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ABSTRACT 

Background. The Banff Classification may not adequately address protocol transplant biopsies categorized as normal in 

patients experiencing unexplained graft function deterioration. This study seeks to employ convolutional neural 
networks to automate the segmentation of glomerular cells and capillaries and assess their correlation with transplant 
function. 
Methods. A total of 215 patients were categorized into three groups. In the Training cohort, glomerular cells and 
capillaries from 37 patients were manually annotated to train the networks. The Test cohort ( 24 patients) compared 
manual annotations vs automated predictions, while the Application cohort ( 154 protocol transplant biopsies) examined 
predicted factors in relation to kidney function and prognosis. 
Results. In the Test cohort, the networks recognized histological structures with Precision, Recall, F-score and 
Intersection Over Union exceeding 0.92, 0.85, 0.89 and 0.74, respectively. Univariate analysis revealed associations 
between the estimated glomerular filtration rate ( eGFR) at biopsy and relative endothelial area ( r = 0.19, P = .027) , 
endothelial cell density ( r = 0.20, P = .017) , mean parietal epithelial cell area ( r = –0.38, P < .001) , parietal epithelial cell 
density ( r = 0.29, P < .001) and mesangial cell density ( r = 0.22, P = .010) . Multivariate analysis retained only endothelial 
cell density as associated with eGFR ( Beta = 0.13, P = .040) . Endothelial cell density ( r = –0.22, P = .010) and mean 

podocyte area ( r = 0.21, P = .016) were linked to proteinuria at biopsy. Over 44 ± 29 months, 25 patients ( 16%) reached the 
primary composite endpoint ( dialysis initiation, or 30% eGFR sustained decline) , with relative endothelial area, mean 

endothelial cell area and parietal epithelial cell density below medians linked to this endpoint [hazard ratios, 
respectively, of 2.63 ( P = .048) , 2.60 ( P = .039) and 3.23 ( P = .019) ]. 
Conclusion. This study automated the measurement of intraglomerular cells and capillaries. Our results suggest that the 
precise segmentation of endothelial and epithelial cells may serve as a potential future marker for the risk of graft loss. 
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KEY LEARNING POINTS 

What was known: 

• The Banff Classification has limitations in explaining the impairment of transplant function and the prognosis of biopsies 
without rejection or viral nephropathy.

• Glomerular volume and ischemia in protocol biopsies appear to be correlated with the decline in glomerular filtration rate 
( GFR) post-transplantation.

• No study has precisely assessed the association between glomerular cells and glomerular capillaries in protocol transplant 
biopsies and their impact on kidney function and prognosis.

This study adds: 

• We have developed automated recognition through deep learning for parietal epithelial cells, podocytes, mesangial cells, 
endothelial cells and glomerular capillaries of non-pathological glomeruli.

• Several new histological markers have been evaluated, demonstrating the statistical association between endothelial cell 
density and estimated GFR ( eGFR) , confirming the association between podocyte area and proteinuria, and suggesting a 
potential link between a decrease in relative glomerular capillary area and initial graft dysfunction.

• We have shown that low mean and relative endothelial areas, as well as low epithelial cell density, may be associated with 
higher risks of graft function deterioration.

Potential impact: 

• These five freely available algorithms could assist pathologists in automating the assessment of various new specific markers 
for kidney transplant prognosis of non-pathological glomeruli.

• This work could lead to studies targeting the endothelial and parietal cell populations in transplantation.
• The observed correlations between glomerular cellular populations and eGFR could allow for the adjustment of nephro- 

protective treatments based on protocol biopsy assessments or facilitate tailored therapies for these specific cells in the 
future.
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NTRODUCTION 

rotocol graft biopsies play a pivotal role in monitoring trans-
lanted patients. These biopsies are essential for detecting tox- 
city from calcineurin inhibitors, recurrences of kidney dis- 
ases, viral nephropathies and particularly rejection episodes. In 
ost cases, the presence of lesions prompts specific treatment 
dministration and/or adjustments to the maintenance im- 
unosuppressive regimen, all aimed at improving graft survival 

1 –6 ]. 
Histological abnormalities in kidney transplantation are pri- 

arily categorized within the International Banff Classification 
7 ]. This classification has limitations when it comes to cases
ithout rejection, viral nephropathy, or drug toxicity. Thus, the 
anff Classification appears inadequate for biopsies categorized 
s normal in patients experiencing unexplained graft function 
eterioration [8 ]. 
Recent studies have explored the association between 

lomerular anatomy, which is not extensively described in the 
anff Classification, and its impact on kidney function [9 ]. Denic
t al. observed an association between glomerular volume, is- 
hemic glomeruli and the risk of graft loss [10 ]. To our knowl-
dge, no study has comprehensively investigated the association 
etween glomerular cells or capillaries and transplant function.

