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1  |   INTRODUCTION

Rectal cancer (RC) is one of the most commonly diagnosed 
malignant tumors worldwide. At the time of or before the 
diagnosis of the primary tumor, approximately 15%-20% 
of the patients were detected with liver metastases (LM), 

which is termed as synchronous liver metastasis (SLM).1,2 
SLM is the most common cause of death in patients with 
RC,3 and the prognosis of patients with untreated SLM is 
poor.4 Therefore, the preoperative prediction of RC patients 
with a high risk of SLM is essential for treatment strategies. 
In the case of patients with high-risk RC, further imaging, 
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Abstract
At the time of diagnosis, approximately 15%-20% of patients with rectal cancer (RC) 
presented synchronous liver metastasis (SLM), which is the most common cause of 
death in patients with RC. Therefore, preoperative, noninvasive, and accurate predic-
tion of SLM is crucial for personalized treatment strategies. Recently, radiomics has 
been considered as an advanced image analysis method to evaluate the neoplastic 
heterogeneity with respect to diagnosis of the tumor and prediction of prognosis. In 
this study, a total of 1409 radiomics features were extracted for each volume of inter-
est (VOI) from high-resolution T2WI images of the primary RC. Subsequently, five 
optimal radiomics features were selected based on the training set using the least ab-
solute shrinkage and selection operator (LASSO) method to construct the radiomics 
signature. In addition, radiomics signature combined with carcinoembryonic antigen 
(CEA) and carbohydrate antigen 19-9 (CA19-9) was included in the multifactor lo-
gistic regression to construct the nomogram model. It showed an optimal predictive 
performance in the validation set as compared to that in the radiomics model. The 
favorable calibration of the radiomics nomogram showed a nonsignificant Hosmer-
Lemeshow test statistic (P > .05). The decision curve analysis (DCA) showed that 
the radiomics nomogram is clinically superior to the radiomics model. Therefore, the 
nomogram amalgamating the radiomics signature and clinical risk factors serve as an 
effective quantitative approach to predict the SLM of primary RC.

K E Y W O R D S

magnetic resonance imaging, radiomics, rectal cancer, synchronous liver metastasis

www.wileyonlinelibrary.com/journal/cam4
mailto:﻿
https://orcid.org/0000-0001-8596-9563
https://orcid.org/0000-0002-0380-7470
http://creativecommons.org/licenses/by/4.0/
mailto:ssff_53@163.com


5156  |      LIU et al

including enhanced abdomen computed tomography (CT), 
liver magnetic resonance imaging (MRI), or fluorodeoxyglu-
cose (FDG) positron emission tomography (PET)-CT, should 
be considered, to discover additional metastases, enhance the 
systemic treatment, or for metastasis resection.5 The early de-
tection of SLM will provide opportunities for early interven-
tion and improve the prognosis of RC patients.

Owing to high sensitivity and specificity over the other 
two modalities, MRI was the preferred first-line approach for 
the preoperative clinical evaluation of SLM, especially for le-
sions smaller than 1 cm. PET-CT is served as the second-line 
approach.5 However, the diagnostic accuracies of these im-
aging techniques are not satisfactory.5-7 Previous studies 
demonstrated the feasibility of clinicopathological features 
for evaluating the potential risk of SLM in RC patients.8,9 
However, some indicators are available only after a radical 
resection and cannot be used as a guide for preoperative treat-
ment strategy. Therefore, the development of a preoperative, 
noninvasive, and accurate approach is warranted to predict 
SLM.

Since the radiomics analysis of images provides compre-
hensive quantification information than that by a physician, 
the quantitative and objective descriptions of neoplastic het-
erogeneity could serve as alternatives in clinical studies. The 
radiomics workflow involves high-throughput extraction of 
numerous medical imaging features. Then, the quantitative 
imaging traits are subjected to a selection procedure, for fea-
ture analysis, which supports the decision-making10-12 with 
respect to the cancer stage and the prediction of progno-
sis.13-15 Another study demonstrated that the texture analy-
sis of the features extracted from liver CT images predicted 
the different prognosis of colorectal cancer patients.16 Some 
studies demonstrated that radiomics model predicts distant 
metastasis in different primary tumors.17-22 However, the role 
of radiomics nomogram derived from primary lesion in pre-
dicting SLM in RC patients is not yet clarified.

