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Alzheimer’s disease (AD) is the most common form of dementia. Rare variants in
triggering receptor expressed on myeloid cells 2 (TREM2) have been identified as risk
factors for AD. Soluble TREM2 (sTREM2) in the cerebrospinal fluid (CSF) is a potential
and novel biomarker of neuroinflammation implicated in the onset and progression of
AD. To explore the roles of CSF sTREM2 on the pathogenesis of AD, we performed
genome-wide association studies (GWAS) by using the data from Alzheimer’s Disease
Neuroimaging Initiative (ADNI). We found CSF sTREM2 levels were elevated with the
disease stages, but there was no significant difference between that of AD patients
and normal participants. CSF sTREM2 was positively correlated with CSF total tau and
phosphorylated-tau levels (ρ > 0.35, p < 1e-06; ρ > 0.32, p < 1e-05, respectively)
for all disease states. We identified the most significant CSF sTREM2 related locus
was rs7232 (FDR = 3.01e-08), a missense variant in MS4A6A gene of chromosome
11. Moreover, we also detected rs7232 was highly associated with MS4A6A gene
expression (FDR = 1.37e-18). In addition, our pathway analysis for our significant GWAS
results showed that biological processes for regulation of viruses and immune response
were highly overrepresented or enriched. Our study suggests that CSF sTREM2 plays
an informative role in AD progression. Moreover, CSF sTREM2 and AD is highly related
to viral infections and immune response.
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INTRODUCTION

The most common neurodegenerative disorder, Alzheimer’s disease (AD), is characterized by
accumulation of amyloid-β peptide (Aβ) in senile plaques and hyperphosphorylated tau protein
in neurofibrillary tangles (NFT) in brain, neuroinflammation, and progressive decline in cognition
and memory loss finally (Price and Sisodia, 1998; Mukaetova-Ladinska et al., 2015). Although AD
is a complex, multigenic and multifactorial disorder, most genetic, physiological and pathological
studies suggest that the balance between production and clearance of Aβ contributes to its
development (Hardy and Higgins, 1992). Microglia are the brain-resident effective phagocytes for
the uptake and proteolytic clearance of both soluble Aβ oligomers and insoluble Aβ fibrils (Lee and
Landreth, 2010). Many studies have detected that microglia surrounded Aβ plaques in the brain of
AD patients (Perlmutter et al., 1990) and AD mouse models (Stalder et al., 1999) to reduce their
sizes and subsequent toxicity (Condello et al., 2015). The protein triggering receptor expressed on
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myeloid cells 2 (TREM2) is an innate immune receptor expressed
on microglia and on myeloid cells outside the brain (Schmid
et al., 2002). It plays crucial roles in microglial phagocytosis of
apoptotic neurons, damaged myelin, and Aβ plaques (Jay et al.,
2017). In addition, TREM2 regulates microglial proliferation,
survival (Zheng et al., 2017), cytokine release (Zhong et al.,
2015), and the accumulation around Aβ plaques (Yuan et al.,
2016). Several studies reported that the rare TREM2 mutation,
arginine 47 to histidine (p.R47H, rs75932628) substitution in
the extracellular immunoglobulin domain, significantly increases
the risk for AD with odds ratios similar to those of carrying
an apolipoprotein E (APOE) ε4 allele (Guerreiro et al., 2013;
Jonsson et al., 2013), which is present in about half of late-onset
AD (LOAD) patients and has been convincingly demonstrated to
affect its risk (Bertram et al., 2010).

TREM2 protein undergoes proteolytic cleavage by ADAM
proteases, releasing its ectodomain into the extracellular space
as the form of soluble TREM2 (sTREM2) (Wunderlich et al.,
2013), which is abundantly detected in human cerebrospinal
fluid (CSF) and plasma. Although elevated CSF sTREM2 levels
were initially reported in neuroinflammatory conditions such as
multiple sclerosis (Piccio et al., 2008), exploring the relationship
between CSF sTREM2 and other biomarkers of AD has recently
become of great interest. Recent study reported that CSF sTREM2
exerts functional roles in microglia by promoting inflammatory
responses and shielding them from apoptosis (Zhong et al.,
2017). Furthermore, an AD mouse model study demonstrates
a protective role of sTREM2 against amyloid pathology and
related toxicity (Zhong et al., 2019). However, the roles of CSF
sTREM2 on the pathogenesis of AD remain unclear. To gain
insight into the mechanism of AD development according to
CSF sTREM2, in this study, we analyzed the correlation of
CSF sTREM2 levels with AD status and other important CSF
and clinical biomarkers from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort. Moreover, we performed genome-
wide association studies (GWAS) to identify novel variants and
genes associated with sTREM2 level and AD by using CSF
sTREM2 and gene expression data as phenotypes. Additionally,
we implemented pathway analysis for sTREM2 related genes to
get a better understanding of AD pathology.

