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Abstract: In this work, ionic liquid (IL)-cured epoxy resins were modified by adding poly(ε-caprolactone)
(PCL). Three different ILs were used in order to study how (a) the chemical structure of the ILs and
(b) the PCL content affect the phase behaviour, microstructure, mechanical and adhesive properties.
Regardless of the IL used or the PCL content, the obtained materials showed a single phase. The
addition of PCL to the epoxy resin resulted in plasticizing of the network blends, lower glass transition
temperatures (Tg), and crosslinking densities (νe). Low PCL contents did not have a significant impact
on the mechanical properties. However, the adhesive properties improved significantly at low PCL
contents. Higher PCL contents led to a significant increase in toughness, especially in the case of
the imidazolium-based IL. The balance achieved between the mechanical and adhesive properties
of these IL-cured epoxy/PCL blends constitutes an important step towards sustainability. This is
because a biodegradable polymer (PCL) was used to substitute part of the epoxy resin, and the
ILs—which are non-volatile and cure effectively at much lower contents—were used instead of
conventional curing agents. Given the wide use of this kind of materials in the adhesive industry, the
practical significance of these results must be emphasised.

Keywords: epoxy; ionic liquids; poly(ε-caprolactone); blends; adhesives; lap-shear; mechanical
properties; toughness

1. Introduction

Epoxy resins are extensively used in a wide range of applications [1], including adhe-
sives [2,3], coatings [4,5], and high-performance composites [6,7], among others. However,
as one of the main drawbacks is their inherent brittleness, much research has gone into
finding ways to increase their toughness. One of the most widely studied means of doing
this has been by blending them with rubbers. However, blending with rubbers generally
leads to a decrease in the modulus and strength [8], and the products from such blending
are not suitable for high-temperature applications [9]. In addition, they usually need to
be functionalized in order to bond them chemically with the epoxy resin [10]. The use
of epoxidized oils has also been studied, notably soybean [11–13] and castor [14,15] oils.
One of the easiest ways to improve the toughness of epoxy resins, however, is by adding
thermoplastic polymers. Different factors such as the curing conditions [16–18], the cur-
ing agent [17,19–22], the amount [22,23] and the molecular weight of the thermoplastic
polymer [20,21] have been seen to determine the miscibility of the components and the
morphology of the resulting blends.

One of the first thermoplastic polymers blended with epoxy resins was polyether
sulphone (PES) [20–22,24]. The use of different curing agents and PES with different
molecular weights resulted in varying morphologies. Many other thermoplastic polymers
have been used as epoxy modifiers and reported in the literature, including polyetherimide
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(PEI) [25], polymethylmethacrylate [26], polyethylene oxide [27], polycarbonate [28], and
poly(ε-caprolactone) (PCL) [17,19,29–38].

Regarding the use of PCL, different morphologies have been reported depending on
the curing agent employed. When anhydrides were used, the systems usually present
phase separation above a critical molecular weight of PCL [30,31]. By contrast, the use
of amines usually results in miscible blends [19,30,34–37]. This difference is due to the
fact that amines can interact via hydrogen bonding with the PCL’s ester groups [23,30],
which favours miscibility. Zheng et al. [38] reported miscible epoxy/PCL blends on the
nanoscale, with homogeneity at the molecular level depending on the composition. How-
ever, depending on the curing conditions, thermoplastic concentration, and molecular
weight [36], phase-separated morphologies have also been reported with PCL, such as
in 4,4′-diaminodiphenylsulfone (DDS)-cured PCL/epoxy blends. Regarding mechanical
properties, when used as a modifier, PCL successfully improved the toughness of the epoxy
resin [19,32].

Furthermore, when added to epoxy resins, thermoplastics were also reported to im-
prove the adhesive properties [39–42]. Kishi et al. [39] studied the T-peel adhesive strength
of an epoxy resin with polyamide 12 pre-formed particles and reported a value three times
higher than the neat resin. They attributed this to a crack bridging mechanism by the
particles behind the crack-tip. Karthikeyan et al. [40] recently reported that the addition of
10% polyetheretherketone led to a 19% improvement in the lap shear strength. However,
higher concentrations of thermoplastics resulted in a decrease in adhesion due to poor wet-
tability. Ekrem et al. [41] studied the adhesive strength of an epoxy resin modified with an
electrospun nanofiber mat of polyvinyl alcohol (PVA), and reported a 13.5% improvement
in the shear strength. For an epoxy resin modified with a hyperbranched polymer, Buono-
core et al. [42] obtained a 27.6% improvement in the lap shear strength. They attributed
this result to enhanced interaction between the end group of the hyperbranched polymer
and the substrate.