Therefore, the present study aimed to investigate the pre-
dictive performance of radiomics nomogram for the diagno-
sis of SLM in RC patients.

2  |   MATERIALS AND METHODS

2.1  |  Patients and data management

Research was approved by the local institutional review 
board (Committee on Ethics of Biomedicine, Naval Medical 
University, PLA), and patient informed consent was waived 
for this retrospective study. Between March 2018 and March 
2019, a total of 169 patients with RC identified by histopatho-
logical examination were enrolled in this study. All subjects 
underwent rectal MRI for local staging of RC. The inclusion 
criteria included the following: (a) rectal adenocarcinoma 

was identified via colonoscopy or postoperative patho-
logical examination; (b) single focus; (c) liver metastasis 
was confirmed by contrast-enhanced liver MRI at the time 
of diagnosis. Exclusion criteria were as follows: (a) any 
local or systemic treatment at or before the baseline MRI 
examination (n  =  21); (b) history of previous or coexist-
ing other malignant tumors (n = 2); (c) metachronous liver 
metastasis (n = 11); (d) low-quality image quality (n = 8). 
Therefore, the final study cohort consisted of 127 patients. 
The levels of serum tumor markers, carcinoembryonic anti-
gen (CEA), and carbohydrate antigen 19-9 (CA19-9), were 
recorded consecutively to that of rectal MRI (the interval 
was <2 weeks). Next, the random number method was used 
to assign 70% of the samples to the training set and 30% to 
the validation set.

2.2  |  Imaging acquisition

All patients were performed on a 3.0 Tesla MRI scanner 
(MAGNETOM Skyra, Siemens Healthcare) with an 18-chan-
nel phased-array body coil. Rectal axial high-resolution T2-
weighted fast spin echo images were obtained for subsequent 
processing as the following main scanning parameters: rep-
etition time/echo time (TR/TE) = 4000/108 ms, field of view 
(FOV) = 180 × 180 mm2, matrix = 320 × 320, slice thick-
ness = 3 mm, interspace = 0 mm, number of slices = 28 slices, 
echo train length = 16, without fat saturation and acquisition 
time  =  4  minutes 10  seconds. Preoperative liver MR scan 
for liver metastases was acquired at an interval of 6.9 ± 1.8 
(range, 2-9) days before or after the rectal examination.

Different medical imaging factors cause inconsisten-
cies in the image intensity information of tissues of the 
same nature. We used the following formula for intensity 
normalization (where x represents the original intensity; 
f(x) indicates the normalized intensity; µ indicates the av-
erage value; σ refers to variance; t is an optional scaling 
ratio, which has been set to 1 by default). While retaining 
the intensity difference of diagnostic value, the image in-
tensity inconsistency caused by the difference in imaging 
parameters is reduced or even eliminated for subsequent 
imaging radiomics analysis.