MATERIALS AND METHODS

Data used in this study were obtained from the ADNI database1.
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration
(FDA), and by private pharmaceutical companies and non-profit
organizations, as a public-private partnership. The principal
investigator of ADNI is Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), biological
markers, and clinical and neuropsychological assessment can be
combined together to measure the progression of AD.

1http://adni.loni.usc.edu

We applied for and were granted permission to obtain
data from the ADNI cohort2 for performing the analyses
described in this paper.

Subjects
In this work, analyses were restricted to ADNI subjects with CSF
sTREM2 data available. The study sample (N = 1001) included
224 healthy normal (NL), 72 significant memory concern (SMC),
234 early mild cognitive impairment (EMCI), 277 late mild
cognitive impairment (LMCI), and 194 AD participants. Table 1
shows selected demographic and clinical characteristics of these
subjects at baseline.

CSF and Clinical Biomarkers
Cerebrospinal fluid sTREM2 measurements were done with
the ELISA protocol previously established by the Haass’
group with minor changes. The assay is based on the MSD
platform and it is comprehensively described in their previous
publications (Suárez-Calvet et al., 2016a,b). The CSF levels
of amyloid-β 1-42 peptide (Aβ42), total tau (tau) and tau
phosphorylated at the threonine 181 (p-tau) were determined
using the fully automated Roche Elecsys immunoassay platform
(Seibyl et al., 2017). The 13-item version of the Alzheimer’s
Disease Assessment Scale-Cognitive subscale (ADAS13) was
developed to measure memory and cognition for patients with
mild to moderate AD (Podhorna et al., 2016). ADAS13 scores
were automatically calculated on the electronic case report form
based on item level data entered. Semi-automated hippocampal
volumetry was carried out using a commercially available high
dimensional brain mapping tool (Medtronic Surgical Navigation
Technologies (SNT), Louisville, CO, United States) for MRI data
of subjects, that has previously been validated and compared to
manual tracing of the hippocampus (Hsu et al., 2002).

Genotyping Data
The single-nucleotide polymorphisms (SNPs) data of ADNI-1,
ADNI-GO, and ADNI-2 cohorts were collected from either the
Illumina 2.5-M array or the Illumina OmniQuad array (Saykin
et al., 2010; Shen et al., 2010). The SNPs shown in both arrays
were used for the following analyses.

Quality control (QC) analysis was conducted by using R
package snpStats (Clayton, 2012) in R software (R Core Team,
2013). In the QC, we excluded any SNPs that did not meet any of
the following criteria: (1) SNPs on chromosome 1-22; (2) call rate
per SNP > 95%; (3) Hardy-Weinberg equilibrium (HWE) test of
p-value >10−6 (absolute value of z-score <4.753424). After QC
analysis, 2,379,855 SNPs remained for the subsequent analyses.

Gene Expression Data
Gene expression profiles of peripheral blood samples from ADNI
participants were performed at Bristol-Myers Squibb (BMS)
laboratories. The Affymetrix Human Genome U219 Array3 was
used for expression profiling, which contains 530,467 probes
for 49,293 transcripts. Raw expression values obtained directly

2http://www.adni-info.org
3http://www.affymetrix.com
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TABLE 1 | Selected demographic and clinical characteristics of 1001 ADNI participants at baseline.

NL SMC EMCI LMCI AD

Number of subjects 224 (22.4%) 72 (7.2%) 234 (23.3%) 277 (27.7%) 194 (19.4%)

Age (years) 74.34 (5.96) 71.74 (5.57) 71.06 (7.3) 73.04 (7.6) 74.53 (8.38)

Number of women 108 (48.2%) 41 (56.9%) 99 (42.3%) 110 (39.7%) 81 (41.8%)

Education (years) 16.26 (2.73) 16.85 (2.44) 15.78 (2.63) 16.23 (2.91) 15.42 (2.81)

APOE ε4 allele present 55 (24.6%) 25 (34.7%) 105 (44.9%) 155 (56%) 130 (67%)

CDR-SB 0.03 (0.12) 0.07 (0.17) 1.34 (0.79) 1.67 (0.95) 4.47 (1.59)

MMSE 29.05 (1.18) 29.13 (1.02) 28.34 (1.6) 27.22 (1.81) 23.31 (2)

CDR-SB: clinical dementia rating-sum of boxes. MMSE: mini-mental status examination. Data in the table are illustrated in the form of “number (%)” or “mean (standard
deviation).”

from CEL files were pre-processed using the Robust Multi-chip
Average (RMA) normalization method (Vawter et al., 2004).