Manually conducting an exhaustive exploration of intrinsic 
lomerular elements across entire cohorts is virtually impos- 
ible. Such a task would require the segmentation of several
undred thousand elements. Artificial intelligence may offer a 
olution to these challenges [11 ]. Our team and others have
emonstrated that convolutional neural networks ( CNNs) can 
e a valuable tool for analyzing glomerular architecture in con-
itions such as minimal change disease ( MCD) , lupus nephritis,
mmunoglobulin A nephropathy and diabetes [12 –16 ]. However,
hese studies have primarily focused on lesions and/or were not
rained to simultaneously detect all glomerular cells and capil- 
aries. 
This study aims to automate the segmentation of most in-
rinsic glomerular elements using CNNs on “normal” protocol 
idney biopsies and subsequently evaluate the correlation be-
ween these parameters and transplant function. 

ATERIALS AND METHODS 

tudy population 

ncluded patients met the following criteria: 

Underwent protocol transplant biopsies from deceased 
donors conducted between 3 and 6 months post-kidney
transplantation at the Besançon University Hospital between 
January 2012 and 2021, or at Dijon University Hospital be-
tween January 2020 and 2022.
Underwent native kidney biopsies at Dijon between January
2010 and 2021 with a diagnosis of MCD.

ll consenting patients ( > 18 years old) were evaluated for inclu-
ion, except 6 randomly selected MCD, as 40 MCD appeared suf-
cient for annotation. MCD had at least 7 analyzable glomeruli,
ut transplant biopsies with < 7 glomeruli were not excluded
 included in Training or Test cohorts) . Biopsies with a prior diag-
osis of acute/chronic T-cell/antibody-mediated rejection ( 2019 
anff Classification) were excluded [17 ]. The remaining biop-
ies underwent analysis with all available stains to confirm the
bsence of rejection, exclude blurred or altered trichrome, and
rade the Banff Classification [17 ]. Additional exclusions en-
ompassed recurrent initial nephropathies, de novo glomeru- 
opathies, viral nephropathies, chronic hepatitis and HIV infec-
ions. 

Retrospective collection of clinical and biological character- 
stics from patients’ records included age, gender, body mass
ndex ( BMI) , diabetes, hypertension, serum creatinine levels,
onor-specific antibodies positivity, BK polyomavirus replica- 
ion in blood and proteinuria. Transplant-related data included



4 I. Farhat et al.

o
s

 

g
l

l
r

o
s
s
(
l
o
2
u

i
o
t
u

T

T
c
e
i
l
e
i
p
b

t  

N
b
a
c  

n
s
f

t
h  

e

H

K
w
t
r
o
b  

w
n
c

W

B
C

t
4  

M
s
m
e

 

O
n
a
d
a
t
z
d
l
t
t  

d
g

A

T
e
(
(
m
[
o  

s  

T
v
r
a
r
c

r
v
b
t
e
i
s
i
i
a
c
r
p
g

P

T
o
l
a
l
g
i
a

ccurrence of delayed graft function, as well as immunosuppres- 
ive regimens [18 ]. 

Donor characteristics were also recorded, comprising age,
ender, BMI, history of diabetes, hypertension, serum creatinine 
evels and proteinuria at the time of donation. 

The estimated glomerular filtration rate ( eGFR) was calcu- 
ated using the Chronic Kidney Disease Epidemiology Collabo- 
ation formula [19 ]. 

Follow-up for transplanted patients extended from the date 
f transplantation to death, graft loss or the last nephrology con- 
ultation. The primary composite endpoint was defined as dialy- 
is initiation, or a ≥30% sustained decrease in eGFR from biopsy 
 persisting for at least three consecutive months and until the 
ast follow-up) . Rejection diagnosis during follow-up depended 
n medical records, required a biopsy and had to adhere to the 
019 Banff criteria [17 ]. The follow-up period concluded in Jan- 
ary 2021. 
The retrospective study protocol was in accordance with the 

nstitutional ethic committee and with the Helsinki Declaration 
f 1975, as revised in 2013, and with the Principles of the Declara- 
ion of Istanbul. All patients had given oral consent for research 
se prior to the biopsy. 

raining, Test and Application cohorts 

he Training cohort was designed to train CNNs to identify spe- 
ific “objects” within glomeruli. These objects included parietal 
pithelial, endothelial, mesangial cells, podocytes and capillar- 
es. The number of biopsies was arbitrarily defined to train at 
east 500 objects per category. To facilitate future algorithm gen- 
ralization, native kidney biopsies with MCD were incorporated 
nto both the Training and Test sets. The Training cohort com- 
rised 37 biopsies from Dijon, including 11 protocol transplant 
iopsies and 26 MCD. 