2.3  |  Feature extraction and radiomics 
signature construction

The regions of interest (ROIs) were manually delineated 
for all slices on high-resolution T2WI based on radiomics 
analysis platform (Radcloud, Huiying Medical Technology 
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Co., Ltd.) by one observer with 5  years of experience in 
radiology, followed by a review by one senior observer 
with >10 years’ experience. If the discrepancy was ≥5%, 
the senior observer decided on the ROI borders. Then, 
the volume of interest (VOI) was constructed through the 
ROI interpolation of each slice. A total of 127 VOIs were 
manually dropped from the scans of 127 patients (Figure 1). 
Subsequently, 1409 high-throughput data features were au-
tomatically extracted from the platform based on the “pyra-
diomics” package in Python (version 2.1.2, https://pyrad​
iomics.readt​hedocs.io/) and classified into four groups. (a) 
First-order statistics (n = 18), described the intensity infor-
mation in the MR image region of interest, such as mean, 
standard deviation, variance, maximum, median, range, etc 
(b) Shape features (n = 14), which reflected the shape and 
size of the region, such as volume, surface area, compact-
ness, maximum diameter, etc (c) Texture features, which 
could quantify regional heterogeneity differences, such as 
gray-level co-occurrence matrix (GLCM, n  =  24), gray-
level size zone matrix (GLSZM, n  =  16), gray-level de-
pendence matrix (GLDM, n = 14), neighborhood gray-level 
dependence matrix (NGLDM, n = 5), and gray-level run-
length matrix (GLRLM, n = 16). (d) higher-order statistical 
features, contained 1302 features, including the first-order 
statistics and texture features derived from wavelet transfor-
mation of the original images: logarithm, exponential, gra-
dient, square, square root, local binary patterns (LBP), the 
wavelet transform decomposes the tumor area image into 
low-frequency components (L) or high-frequency compo-
nents (H) in the three directions of the x, y, and z axes. Eight 
types of wavelet features were obtained and labeled as LLL, 
LLH, LHL, LHH, HLL, HLH, HHL, and HHH according to 
their different decomposition orders.

First, we applied a variance threshold method to reduce 
the features, with the threshold setted to 0.8. On this basis, 
the least absolute shrinkage and selection operator (LASSO) 
method was used to screen the optimal features to predict 
the SLM. In this method, leave-one-out cross-validation was 

used to select the optimal regularization parameter alpha, as 
the average of mean square error of each patient was small. 
Moreover, features with non-zero coefficient in LASSO were 
utilized to establish the radiomics signature and calculate the 
score.

2.4  |  Prediction model of the 
radiomics nomogram

Univariate logistic regression was applied to the training set 
for each potential predictor, including gender, age, primary RC 
location, MR T stage, MR N stage, mesorectal fascia (MRF), 
extramural vascular invasion (EMVI), CEA, and CA19-9 to 
choose the independent clinical prediction indicator. Then, mul-
tivariable logistic regression combined the selected risk factors, 
and radiomics signature was performed to develop a prediction 
model for SLM, following which, the radiomics nomogram 
was constructed. The calibration curve and Hosmer-Lemeshow 
test were applied to estimate the goodness of fit of the model. 
Moreover, receiver operator characteristic (ROC) curve was 
constructed to compare the prediction performance of the single 
radiomics signature model and radiomics nomogram by calcu-
lating the area under the curve (AUC) in both the training and 
validation sets. The decision curve analysis (DCA) was effectu-
ated by estimating the net benefit with probability thresholds to 
confirm the clinical benefit.

2.5  |  Statistical analysis

Radcloud platform (Huiying Medical Technology Co., Ltd) 
was utilized to process the imaging and clinical data, as well as 
the spectra of radiomics analysis. The nomogram analysis was 
performed using R software (version 3.3.1). Other statistical 
analysis were performed using SPSS software (version 17.0) 
and MedCalc (version 15.2.2). A value of P < .05 was consid-
ered statistically significant.

F I G U R E  1   Example image for rectal 
cancer contouring. A, The outline of regions 
of interest on one slice of axial T2-weighted 
MR image. B, Volume rendering

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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3  |   RESULTS

3.1  |  Patient demographics

A total of 127 patients with RC were incorporated in the final 
analysis, including 32 cases of SLM. Subsequently, 88/127 
(70%) were assigned to training sets, and then remaining to 
validation sets. Any significant difference was not detected 
between the two sets (Table 1).