Statistical and Genetic Analyses
The CSF sTREM2 levels for different disease stages and
their correlation with other CSF and clinical biomarkers
were determined by using R software. To identify the
association between SNPs and CSF sTREM2 levels, we performed
(quantitative trait locus) QTL analysis using the R package Matrix
expression quantitative trait loci (eQTL) (Shabalin, 2012). In
this analysis, age, gender (1 for male and 2 for female) and
diagnosis (1 for NL, 2 for SMC, 3 for EMCI, 4 for LMCI, and
5 for AD) at baseline were considered as covariates. Manhattan
plots of QTL results were generated using the R package
qqman (Turner, 2014). The regional plot for QTL results was
obtained from LocusZoom4 (Pruim et al., 2010). The linkage
disequilibrium (LD) plot was generated through R package
gaston. The association between significant SNPs (FDR < 0.05)
of our QTL results and gene expression data was detected by
performing eQTL analysis. eQTL analysis was also conducted
using the R package Matrix eQTL for the filtered SNPs, with
the same covariates as our QTL analysis. Here, we considered
both cis-eQTL analysis (local, distance < 1Mb) and trans-eQTL
analysis (distant, distance ≥ 1Mb or the SNPs even locate on
different chromosomes).

Pathway Analyses
For the significant genes (FDR < 0.05) of SNP-gene pairs form
our eQTL results, gene ontology (GO) analyses were performed
using the Protein Analysis Through Evolutionary Relationships
(PANTHER) statistical over-representation test v14.15, which
used data from the Gene Ontology Consortium (GOC)6.
PANTHER utilizes a binomial distribution test to calculate
overrepresentation of candidate genes, relative to background,
for different GO terms (Mi et al., 2019). Additionally, we also
conducted gene set enrichment analysis (GSEA) for these genes
through the software GSEA Desktop v3.07 (Subramanian et al.,
2005). Here, we applied R package limma (Ritchie et al., 2015) to

4http://locuszoom.org
5http://pantherdb.org
6http://www.geneontology.org
7http://software.broadinstitute.org/gsea/index.jsp

make the pre-ranked gene list as the input for GSEA, according
to the gene expression data for NL and AD subjects.

RESULTS

Correlations of sTREM2 With AD
Biomarkers
In ADNI cohort, we saw that CSF sTREM2 levels increased
with the disease progression from SMC group to AD group
(mean: 3801.212, 3891.837, 4176.13, and 4216.861 pg/mL for
SMC, EMCI, LMCI, and AD subjects, respectively; Figure 1A).
However, only the difference between EMCI state and AD
state was significant (p < 0.05; Figure 1A). Though the
mean CSF sTREM2 levels for AD patients was a little higher
than that of normal subjects (4206.102 pg/mL), there was no
significant difference.

Levels of sTREM2 in the CSF did not correlate with TREM2
gene expression in the blood samples (Spearman’s ρ from
−0.1007 to 0.1746, p > 0.05; Figure 1B). Next, we investigated
the correlation of its CSF levels with other AD highly associated
CSF and clinical biomarkers to explore its role in AD pathology.
CSF sTREM2 levels showed highest correlation with CSF Aβ42
in SMC group (ρ = 0.3307, p = 0.0046; Figure 1C), followed
by AD group (ρ = 0.2639, p = 0.0002; Figure 1C). The overall
correlation between CSF sTREM2 and CSF tau were high for
all the five disease states (ρ from 0.3543 to 0.6546, p < 1e-
06; Figure 1D). SMC group showed the highest correlation
(ρ = 0.6546, p = 4.465e-10) while AD group had the lowest one
(ρ = 0.3543, p = 4.292e-07; Figure 1D). Similarly, CSF sTREM2
also correlated with CSF p-tau for all the five categories (ρ from
0.3213 to 0.6398, p < 1e-05; Figure 1E). Same as the case for CSF
tau, the correlation of SMC group ranked first while that of AD
was the smallest. For ADAS13 scores, the correlation between
them and CSF sTREM2 were low generally (ρ from −0.0137 to
0.1612; Figure 1F). Moreover, there was no strong correlation
between CSF sTREM2 levels and hippocampus volumes (ρ from
−0.1483 to 0.0082, p > 0.05; Supplementary Figure S1).

GWAS of sTREM2 Levels in CSF
We then performed QTL analysis to study the association
between genotype (SNPs) and CSF sTREM2 levels. According to
our analysis, the significant loci concentrated in chromosome 11
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FIGURE 1 | Cerebrospinal fluid sTREM2 levels in the five clinical disease stages and the correlation between sTREM2 and other AD biomarkers. (A) Violin plots with
boxplots for the comparison of CSF sTREM2 levels in disease states. Statistical significance was determined by Wilcoxon rank sum test. +: mean. ∗p < 0.05. The
correlation plots between log transformed CSF sTREM2 and (B) log transformed TREM2 gene expression in blood samples, (C) log transformed CSF Aβ42, (D) log
transformed CSF tau, (E) log transformed CSF p-tau, and (F) log transformed ADAS13 scores for each group. Black straight lines are the regression lines. Shaded
areas around regression lines represent the pointwise 95% confidence intervals (CI). ρ: Spearman’s rank correlation coefficient (rho).