Regarding the adhesive properties of epoxy/PCL blends, Arnebold et al. [43] obtained
moderate increases (≈ 50%) in the tensile shear strength by adding either a reactive or a
non-reactive PCL to the epoxy resin. Luo et al. [44,45] used immiscible PCL as the adhesive
component in a previously cured phase-separated epoxy/PCL blend.

Furthermore, in the search for sustainable materials, ionic liquids are being studied as
substitutes for traditional toxic and volatile epoxy curing agents. Imidazolium [46–53] and
phosphonium-based [46,54–58] ionic liquids have been reported, among others, to cure
the epoxy resin effectively. These agents normally initiate the curing reaction by opening
the epoxy rings, thus leading to homopolymerization. Different mechanisms have been
reported in the literature, as can be seen in Table 1.

Table 1. Proposed initiation mechanisms for curing epoxy resins using ILs.

IL Type Initiation Mechanism Reference
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2.2. Preparation of Samples

Prior to the preparation of the samples, the DGEBA was degassed in a vacuum oven
at 80 ◦C for 1 h. Next, the epoxy resin and the PCL (10, 20 and 30 wt% concentrations) were
mechanically mixed at 100 ◦C for two hours. After degassing the corresponding mixture
in a vacuum oven, it was heated to 100 ◦C and 10 parts per hundred resin (phr) of ionic
liquid was added. The mixture was mechanically stirred until it became homogenous.
Finally, in order to produce the test specimens, it was poured into silicone moulds, and the
corresponding curing protocol for each ionic liquid was followed (Table 3). To prepare the
samples for the lap shear tests, the mixture was placed between substrates covering an area
of 12.5 mm × 25 mm and the samples were cured. DGEBA/IL samples were also obtained
as a reference. For these samples, the two components were mechanically mixed at 50 ◦C
for 5 min. The mixture was then either poured into silicone moulds in order to obtain test
specimens or placed between substrates for the lap shear tests and the appropriate curing
protocol was followed. All this information is shown schematically in Figure 1.

Table 3. Curing protocols for the ILs.

Curing Agent Concentration Curing Protocol

IL-P-TMPP 10 phr 2 h 80 ◦C/2 h 120 ◦C/1 h 150 ◦C/1 h 170 ◦C
IL-P-DCA 10 phr 2 h 120 ◦C/2 h 140 ◦C/1 h 170 ◦C
IL-I-DCA 10 phr 2 h 110 ◦C/1 h 140 ◦C/1 h 170 ◦C
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2.3. Characterization
2.3.1. Phase Behaviour

Differential scanning calorimetry (DSC) was conducted using a Perkin-Elmer DSC-7
calorimeter calibrated using an indium standard as a reference. Samples were taken from
previously cured specimens and were heated from 30 ◦C to 250 ◦C at a rate of 20 ◦C/min
under a nitrogen atmosphere.

Dynamic mechanical analysis (DMA) was performed on rectangular specimens in a
TA Q800 viscoelastometer in single cantilever bending mode. The temperature interval
was set from −100 ◦C to 250 ◦C, and the heating rate at 4 ◦C/min. The tests were carried
out at a frequency of 1 Hz.



Polymers 2022, 14, 2679 5 of 14

In order to calculate the crosslinking density of the samples, the elasticity theory was
used (Equation (1)) [49,55].

νe =
Er

3RTr
(1)

where Er is the storage modulus in the rubbery state, Tr is the temperature corresponding
to the Er value (T = 245 ◦C) and R is the ideal gas constant (R = 8.314 J/mol K).

2.3.2. Microstructure

The morphology of the samples was analysed with a Hitachi TM3030Plus scanning
electronic microscope (SEM) using an accelerating voltage of 15 kV and a secondary electron
detector. Two-mm-thick rectangular specimens were cryogenically broken by bending after
2 h in liquid nitrogen and coated with gold before being observed.

2.3.3. Mechanical Properties

The mechanical properties of the IL-cured epoxy/PCL blends were determined by
bending tests. An Instron 5569 universal testing machine equipped with a three-point
bending device was used. The crosshead speed was set at 2 mm/min and the span at
64 mm. The samples measured 80 mm × 10 mm × 4 mm, in compliance with the ISO
178 standard. A minimum of 5 specimens were tested for each composition.

