Cruz 
et al.,  2020; Schaeffer-Novelli et al.,  2016). The relative impor-
tance of climatic variables in our SDMs indicates that different 
factors may be more important for determining suitable habitat 
for each community—cold temperature events for mangroves and 
annual precipitation for salt marsh species (Table  1). As the cli-
mate changes, a decrease in cold events means mangrove species 
will have the potential to occupy areas that are currently inhab-
ited by salt marsh or estuarine plant species. Meanwhile, changes 
in flooding and/or precipitation may enable salt marsh species to 
dominate in habitats that become unsuitable for mangroves (Cruz 
et al., 2020).

There is a fixed (or diminishing) amount of coastal land; any range 
increases will come at the expense of other coastal plant species. 
Although SLR could drastically affect coastal and estuarine regions 
by creating new suitable habitat for mangrove and/or salt marsh spe-
cies, it will be challenging for plant species to occupy newly available 
habitat as the climate changes rapidly (Corlett & Westcott, 2013). In 
the majority of cases (e.g., Atlantic coast of North America), regions 
that are historically salt marshes will become suitable habitat for 
mangrove species based on our projections. Several ecological stud-
ies on small scales (e.g., Florida, Louisiana, Texas) have already doc-
umented mangrove invasions of salt marshes (Osland et al.,  2013, 



    |  13 of 16HODEL et al.

2020), which had negative impacts on native flora and fauna. Based 
on our SDM results, areas other than the Gulf of Mexico that may 
be at risk include southern Brazil. In southern Brazil, the salt marsh-
mangrove ecotone is in flux due to both human over-development 
and the climate-induced poleward shifts in mangroves (Schaeffer-
Novelli et al., 2016). The overlap of mangrove species and salt marsh 
species in the future will probably be detrimental to salt marsh spe-
cies and may have a negative impact on mangrove species—biotic 
interactions with native species may mean that abiotic projections 
of suitable habitat overestimate their actual future range. Given the 
large spatial extent of our study, we view our results as a broad char-
acterization of likely future trends in mangrove and salt marsh dis-
tributions, which should be further investigated by localized studies.

The projected future distribution change for the mangrove spe-
cies modeled in this paper will likely not only negatively impact salt 
marsh species, but may also have unanticipated effects on the many 
taxa that depend on mangroves for survival. Many other organisms, 
including birds, fish, invertebrates, algae, and other plants (Cannicci 
et al.,  2008; Lefebvre & Poulin,  1997; Nagelkerken et al.,  2000; 
Rodriguez & Stoner,  1990; Tomlinson,  2016), rely on mangroves. 
Some species experience range shifts to keep pace with a chang-
ing climate; initial research suggests that mangroves are able to 
spread just quickly enough to adjust to climate change (Cavanaugh 
et al., 2014; Saintilan et al., 2014). However, it is unclear if the animal 
species depend on mangroves for food, shelter, and/or reproduc-
tion will be able to shift their ranges similarly as the climate changes. 
Some taxa are extirpated when species they depend on experience 
even minor range shifts (Foster, 2001). Additionally, as the various 
species that inhabit communities will likely experience range shifts 
at different rates, there is great potential for novel community as-
semblages in the future, as salt marsh flora and fauna interact with 
mangrove taxa (Lurgi et al., 2012). Our models can project the future 
suitable habitat of mangrove and salt marsh plants, but it is very dif-
ficult to predict how novel biotic interactions may impact the biodi-
versity associated with these two communities.
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