(Figure 2A). The most significant one was rs7232 (p = 1.32e-
14, FDR = 3.01e-08; Table 2 and Figure 2), a missense variant
in MS4A6A gene locus. The regional association plot of rs7232

is shown in Figure 2B. The second most significant SNP was
rs1582763 (p = 3.85e-14, FDR = 4.41e-08; Table 2), which
locates near the MS4A4E gene. The top 10 most significant
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FIGURE 2 | Manhattan plot and regional plot of the results from QTL analysis for CSF sTREM2 levels. (A) Manhattan plot of –log10 (p-value) from the results of QTL
analysis. (B) Regional plot for the most significant SNP rs7232 identified by the QTL analysis. The r2 measures the linkage disequilibrium of each SNP with the most
significant SNP rs7232 according to hg19/1000 Genomes Nov 2014 AMR population. Points with gray color indicates that their r2 values were not available in the
reference genome.

TABLE 2 | Top 10 most significant SNPs identified by the QTL analysis for CSF sTREM2.

SNP CHR Gene Function Statistic p-value FDR Beta

rs7232 11 MS4A6A Missense −7.9399 1.32e-14 3.01e-08 −1076.5072

rs1582763 11 MS4A4E∗ None −7.7891 3.85e-14 4.41e-08 −109.9662

rs12453 11 MS4A6A Synonymous −0.6665 9.11e-14 6.95e-08 −1045.7299

rs4938933 11 MS4A4A∗ None −7.4593 3.81e-13 2.18e-07 −1034.9755

rs6591559 11 MS4A4E∗ None −7.3261 9.42e-13 2.85e-07 −1008.564

rs1530914 11 MS4A4E∗ None −7.3261 9.42e-13 2.85e-07 −1008.564

rs7929589 11 MS4A4E Intronic −7.3183 9.92e-13 2.85e-07 −1009.3449

rs11230160 11 MS4A6A∗ None −7.2926 1.18e-12 2.85e-07 −971.0224

rs920573 11 MS4A6A∗ None −7.2926 1.18e-12 2.85e-07 −971.0224

rs2847655 11 MS4A2 3′-UTR −7.2577 1.49e-12 2.85e-07 −959.4016

CHR: chromosome. ∗Nearest gene proximal to the SNP. Without this symbol means the SNP is located within the corresponding gene. Statistic: t-statistic of T-test. FDR:
false discovery rate estimated with Benjamini–Hochberg procedure. Beta: effect size (slope coefficient of the linear regression model) estimate.

SNPs were all located on chromosome 11. Moreover, they were
either within or near to MS4A gene family (Table 2). Besides
identified SNPs on chromosome 11, there were also SNPs showed
significant association on other chromosomes, such as rs3799468
(p = 4.10e-12, FDR = 2.85e-07) located in MAP7 gene on
chromosome 6, rs181768270 (p = 4.19e-12, FDR = 2.85e-07)
proximal to gene RNF187 on chromosome 1, and rs116087048
(p = 4.19e-12, FDR = 2.85e-07; Supplementary Table S1) within
the gene ASIC4 on chromosome 2. The list for all identified
SNPs with p < 0.05 from our QTL analysis can be found in
Supplementary Table S1.

Next, for exploring the interactions among the identified
significant SNPs on chromosome 11, we selected the SNPs with
FDR < 0.05 and located within ±1Mb from rs7232. 40 SNPs
including rs7232 remained for the analysis. The LD pattern for
these 40 SNPs is illustrated in Figure 3. rs7232 showed strong
LD with all the rest of top 10 identified most significant SNPs
(Figure 3). Among them, the weakest LD occurred between
rs7232 and rs1582763 (r2 = 0.68), while the LD between rs7232

and rs12453 was the strongest (r2 = 0.83; Figure 3). The strong
LD between rs7232 and rs12453 may be due to that both
of them locate in same gene MS4A6A. The LD of the SNP
pairs rs1151065-rs558788, rs11230160-rs920573, and rs6591559-
rs1530914 were extremely high (r2 = 1.00 for all the three SNP
pairs; Figure 3).