The flexural strength (σF) and the deformation at break (εF) were calculated using
Equations (2) and (3), respectively, according to ISO 178. The flexural modulus (Ef) was
calculated from the slope of the tangent line of the linear zone within the elastic limit of the
stress-strain curve (Equation (4)).

σF =
3FmaxL

2bh2 (2)

εF (%) =
6sh
L2 × 100 (3)

E f =
FL3

4sbh3 (4)

where Fmax and F are the maximun load and the load, respectively, L is the span, b is the
width of the specimen, h the thickness and s the deflection.

Charpy impact tests were used to evaluate the impact strength of the samples. The
tests were carried out in a Ceast 6548/00 impact tester using a 2 J pendulum. Notched
specimens (depth 2.54 mm and radius 0.25 mm) were used. A minimum of eight impact
specimens were tested for each reported value.

2.3.4. Adhesive Properties

Lap shear tests were carried out to study the adhesive properties of the obtained
materials. Aluminium 2021-T351 alloy sheets measuring 100 mm × 25 mm × 1.6 mm,
purchased from Rocholl GmbH, were used as substrates. The geometry and adhesion area
were set according to ASTM D-1002 (12.5 mm × 25 mm) and the substrates were cleaned
with acetone before use.

An Instron 5569 with a rate of 1 mm/min was used to carry out the tests. The lap
shear strength was calculated by dividing the maximum force (Fmax) by the adhesion area.
10 specimens were tested for each reported value.

3. Results and Discussion
3.1. Phase Behaviour

Figure 2 shows the tan δ and storage modulus vs. temperature curves of the sam-
ples cured with the different ionic liquids, at different PCL contents. As can be seen in
Figure 2a–c, regardless of either the IL used or the PCL content, the tan δ curves showed
one single main peak, corresponding to the α transition, which is related to the Tg. The
Tg and crosslinking density values extracted from these curves are summarized in Table 4.
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As can also be seen in Figure 2a–c and Table 4, the position of this peak decreased with
increasing PCL contents. The peak at low temperatures (≈−50 ◦C) corresponds to the β
transition of the DGEBA, which is associated with the movement of the -CH2-CHOH-CH2-
O-segment [63,64].
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Table 4. Tg and crosslinking densities obtained from the DMA analysis.

IL PCL (%) Tg (◦C) νe (mol/m3)

IL-P-TMPP

0 168 11,509
10 141 6756
20 112 4487
30 83 3462

IL-P-DCA

0 172 12,616
10 144 5338
20 113 3117
30 86 2252

IL-I-DCA

0 160 4625
10 120 1912
20 96 1197
30 72 302

The appearance of a single tan δ peak points to the epoxy/PCL blend being single-phase,
probably due to the miscibility of DGEBA and PCL in the studied compositions [17,19,30].
Transesterification reactions may also be considered as they have also been reported for
epoxy/PCL systems, mainly for cationically-cured ones [43,65,66] where the PCL be-
came chemically anchored in the network [35]. Either way, a decrease in the Tg and
the crosslinking density (Table 4) resulting from the addition of PCL has also been observed
in epoxy/PCL systems cured with conventional curing agents [17,19,30,35], and has been
attributed to the plasticizing effect of the PCL chains in the epoxy resin network. Regarding
the impact of the type of ionic liquid on the phase behaviour of the epoxy/PCL blend,
Figure 2 and Table 4 show very similar trends in all three as the PCL content increased. This
is consistent with the widely reported role of ILs in the curing reaction of epoxy resins, as
they open the epoxy ring, initiating the homopolymerization of the resin without modifying
the chemical structure of the network.

DSC analysis was carried out to verify whether crystallization of the PCL had taken
place in the cured epoxy/PCL blends. Figure 3 shows the heat flow vs. temperature
curves for the different ILs and PCL contents. As can be seen, no melting peak appeared
in any of the samples studied, which is indicative of the PCL not crystallizing in the
DGEBA/PCL blends.
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The literature shows that in miscible epoxy/thermoplastic blends, the thermoplastic
only crystallizes when its domains have reached a minimum required size. Slight crys-
tallizations have also been observed as a consequence of minor phase separation [19].
Moreover, in both miscible [34] and transesterified [67] epoxy/PCL systems, it has been
proposed that the high Tg of the samples (higher than the crystallization temperature of
the PCL) restricts the movement of the PCL chains which is necessary for crystallization
to take place. Therefore, the lack of PCL crystallization provides additional evidence of
the presence of a single phase in the blends in this study, regardless of the IL or the PCL
content used.