3.2  |  Radiomics features

First, we selected 866/1409 features using variance thresh-
old method, and then, five optimal features were selected by 

LASSO algorithm (Figure  2). The radiomics score was ob-
tained by a linear combination of optimal features that was re-
spectively weighted by the LASSO coefficients that reflect the 
risk of SLM. While training with the radiomics signature, the 
AUC was 0.836 (95% confidence interval, CI: 70.64%-96.50%), 
sensitivity was 100.0%, and specificity was 75.00% with a pre-
diction accuracy of 81.58%. The AUC was 0.866 (95% CI: 
76.96%-96.32%), sensitivity was 79.17%, and specificity was 
93.65% in the validation set, with an accuracy of 89.66%.

3.3  |  Radiomics nomogram

A univariate logistic regression analysis identified the radiom-
ics signature (odds ratio, OR = 54.776), CEA (OR = 12.629), 

Variables

Total
Training 
data (70%)

Validation 
data (30%)

Statistic Pn = 127 (%) n = 88 (%) n = 39 (%)

Gender

Male 90 (70.9) 63 (71.6) 27 (69.2) 0.073a  .787

Female 37 (29.1) 25 (28.4) 12 (30.8)

Age (y)

Mean ± SD 57.0 ± 10.6 57.8 ± 10.2 55.3 ± 11.2 -1.257b  .211

Location

Upper 26 (20.5) 17 (19.3) 9 (23.1) 0.273a  .872

Middle 82 (64.6) 58 (65.9) 24 (61.5)

Lower 19 (14.9) 13 (14.8) 6 (15.4)

mr T stage

T1-2 43 (33.9) 29 (33.0) 14 (35.9) 0.105a  .746

T3-4 84 (66.1) 59 (67.0) 25 (64.1)

mr N stage

N0 85 (66.9) 57 (64.8) 28 (71.8) 0.602a  .438

N1-2 42 (33.1) 31 (35.2) 11 (28.2)

MRF

Negative 103 (81.1) 72 (81.8) 31 (79.5) 0.096a  .757

Positive 24 (18.9) 16 (18.2) 8 (20.5)

EMVI

Negative 85 (66.9) 57 (64.8) 28 (71.8) 0.602a  .438

Positive 42 (33.1) 31 (35.2) 11 (28.2)

CEA

Negative 82 (64.6) 58 (65.9) 24 (61.5) 0.226a  .635

Positive 45 (35.4) 30 (34.1) 15 (38.5)

CA19-9

Negative 101 (79.5) 69 (78.4) 32 (82.1) 0.220a  .639

Positive 26 (20.5) 19 (21.6) 7 (17.9)
aχ2 – value. 
bt – value. 

T A B L E  1   Patient demographics
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and CA19-9 (OR = 10.000) as independent predictors of SLM 
in RC patients (Table 2). A predictive radiomics nomogram 
was constructed based on the multivariable logistical regression 
combined with the selected risk factors (CEA, OR = 8.040; 
CA19-9, OR = 4.560) and radiomics signature (OR = 70.629) 
to develop a prediction model for SLM (Table 2; Figure 3). 
The favorable calibration of the radiomics nomogram showed 
a nonsignificant Hosmer-Lemeshow test statistic in both the 
training and validation sets (P = .636, P = .731). The calibra-
tion curve was satisfactory in both sets (Figure 4).

The radiomics nomogram presented an accuracy of 
81.58% for predicting SLM in the training set and 90.80% 
in the validation set. The AUC of radiomics nomogram was 
0.918 (95% CI: 0.824-1.000), the sensitivity was 90.00%, 
and the specificity was 78.57% in the training set, and that in 

the validation set was 0.944 (95% CI: 0.895-0.993), 95.83%, 
and 88.90%, respectively (Table 3); simultaneously the ra-
diomics model demonstrated an AUC of 0.866 (P = .044). 
In order to compare the prediction performance between 
the two models, the ROC curves were plotted for radiom-
ics signature and radiomics nomogram for the validation set 
(Figure 5).

3.4  |  Clinical use

The DCA (Figure 6) showed an adequate performance for ra-
diomics and nomogram models in predicting SLM. When the 
threshold probability was within 0.3-1.0, the proposed nomo-
gram model to predict SLM showed a greater advantage than 
either the “all” or “none” scheme.