For we wanted to study how the SNPs associated with
CSF sTREM2 levels regulated gene expression, we chose the
SNPs with FDR < 0.05 identified by our QTL analysis for the
following eQTL analysis. There were 240 SNPs left for this
analysis. In our cis-eQTL analysis (local eQTL analysis, the
distance between SNPs and associated genes is less than 1Mb),
the top 10 identified most significant SNPs were all located on
chromosome 11, and they all associated with MS4A6A gene
(Table 3). rs12453 ranked first (p = 9.02e-23, FDR = 8.14e-
19; Table 3) in the results. Another SNP within MS4A6A
gene, rs7232, showed the third most significant association
(p = 4.57e-22, FDR = 1.37e-18) with it. Furthermore, rs1582763
was also significantly associated with MS4A6A gene expression
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FIGURE 3 | The linkage disequilibrium pattern for the identified SNPs close to rs7232 in our study. Here the LD measure is r2.

(p = 3.58e-17, FDR = 1.9e-14; Supplementary Table S2). For
the results of trans-eQTL analysis (distant eQTL analysis, the
distance between SNPs and associated genes is bigger than
1Mb, or they even locate on different chromosomes), the
association between rs113239743 and CPT1C gene was the
most significant (p = 6.53e-44, FDR = 7.73e-37; Table 4).
Moreover, rs113239743 also showed significant association with
TESMIN gene (p = 3.91e-30, FDR = 9.27e-24), and CCND2 gene

TABLE 3 | Top 10 most significant SNP-gene pairs identified by our cis-eQTL
analysis.

SNP CHR Associated
gene

Statistic p-value FDR Beta

rs12453 11 MS4A6A 10.1568 9.02e-23 8.14e-19 0.132

rs7926354 11 MS4A6A 10.0141 3.24e-22 1.37e-18 0.1298

rs7232 11 MS4A6A 9.9752 4.57e-22 1.37e-18 0.1302

rs7926344 11 MS4A6A 9.7366 3.73e-21 8.40e-18 0.1269

rs4938933 11 MS4A6A 9.6392 8.68e-21 1.50e-17 0.1272

rs7929589 11 MS4A6A 9.6231 9.97e-21 1.50e-17 0.1259

rs1530914 11 MS4A6A 9.5625 1.68e-20 2.17e-17 0.1255

rs6591559 11 MS4A6A 9.5333 2.16e-20 2.44e-17 0.1253

rs610932 11 MS4A6A 9.3276 1.24e-19 1.25e-16 0.1222

rs611267 11 MS4A6A 8.997 1.95e-18 1.76e-15 0.118

(p = 2.43e-25, FDR = 2.39e-19). The results for all identified SNP-
gene pairs with p < 0.05 from our cis-eQTL analysis and those
with FDR < 0.05 from trans-eQTL analysis are demonstrated in
Supplementary Tables S2, S3, respectively.

Pathway Studies
For the SNP-gene pairs identified from both cis-eQTL and trans-
eQTL analysis for CSF sTREM2, we chose the genes from the
results with FDR < 0.05 for the following pathway analysis.
We found 4295 qualified genes. Firstly, we performed statistical
overrepresentation test for these genes. According to the value of
fold enrichment, the highest one was negative regulation of viral
process (fold enrichment = 2.27, p = 5.16e-03; Table 5). What’s
more, top three categories were all related to virus regulation. In
this list of top 10 categories, four of them were associated with
viral process and one was in connection with immune response
(neutrophil activation involved in immune response; Table 5). In
addition, the most significant category was neutrophil activation
(fold enrichment = 1.85, p = 3.76e-11; Table 5). The results for
all identified GO categories with corrected p-value less than 0.05
from this analysis are illustrated in Supplementary Table S4.

In addition to overrepresentation test, we also implemented
GSEA for these over 4000 significant genes identified by our
eQTL analysis. For the gene sets (GO categories) upregulated
(positively enriched) in AD, 10 of them were significant at
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TABLE 4 | Top 10 most significant SNP-gene pairs identified by our trans-eQTL analysis.

SNP CHR Associated gene Statistic p-value FDR Beta

rs113239743 1 CPT1C on chr11 −14.8672 6.53e-44 7.73e-37 −2.5852

rs2971627 2 LUM on chr12 −12.7471 9.03e-34 2.67e-27 −2.292

rs2911645 2 LUM on chr12 −12.7471 9.03e-34 2.67e-27 −2.292

rs113239743 1 TESMIN on chr11 −11.9332 3.91e-30 9.27e-24 −2.5031

rs115619982 17 OTOF on chr2 −11.3008 2.03e-27 3.01e-21 −3.056

rs114191746 2 CRISP2 on chr6 −11.2371 3.77e-27 4.96e-21 −1.6717

rs115904095 2 CRISP2 on chr6 −10.8452 1.59e-25 1.71e-19 −1.6216

rs113239743 1 CCND2 on chr12 −10.8003 2.43e-25 2.39e-19 −0.5796

rs2814778 1 SOS1 on chr2 −10.6572 9.25e-25 5.40e-19 −0.5519

rs76465000 12 CCL2 on chr17 −10.6327 1.16e-24 5.40e-19 −4.6426

TABLE 5 | Top 10 identified gene ontology categories from PANTHER overrepresentation test of our eQTL analysis results, according to fold enrichment.