3.2. Microstructure

Figure 4 shows SEM micrographs of the cryogenically broken specimens of the IL-
cured epoxy/PCL blends at different PCL contents. As can be observed, all the studied
blends are homogenous and single-phase, which is fully consistent with the DMA and
DSC results.
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(a) 90/10 IL-P-TMPP, (b) 80/20 IL-P-TMPP, (c) 70/30 IL-P-TMPP, (d) 90/10 IL-P-DCA, (e) 80/20 IL-P-
DCA, (f) 70/30 IL-P-DCA, (g) 90/10 IL-I-DCA, (h) 80/20 IL-I-DCA, and (i) 70/30 IL-I-DCA.

Uncured epoxy/PCL blends are known to be fully miscible in the amorphous state,
i.e., above the melting temperature of PCL, regardless of the PCL content [37,68], which
indicates that if phase-separated cured blends are obtained, phase separation takes place
as a consequence of curing the epoxy resin. Both single-phase [19,30,34–37] and phase-
separated [16,19,23,31,32] epoxy/PCL blends have been reported in the literature when
conventional curing agents were used. In fact, miscible [34,35] and immiscible [61,69]
blends have also been reported even when the same curing agent was used. This is because
phase separation depends on both thermodynamics and kinetics, and therefore not only
on the curing agent but also on the curing conditions, the PCL concentration, and even its
molecular weight.
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When considering IL-cured epoxy/thermoplastic blends, Halawani et al. [61] also
observed that epoxy/PEI blends cured with IL-P-DEP showed a single-phase morphology,
which they related to the IL being able to dissolve the thermoplastic polymer.

3.3. Mechanical Properties

The effect of the addition of PCL on the mechanical properties of the IL-cured epoxy/PCL
blends was studied by bending and impact tests. The results are shown in Figure 5 and
summarized in Table 5. As can be observed, both the chemical structure of the IL used to
cure the samples and the amount of added PCL affected the mechanical properties.
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With respect to low-strain mechanical properties, Figure 5 and Table 5 show how
increasing amounts of added PCL led to a gradual decrease in the flexural modulus and
strength. This was to be expected given the mechanical properties of neat PCL and the
findings in the literature [19,31,32]. These decreases varied depending on the IL used, with
IL-I-DCA producing the greatest drop. For this system and high PCL contents (30%), the
flexural modulus and strength appeared at even lower values than those predicted by the
rule of mixtures, which is consistent with the low Tg and crosslinking density values shown
in Table 4. By contrast, at low PCL contents (10% and 20%), most of the compositions
showed only moderate decreases and values close to those of the pure epoxy resin and
well above the linear behaviour. However, the high standard deviations obtained for these
measurements must also be considered, reducing the significance of the trends observed.
Regarding high-strain mechanical properties, as expected, the addition of PCL to the epoxy
resin led to a gradual increase in the ductility and impact strength, although the behaviour



Polymers 2022, 14, 2679 10 of 14

varied depending on the type of IL used to cure the epoxy resin. As can be seen in Figure 5c,
the ductility increased at high PCL contents irrespective of the IL used, but this increase
was barely significant in the case of IL-P-TMPP, considerable in the case of IL-P-DCA, and
outstanding in the case of IL-I-DCA where the samples bent and slipped during the test,
without breaking.

Table 5. Mechanical properties of the IL-cured epoxy/PCL blends.

IL PCL (%) Flexural Modulus
(MPa)

Flexural Strength
(MPa)

Deformation at Break
(%)

Impact Strength
(J/m)

IL-P-TMPP

0 2030 ± 210 68.5 ± 19.7 4.3 ± 1.7 15 ± 6
10 2350 ± 330 66.8 ± 2.0 3.4 ± 0.8 21 ± 7
20 2110 ± 260 69.7 ± 11.3 4.5 ± 1.9 18 ± 11
30 1260 ± 180 49.2 ± 2.9 5.8 ± 1.6 26 ± 13

IL-P-DCA

0 2350 ± 240 47.1 ± 5.6 2.1 ± 0.3 15 ± 7
10 1610 ± 450 55.6 ± 9.2 6.5 ± 1.6 21 ± 7
20 1510 ± 290 51.2 ± 7.2 12.8 ± 4.4 21 ± 7
30 930 ± 160 38.8 ± 2.8 12.3 ± 2.1 19 ± 5

IL-I-DCA

0 2420 ± 290 111.6 ± 7.6 8.3 ± 2.2 18 ± 8
10 2380 ± 400 106.8 ± 11.7 8.6 ± 1.5 21 ± 7
20 1770 ± 270 75.9 ± 12.1 * 40 ± 16
30 850 ± 80 36.6 ± 3.3 * 54 ± 17

* Samples did not break.