4  |   DISCUSSION

In this study, our results demonstrated that the radiomics 
nomogram provided predictive information for SLM in the 
primary RC. Contrast-enhanced CT, MRI, and PET-CT are 
common imaging examinations for the diagnisis of SLM 
in RC preoperatively. However, the sensitivity and accu-
racy of these imaging techniques are not satisfactory.5-7 
According to one meta-analysis, the detection sensitivity of 

F I G U R E  2   Radiomics features selected by least absolute 
shrinkage and selection operator (LASSO) algorithm. Lasso algorithm 
for feature selection. Five features were selected

Variables

Univariate logistic regression Multivariate logistic regression

OR (95% CI) P OR (95% CI) P

Gender (male/
female)

1.647 (0.589-4.609) .342 NA NA

Age (y) 0.981 (0.936-1.027) .410 NA NA

Location (lower/
middle/upper)

0.749 (0.353-1.588) .451 NA NA

mr T stage 
(T1-2/T3-4)

2.744 (0.833-9.039) .097 NA NA

mr N stage (N0/
N1-2)

2.068 (0.927-4.612) .076 NA NA

MRF (negative/
positive)

2.100 (0.662-6.663) .208 NA NA

EMVI (negative/
positive)

2.474 (0.92-6.665) .073 NA NA

CEA (negative/
positive)

12.629 (3.964-40.232) <.0001 8.040 (2.043-31.640) .003

CA19-9 
(negative/
positive)

10.000 (3.059-32.687) <.0001 4.560 (1.038-20.041) .045

Radiomics 
signature

54.776 (5.274-568.922) .0008 70.629 (3.969-1256.803) .004

Abbreviations: NA, not available; OR, odds ratio.

T A B L E  2   Logistic regression analyses 
of predicting synchronous liver metastasis



5160  |      LIU et al

F I G U R E  3   Radiomics nomogram to detect synchronous liver metastasis (SLM). The radiomics nomogram was developed in the training 
set with radiomics signature and tumor markers. In the nomogram, first, a vertical line was drawn according to the value of radiomics signature 
to determine the corresponding value of points. Similarly, the points of tumor markers were determined. The total points were the sum of the two 
points above. Finally, a vertical line was made according to the value of the total points to determine the probability of SLM

F I G U R E  4   Calibration curve. Training set (A) and validation set (B)
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colorectal LM in contrast-enhanced CT, routine MRI, and 
FDG PET-CT were 63%-80%, 76%-85.7%, and 51%-90%, 
respectively.23 Therefore, screening for high-risk predictors 
would improve the probability of early detection of SLM in 
RC patients. Typically, the clinicopathological predictors of 
SLM in RC patients include the histological type, pathologi-
cal grade, depth of tumor invasion, lymph node status, vas-
cular invasion, and tumor markers.24 However, some of these 
predictors can only be obtained postoperatively, and hence, 
inappropriate to guide preoperative treatment. Other studies 
have demonstrated that some features of rectal MRI, such as 
extramural vascular invasion, higher T stage, and regional 

lymph node metastasis are potential predictors.25,26 However, 
these image features are subjective and qualitative, lacking 
quantitative assessment.

Recently, radiomics has been considered as an advanced 
tool to evaluate the tumor heterogeneity with respect to tumor 
diagnosis and prognosis prediction. Several studies have 
shown that radiomics model derived from primary tumors 
demonstrated an optimal performance in the prediction of 
SLM in RC patients.19,22 Therefore, a radiomics nomogram 
can be obtained preoperatively based on T2WI and is widely 
accepted as the critical sequence for the preoperative assess-
ment of primary tumors of RC.

In the current study, the factors including radiomics sig-
nature, CEA, and CA19-9 levels were entered in the multi-
variate logistic regression to construct a predictive model 
and nomogram. The results were partially consistent with 
those from other relevant studies.8,19,22 Furthermore, the MR 
T stage, MR N stage, MRF, and EMVI were not indepen-
dent image predictors for SLM according to the univariate 
analysis, which differed partially from that shown in previ-
ous studies describing the high risk of distant metastasis.25,26 
This phenomenon could be attributed to some nonquantita-
tive features found on rectal MRI, which might underlie the 
lack of the clinical significance.