Gene ontology biological process category # Ref genes # Genes Expected Fold enrichment p-value

Negative regulation of viral process (GO:0048525) 99 46 20.25 2.27 5.16e-03

Regulation of viral genome replication (GO:0045069) 94 42 19.23 2.18 3.95e-02

Regulation of viral life cycle (GO:1903900) 144 64 29.46 2.17 1.88e-04

Negative regulation of multi-organism process (GO:0043901) 180 75 36.82 2.04 1.68e-04

Regulation of symbiosis, encompassing mutualism through parasitism (GO:0043903) 231 92 47.25 1.95 3.77e-05

Regulation of viral process (GO:0050792) 202 80 41.32 1.94 4.64e-04

Neutrophil activation (GO:0042119) 496 188 101.46 1.85 3.76e-11

Neutrophil activation involved in immune response (GO:0002283) 487 184 99.62 1.85 9.77e-11

Granulocyte activation (GO:0036230) 501 189 102.49 1.84 4.86e-11

Neutrophil degranulation (GO:0043312) 483 182 98.8 1.84 1.72e-10

# Ref genes: the number of genes in the reference list that map to this particular annotation data category. #Genes: the number of genes in our eQTL analysis identified
gene list that map to this annotation data category. Expected: the number of genes we would expect in our gene list for this category, based on the reference list. Fold
enrichment: # Genes/Expected. p-value: Bonferroni-corrected p-value.

FDR < 0.25. On the other hand, there were only 3 such
categories for gene sets downregulated (negatively enriched) in
AD (Figure 4). The top positively enriched GO category was
immune response (NES = 2.4469, p < 0.001, FDR = 0.0859),
while the top negatively enriched gene set was myeloid cell
development (NES = −2.6369, p < 0.001, FDR = 0.0624;
Figure 4). There was another GO category related to immune
response (regulation of immune response, NES = 2.4966,
p < 0.001, FDR = 0.1136) in the top 10 significant positively
enriched gene sets, which ranked third. Moreover, two of the
significant downregulated gene sets were for myeloid cells. The
full lists for upregulated and downregulated results with p < 0.05
of GSEA are in Supplementary Tables S5, S6, respectively.

DISCUSSION

In 2014, a study revealed a significant reduction of CSF sTREM2
in AD patients (n = 56) compared to control individuals
(n = 88, p = 0.001; Kleinberger et al., 2014). However, 2 years
later, another study reported that the CSF sTREM2 levels
were significant higher in AD cases compared to controls
[median and range: 1028 (244–2570) and 832 (163–2196) pg/ml,
respectively; p = 0.015] in the Knight Alzheimer’s Disease
Research Center (ADRC) cohort with 73 AD subjects and
107 controls (Piccio et al., 2016). Here, we detected that the

difference of CSF sTREM2 levels between AD and normal
participants was not significant in ADNI cohort (Figure 1A).
These inconsistent results from different cohort studies may be
caused by the timing for measuring the CSF sTREM2 levels
in AD patients. Some studies for different cohorts report that
the CSF sTREM2 increased in early symptomatic stages of
AD, but it decreased in late stage of the disease (Heslegrave
et al., 2016; Suárez-Calvet et al., 2016b; Liu D. et al., 2018).
The mechanisms behind such findings still remain elusive.
A possible reason would be that a part of sTREM2 released
from microglia is retained within the barrier formed by microglia
around plaques in the late stage of AD (Condello et al.,
2015; Wang et al., 2016). Longitudinal data is required for
further study about the relation between CSF sTREM2 levels
and disease states. Additionally, another explanation for the
inconsistency would be the different proportions of subjects
with TREM2 variants in their studies. Some TREM2 variants
affect CSF sTREM2 levels dramatically (Piccio et al., 2016;
Wolfe et al., 2018).