Figure 5d shows that the impact strength behaved in a similar way to the ductility: the
impact strength of the blends with high PCL contents improved regardless of the IL used to
cure the epoxy resin. As for the ductility, the IL-I-DCA-cured samples showed outstanding
results. The 30% PCL IL-I-DCA-cured epoxy resin, for example, showed a 200% increase
compared to the impact strength of the pure epoxy resin. Therefore, PCL has a similar
toughening effect on these IL-cured epoxy resins to that of previously studied epoxy/PCL
blends cured with conventional curing agents [17,32]. The chemical structure of the IL
plays an important role in the toughening effect of the PCL and the overall mechanical
properties of the epoxy/PCL blends, with the IL-I-DCA-cured material showing the best
balance of properties.

For example, the IL-I-DCA-cured 80/20 epoxy/PCL composition in this study showed
a 110% increase in impact strength, was ductile (did not break in the bending test), and
had a 1% decrease in flexural strength and a 20% decrease in modulus compared to the
conventional amine-cured pure epoxy resin which was also prepared and tested in this
work (DGEBA/Aradur 2954 system, 19 J/m impact strength, 4.8% elongation at break,
76.6 MPa flexural strength, and 2210 MPa flexural modulus).

3.4. Adhesive Properties

The effect of adding PCL to IL-cured epoxy resins on the adhesive properties was
studied using lap shear tests. Figure 6 shows the lap shear strength of all the compositions
studied. As can be seen, irrespective of the IL in question, the addition of PCL led to
an improvement in the adhesive properties of the epoxy resin, with higher lap shear
strength at increasing PCL contents. The values of the epoxy/PCL 70/30 compositions
were 129%, 196%, and 88% higher than that of the corresponding pure epoxy in the case of
IL-P-TMPP, IL-P-DCA, and IL-I-DCA, respectively. An absolute value of 21.5 ± 3.5 MPa
was obtained for the maximum PCL content and the imidazolium-based IL. When this
value is compared to that of the epoxy resin cured with a conventional amine-based curing
agent (DGEBA/Aradur 2954, 6.8 MPa), a 216% increase was observed. The improvement
of the adhesive properties of conventionally-cured epoxy resins through the addition of
thermoplastics, rubbers, and epoxidized oils has previously been reported in the literature
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and attributed to lower crosslinking densities and/or improved toughness [39–42,70–79],
which is fully consistent with the results obtained in the present work (Table 4, Figure 5d).
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Their high lap shear strength makes these IL-cured epoxy/PCL blends suitable for
use as adhesives. Of particular additional interest is the fact that they are more sustainable
than traditional epoxy-amine systems.

4. Conclusions

Epoxy/PCL blends cured with three different ionic liquids were prepared with a view
to studying the effect of the chemical structure of the ILs and the PCL concentration on their
phase behaviour, microstructure, mechanical and adhesive properties. Characterization by
DMA, DSC, and SEM corroborated the single-phase structure of the blends. The addition
of PCL led to a decrease in the Tg and the crosslinking density of the samples due to
its plasticizing effect on the network, which was also detected by bending and impact
tests. The addition of low concentrations of PCL did not significantly affect the mechanical
properties of the IL-cured epoxy resins while larger amounts led to increases in both the
ductility and the toughness of the materials. This effect was more pronounced in the
imidazolium-based IL-cured system. The adhesive properties were also notably improved
by adding PCL, due to the decrease in the crosslinking density and the toughening effect.
As a result, the materials obtained in this study represent a more sustainable alternative to
traditional epoxy systems. This is not only because PCL—which is biodegradable—replaces
some of the DGEBA, or because ionic liquids are non-volatile and a significantly smaller
amount is needed to effectively cure the epoxy resin, but also because the mechanical-
adhesive behaviour of these systems is well-balanced. On the one hand, while high strain
mechanical properties, particularly toughness, significantly improved, the effect on the low
strain ones was limited. On the other hand, the adhesion values increased up to 200% with
respect to the reference ones. Given the wide use of this kind of materials in the adhesives
industry, the practical implications of these results are noteworthy.
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