Therefore, our analysis indicates that the radiomics no-
mogram combined with tumor markers was superior to the 
radiomics signature alone. It exhibited a high predictive per-
formance for SLM in RC patients, and the AUC improved 
from 0.866 to 0.944; the sensitivity was high in the valida-
tion cohort compared to radiomics model. Moreover, the re-
sults were better than those reported in a previous study on a 
per-patient basis, wherein the AUC was 0.92 and 0.88 (MRI 
readers), 0.80 and 0.82 (CT readers), and with an AUC of 
0.83 and 0.84 (PET-CT readers).27

Training set Validation set

Radiomics Nomogram Radiomics Nomogram

AUC 0.836 0.918 0.866 0.944

95% CI 0.706-0.965 0.824-1.000 0.770-0.963 0.895-0.993

Sensitivity 100.0% 90.00% 79.17% 95.83%

Specificity 75.00% 78.57% 93.65% 88.89%

Accuracy 81.58% 81.58% 89.66% 90.80%

PLR 4.000 4.200 12.469 8.625

NLR 0.000 0.127 0.222 0.047

PPV 0.588 0.600 0.826 0.767

NPV 1.000 0.956 0.922 0.982

P* 0.170 0.044

Abbreviations: NLR, negative likelihood ratio; NPV, negative predictive value; PLR, positive likelihood ratio; 
PPV, positive predictive value.
*Compared by DeLong test. 

T A B L E  3   Receiver operator 
characteristic analysis of the prediction 
model for the training and validation sets

F I G U R E  5   Receiver operator characteristic (ROC) curves 
(validation set). The prediction performance of the ROC curves for 
radiomics signature and radiomics nomogram for the validation set
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The detection sensitivity of SLM was 95.83% in the 
validation set, which was higher than the hepatobiliary 
phase MRI with a sensitivity of 90.6% for detecting LM 
in a meta-analysis.28 The study also revealed an excellent 
sensitivity (95.5%) of gadoxetic acid-enhanced MRI com-
bined with diffusion-weighted imaging (DWI) in detecting 
LM was. However, these findings were based on hepato-
cyte-specific-enhanced MRI, complicated and controver-
sial procedure.

The NLR (negative likelihood ratio) was 0.047 in the 
validation set, as calculated by dividing the false-negative 
rate by the true-negative rate. An NLR < 0.10 excludes the 
disease. Therefore, the current data reflect the ability of 
the radiomics nomogram to exclude non-SLM. Presuming 
that a patient is predicted to be non-SLM by the radiom-
ics nomogram, he/she may not benefit from radical liver 
imaging.

In this study, we constructed a radiomics nomogram to 
predict SLM based on primary RC from the rectal high-res-
olution T2WI, which was widely used for assessing RC. 
Driven from the clinical risk factors and radiomics features, 
the proposed nomogram could be a valuable prediction tool 
for SLM in patients with RC. It can be utilized easily for iden-
tifying patients requiring further liver imaging.

Nevertheless, the present research has several limita-
tions. First, with the relatively small sample size based on 
single institutional retrospective analysis, selection bias is 
inevitable. Second, the current study lacks external vali-
dation, and thus, large multicenter trials are needed to 
improve the universality of results. Finally, we only used 
T2WI-based radiomics features to build the radiomics 

nomogram; other routine sequences, such as DWI, were 
not included in the present study. Further studies should be 
conducted using DWI, which might improve the predictive 
value of radiomics nomogram.

5  |   CONCLUSIONS

In conclusion, we developed a clinical-radiomics nomogram 
by combining the tumor markers with radiomics signature to 
predict the presence of SLM in RC patients accurately. This 
visualization tool would detect the probability of SLM and 
aid the physician in clinical decisions.
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