CSF total tau and p-tau are passively released into CSF
by dying neurons. CSF total tau levels reflect the intensity of
neuronal damage and degeneration, with higher amounts of tau
releasing to CSF for more intense neurodegeneration. Similar
to total tau, some studies report correlation between high CSF
p-tau and higher rate of cognitive decline (Blennow et al., 2010).
We showed that CSF sTREM2 levels were positively correlated
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FIGURE 4 | Bar plot for enriched gene ontology categories with FDR < 0.25 from GSEA of our eQTL analysis results. The numbers on the bars are the normalized
enrichment scores for the corresponding gene ontology categories. NES: normalized enrichment score.

with CSF total tau and phosphorylated tau levels for all disease
status in ADNI cohort (Figures 1D,E), which were also reported
by some previous studies (Heslegrave et al., 2016; Piccio et al.,
2016). The mechanism for CSF sTREM2 in pathogenesis of AD is
still unclear based on these preliminary findings. Further studies
are needed to reveal its role in neurodegeneration. As for CSF
Aβ42, some studies showed that its levels were not correlated
with CSF sTREM2 level generally (Heslegrave et al., 2016; Piccio
et al., 2016). However, our analyses by disease stages detected that
there were positive correlations between them for all status except
for EMCI group in ADNI. Furthermore, the correlation was
strongest for SMC group (Figure 1C). These imply CSF sTREM2
may play a crucial role at the very early symptomatic stage of AD.

Our QTL analysis showed that rs7232 was the most significant
SNP associated with CSF sTREM2 level. A recent study for
Chinese Alzheimer’s Biomarker and Lifestyle (CABLE) cohort
(Hou et al., 2019) also reported this association was significant
(p = 0.00106). Moreover, one study showed that rs7232 correlated
with atrophy rate of left middle temporal and minor T allele
carriers had less loss in the volume of left middle temporal than
A allele homozygotes subjects (Ma et al., 2016). In addition,
rs7232 was identified as a protective locus for AD (Lambert
et al., 2013) in combined dataset of International Genomics of
Alzheimer’s Project (IGAP) stages 1 and 2 (OR: 0.90, 95%CI:
0.87–0.92, p = 2.621 × 10−14). Our eQTL analysis detected that
rs7232 was significantly associated with its located gene MS4A6A,
which was supported by other studies (Proitsi et al., 2014).

Membrane Spanning 4-Domains A6A (MS4A6A) has been
identified as one of the significantly associated loci with AD
(Hollingworth et al., 2011; Deng et al., 2012). MS4A6A expression
levels were found to be associated with elevated Braak tangle
and Braak plaque scores (Karch et al., 2012). Furthermore,
one study reported that MS4A6A expression was significantly
correlated to AD-related neurofibrillary pathology and tau
phosphorylation (Martiskainen et al., 2015). Additionally, the
expression of MS4A6A is highly correlated with the expression
of TREM2 in the brain (Hou et al., 2019). For both MS4A6A
and TREM2 are mainly expressed on microglia cells in the
brain (Darmanis et al., 2015), we speculate that MS4A6A may
regulate TREM2 expression and the levels of CSF sTREM2.
The second most significant SNP associated with CSF sTREM2
was rs1582763 from our GWAS (Table 2), which was also
highly associated with MS4A6A gene expression according to
our eQTL analysis. These associations were justified by studies
from other cohorts (Deming et al., 2018). Similar to rs7232,
rs1582763 was identified to be associated with reduced AD
risk (Jun et al., 2016). Our GWAS demonstrated that the
top significant SNPs associated with CSF sTREM2 levels were
located within or near the MS4A gene cluster and the genes
of top significant SNP-gene pairs were also from MS4A gene
family (Tables 2, 3). The MS4A gene cluster encodes cell
membrane proteins. In addition to possibly being involved
in the regulation of calcium signaling, MS4A gene cluster
has also been reported to be involved in immune-system

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2019 | Volume 11 | Article 297

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00297 October 24, 2019 Time: 16:11 # 9

Liu and Yu GWAS for sTREM2 in AD

function (Ma et al., 2015). More recently, a study showed that
MS4A4A co-localized with TREM2 in human macrophages and
both proteins were upregulated in response to IL-4-mediated
stimulation (Deming et al., 2019). They also found that antibody-
mediated targeting of MS4A4A was sufficient to reduce sTREM2
levels in human macrophages. All these provide strong evidence
of a biological relation between TREM2 and proteins in the MS4A
gene cluster. Additional studies are required to understand the
mechanisms for how MS4A gene cluster modulates TREM2, and
affects sTREM2 levels.

As the most significant variant associated with AD risk in
TREM2 coding regions, p.R47H (rs75932628) was also genotyped
in ADNI cohort. However, there are no subjects carrying its
minor allele T for the available SNP data. Besides p.R47H, the
minor allele (T) of TREM2 rare variant p.R62H (rs143332484)
was also reported to be significantly associated with increased AD
risk (Cuyvers et al., 2014). But it was not genotyped in ADNI
genotype data. These may be due to TREM2 coding variants
present very low frequency among people [minor allele frequency
(MAF) < 0.5%]. Furthermore, some other TREM2 variants have
been identified to be associated with AD status (Jin et al., 2014;
Guerreiro et al., 2013), including p.T96K (rs2234253), p.H157Y
(rs2234255), p.L211P (rs2234256), and p.W191X (rs2234258).
Our GWAS showed that p.T96K and p.L211P were associated
with CSF sTREM2 levels (p = 0.005946, 0.009005, respectively;
Supplementary Table S1), while p.H157Y and p.W191X were not
as a result of their extreme low MAF. These imply that TREM2
variants may modify CSF sTREM2 levels.