The Test cohort was designed to compare manual annota- 
ions with CNNs’ predictions to validate detection performance.
o Test group patients were included in the Training group. MCD 

iopsies were distributed with a 2/3 ratio in the Training cohort 
nd 1/3 in the Test cohort. All transplant biopsies from Besan- 
on with < 7 glomeruli were included in the Test cohort, as it did
ot require correlation with clinical data and a single glomerulus 
ufficed. This group consisted of 10 protocol transplant biopsies 
rom Besançon and 14 MCD biopsies from Dijon. 

The Application cohort aimed to give clinical significance to 
he numerical data extracted from predictions by CNNs. This co- 
ort comprised 154 protocol transplant biopsies from Besançon,
ach containing > 7 glomeruli. 

istological analysis 

idney biopsies from formalin-fixed, paraffin-embedded tissues 
ere sectioned into 2 μm sections and stained with Masson’s 
richrome, periodic acid–Schiff and Jones stains. Immunofluo- 
escence data ( including C4d) were extracted from the pathol- 
gy report. No electron microscopy analysis was performed. The 
lind examination and annotation of biopsies were conducted,
ith glomeruli pre-annotated by a junior pathologist. Two kid- 
ey pathologists ( holding a French diploma in kidney pathology) 
ollectively corrected annotations through consensus. 

hole-slide images pre-processing 

iopsies were digitized using a Hamamatsu scanner ( model 
9600-12) with a 20 × lens ( NDPI format) . Images were 
hen transformed into JPEG format at a fixed resolution of 
50 nm/pixel. Glomeruli were analyzed at 40 × magnification.
anual annotations were performed using ASAP annotation 
oftware ( version 1.9) . Training and testing required separate 
anual annotations of objects: the capillaries ( encompassing 
ndothelial cells) and the cytoplasm of the different cells. 

In the Application cohort, all analyzable glomeruli were used.
nly the outer part of the Bowman’s capsule was manually an- 
otated ( 40 × zoom) . In the Training and Test groups, annotating 
ll glomeruli manually would have been practically unfeasible 
ue to the large number of objects, as each glomerulus required 
nnotation for all its cells and capillaries. Thus, cortical areas in 
hese groups were divided into 3840 × 2176 pixel rectangles ( 20 ×
oom) containing glomeruli ( Supplementary data, Fig. S1) . A r an- 
om rectangle was chosen, and a new capture of each glomeru- 
us at 40 × zoom ( 1920 × 1088 pixels) was taken. A program iden- 
ified and extracted glomerulus annotations, automatically cen- 
ering each in a vignette of 1024 × 1024 pixels. One to three ran-
omly selected glomeruli per patient were analyzed. Fifty-two 
lomeruli were used for training, and 29 for testing. 

lgorithms 

raining and evaluations were conducted using a computer 
quipped with the Titan RTX 133 ( Nvidia, CA, USA) graphics card 
 24 GB VRAM) . We used the Mask R-CNN Inception ResNet V2 
 faster_rcnn_inception_resnet_v2_keras) CNN, and the imple- 
entation was carried out in Python using Tensorflow and Keras 

12 , 13 , 20 ]. Adopting a glomerular training methodology akin to 
ur prior work, we made minimal hyperparameter adjustments,
etting warm-up steps to 50 and a learning rate of 0.008 [13 ].
he Mask-RCNN was pretrained using the “TF2 Detection Zoo”
ersion ( https://github.com/tensorflow/models/blob/master/
esearch/object_detection/g3doc/tf2_detection_zoo.md) . Data 
ugmentation, to artificially augment the training data, involved 
andom 90° rotations for each image at each epoch ( a complete 
ycle of CNN training) . 