For the pathway analyses, we found that some biological
processes related to virus regulation were significantly
enriched from our statistical overrepresentation test (Table 5).
Interestingly, a previous study for a different AD cohort reported
similar results (Piccio et al., 2016), which identified that the
top two significant GO categories were receptor-mediated
endocytosis of virus by host cell and endocytosis involved in
viral entry into host cell (both with fold enrichment > 5 and
p = 4.79e-06). On the other hand, our GSEA showed that some
categories for immune response were significantly positively
enriched (Figure 4). What’s more, our previous study (Liu C.
et al., 2018) illustrated that how poliovirus receptor-related 2
(PVRL2), a gene located near the APOE locus and mediating
the entry of herpes simplex virus (HSV), contributed to the
progression of AD. Additionally, some studies reported that the
accumulation of Aβ plaque deposits might be a consequence
of the over-production of Aβ peptide during viral infection of
the brain and Aβ peptide acted as a defense molecule of the
innate immunity (Porcellini et al., 2010; Kumar et al., 2016).
The viral hypothesis for AD development has been proposed
almost immediately after the first case of AD was reported
by Alois Alzheimer in 1907 (Lawrence, 2017). Researchers
started to focus on the herpes simplex virus type 1 (HSV1) at
the beginning of 1980s (Ball, 1982; Gannicliffe et al., 1986).
So far, more than 100 studies have connected AD with some
forms of pathogen (Itzhaki et al., 2016). People may argue
that, if viruses do play a causal role in AD, then why there
are so many individuals who are infected with the viruses but
without developing AD? This may be due to the feature of

many types of virus and bacteria that it is possible to be infected
but without being affected. In recent studies, an important
issue about the association of viruses with the substantial
accumulation of Aβ in subjects who are cognitively normal is
still not addressed (Eimer et al., 2018; Readhead et al., 2018). The
researchers suggest that it may be the case that Aβ is protective
in such cases of participants (Balin and Hudson, 2018; Eimer
et al., 2018). If viruses or other microbes contribute to the
development of AD, people may reason that could antiviral drug
inhibit AD progression. Some research illustrate that antivirals
have such effect. In one study, researchers found that three
different antiviral agents reduced Aβ and p-tau accumulation
for Vero cell cultures infected with HSV1 (Wozniak et al.,
2011). A recent nationwide cohort study from Taiwan provides
the first population-level evidence. This study enrolled 33,000
subjects that about one-quarter of whom were newly diagnosed
with HSV infection and followed them for 15 years. The
researchers found that subjects with HSV infection showed
2.5 times more likely to develop dementia than those without
infection. More importantly, compared with HSV infected
participants without receiving therapy, subjects with HSV who
were treated with antivirals had a 10-fold reduction in the risk of
dementia development (Tzeng et al., 2018). These studies show
a potential causal role for viruses in AD. However, the exact
nature of the link between viruses and AD is still ambiguous.
More clinical trials of antiviral drugs are needed to evaluate
their impacts on AD.

CONCLUSION

We started from CSF sTREM2 levels to explore the pathogenesis
of AD according to the data in ADNI cohort. Firstly, we
checked the CSF sTREM2 levels by disease status and found
that there was no significant difference between AD and
NL groups, though they were elevated with disease stages.
Next, we studied the correlation between CSF sTREM2 levels
and other AD highly associated CSF and clinical biomarkers,
such as CSF tau, p-tau, Aβ42 levels, ADAS13 scores and
hippocampus volumes, demonstrating that CSF sTREM2 levels
were significantly positively correlated with CSF total tau and
phosphorylated-tau levels for all disease status. Furthermore, we
performed QTL analysis by setting CSF sTREM2 levels as the
phenotype and identified that the SNPs located within or near
the MS4A gene cluster were significantly associated with them,
with rs7232 and rs1582763 as the top two significant SNPs.
After that, our eQTL analysis for these significant SNPs showed
that they were also associated with the expression of the genes
from MS4A gene family. Additionally, our pathway analyses
for the important genes from the results of GWAS illustrated
that the biological processes for virus regulation and immune
response were highly associated with AD. According to our
study, we speculated that the genetic architecture of AD patients
might increase their susceptibility to viral infections of the brain.
The more frequent immune activation and response against
viral infections may result in progressive neurodegeneration and
lead to AD finally.
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