The Training cohort images dataset was split into an 80%/20% 

atio at the patient level for training and validation, and con- 
erted into TFrecords. At each epoch, the algorithm adjusted 
ased on agreement between predictions and manual anno- 
ations of the validation dataset. The number of epochs for 
ach training was visually determined by continuously analyz- 
ng the learning curves in Tensorboard, and manual intervention 
topped training when an asymptote was apparent. Initial train- 
ng attempts using all categories of annotations yielded unsat- 
sfactory predictions. Consequently, each object underwent sep- 
rate training. The training process for all glomerular cells and 
apillaries required 150 epochs, except endothelial cells which 
equired 100 epochs. A total of 879 parietal epithelial cells, 1170 
odocytes, 2071 mesangial cells, 2091 endothelial cells and 3359 
lomerular capillaries were annotated. 

redicted data 

he glomerular data utilized in the Application cohort included 
bjects’ area and count. These data facilitated the extrapo- 
ation of the mean area of objects, the mean total objects’ 
rea per glomerulus, the ratio between objects and glomeru- 
ar areas ( referred to as relative area) and object density per 
lomerular area. As capillaries do not have a spherical shape 
n space, density measurements were exclusively used for cells 
nd were extrapolated from the glomerular density formula 

https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
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Figure 1: Flow chart. 
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9 ]. The formulas and extended methods are described in the
upplemental Materials and Supplementary data, Table S1. 

tatistical analyses 

uantitative and categorical data were respectively expressed as 
eans ± standard deviations and n ( %) . The correlation between 

wo variables was assessed using the Spearman test. To examine
he association between eGFR and other variables, a backward 
ultiple linear regression test was conducted, after excluding 
ariables with collinearity ( Variance inflation factor > 4) , includ- 
ng significant data from univariate tests. Mann–Whitney’s test 
as used to compare two quantitative variables. 
The performance of the CNNs was evaluated using Pre- 

ision, Recall, F-score and Intersection Over Union ( IOU) 
 Supplementary data, Table S1) [12 ]. 

The risk of the primary endpoint was assessed using the Log-
ank survival test for univariate analysis and the Cox model for
ultivariate analysis. Criteria determined through the Log-Rank 

est with P < .1 were included in the Cox model. A significance
evel of < 5% was considered statistically significant. Analyses 
ere conducted using GraphPad PRISM 6.01 ( GraphPad Software,
a Jolla, CA, USA) and IBM SPSS 23 softwares ( IBM, Chicago, IL,
SA) . 
ESULTS 

opulations 

 total of 215 patients were included, divided into three groups
 Fig. 1 ) . The mean age at biopsy was 54 ± 17 years, with 131
atients ( 61%) being male. Mean creatinine, eGFR and protein- 
ria at biopsy were 1.4 ± 0.5 mg/dL, 59 ±25 mL/min/1.73 m2 and
.8 ± 4.5 g/day, respectively. Due to the inclusion of MCD, pa-
ients in the Training and Test cohorts tended to be younger and
o have higher eGFR and proteinuria ( Table 1 ) . 

etection accuracy 

n the Test cohort, 24 glomeruli were randomly selected to com-
are CNNs’ predictions with manual annotations. The CNNs
emonstrated reliable recognition of histological structures,
ith Precision, Recall, F-score and IOU all exceeding 0.92, 0.85,
.89 and 0.74, respectively ( Fig. 2 , Table 2 ) . An analysis fo-
using solely on transplant biopsies yielded similar results
 Supplementary data, Table S2) . Mesangial cells and podocytes 
xhibited the weakest detection capabilities. Other common er-
ors included: undetected endothelial cells, confusion between 
odocytes and epithelial/endothelial cells, failure to recognize 
ome capillaries or boundary delineation issues. 

https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
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Table 1: Population characteristics. 

Population total Training cohort Test cohort Application cohort 
Data ( N = 215) ( N = 37) ( N = 24) ( N = 154) 

Age ( years) 54 ± 17 49 ± 17 46 ± 17 55 ± 13 
Male sex 131 ( 61) 18 ( 49) 17 ( 71) 96 ( 62) 
Hypertension 168 ( 78) 13 ( 35) 15 ( 63) 140 ( 93) 
Diabetes 42 ( 20) 6 ( 16) 2 ( 8) 34 ( 22) 
Transplant 175 ( 81) 11 ( 30) 10 ( 42) 154 ( 100) 
MCD 40 ( 19) 26 ( 70) 14 ( 58) 0 ( 0) 
Serum creatinine level 

at biopsy ( mg/dL) 
1.4 ± 0.5 1.1 ± 0.4 1.3 ± 0.5 1.5 ± 0.5 

eGFR at biopsy 
( mL/min/1.73 m2 ) 

59 ± 25 75 ± 27 73 ± 31 53 ± 20 

Proteinuria at biopsy ( g/day) 1.8 ± 4.5 4.7 ± 5.8 6.5 ± 9.2 0.3 ± 0.3 

Quantitative data are expressed as means ± standard deviations, semi-quantitative data are expressed as numbers ( percentages) . 

Figure 2: Predictions of CNNs within the glomerulus of a transplanted patient included in the Test cohort. ( A –F) Glomerulus stained with Masson’s trichrome ( ×40 

zoom) . Parietal epithelial cells, podocytes, capillaries endothelial cells and mesangial cells were artificially colored respectively in pink ( B) , orange ( C) , light blue ( D) , 
purple ( E) and yellow ( F) . Arrows: capillaries not detected by convolutional neural network; ¥: podocyte detected as endothelial cells. 

Table 2: Convolutional neural networks accuracy in the Test cohort. 

Objects Number of objects Precision a Recall b F-score c IOU 

d 

Parietal epithelial cells 539 0.96 0.89 0.92 0.82 
Podocytes 633 0.93 0.86 0.89 0.75 
Mesangial cells 907 0.93 0.88 0.90 0.74 
Endothelial cells 1576 0.93 0.93 0.93 0.79 
Capillaries 2029 0.99 0.94 0.96 0.93 

a Precision: percentage of items belonging to the interest class among items identified as belonging to the interest class. 
b Recall: percentage of items identified as belonging to the interest class among all items belonging to the interest class. 
c F-score: 2*( Precision*Recall) /( Precision + Recall) 
d IOU: ( common area between the predicted and the annotated object) /( area of the predicted object 1 area of the annotated object – common area of the annotated 
and predicted object) . 
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ssociation between predictions and kidney function 

mong the 154 patients in the Application cohort, the mean age 
t biopsy was 55 ± 13 years, with 96 patients ( 62%) being male.
ean serum creatinine level, eGFR and proteinuria at biopsy 
ere 1.5 ± 0.5 mg/dL, 53 ±20 mL/min/1.73 m2 and 0.3 ± 0.3 g/day,
s

espectively ( Table 1 ) . Thirty patients ( 19%) have had at least one 
osage of BK polyomavirus replication in their blood, and five 
atients ( 3%) had donor-specific antibodies before the biopsy.
mmunosuppressive regimens were relatively homogenous 
etween patients. Extended recipients’ and donors’ data are de- 
cribed in Supplementary data, Table S3. 

https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
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Table 3: Histological analyses of protocol biopsies. 

Data 

Application 
cohort 

( N = 154) 

Number of glomeruli 23 ± 12 
Banff scorea 

g score ≥1 3 ( 2) 
mm score ≥1 37 ( 24) 
cg score ≥1 1 ( 1) 
i score ≥1 3 ( 2) 
t score ≥1 2 ( 1) 
ptc score ≥1 2 ( 1) 
ah score ≥1 79 ( 51) 
cv score ≥1 52 ( 34) 
v score ≥1 0 ( 0) 

IF/TA score 
1 68 ( 44) 
2 4 ( 3) 
3 1 ( 1) 

Predicted data 
Number of parietal epithelial cells per glomerulus 16 ± 4 
Relative parietal epithelial area ( %) 2.5 ± 0.7 
Mean parietal epithelial cell area ( μm2 ) 33 ± 3 
Parietal epithelial cell density ( cell/mm2 ) 6503 ± 1842 
Number of podocytes per glomerulus 22 ± 5 
Mean podocyte area ( μm2 ) 790 ± 192 
Relative podocyte area ( %) 3.5 ± 0.6 
Podocyte density ( cell/mm2 ) 8668 ± 2452 
Number of endothelial cells per glomerulus 29 ± 13 
Mean endothelial cell area ( μm2 ) 18 ± 1 
Relative endothelial area ( %) 2.3 ± 0.9 
Endothelial cell density ( cell/mm2 ) 14 998 ± 6025 
Number of mesangial cells per glomerulus 28 ± 10 
Mean mesangial cell area ( μm2 ) 553 ± 194 
Relative mesangial area ( %) 2.5 ± 0.6 
Mesangial cell density ( cell/mm2 ) 14 267 ± 3719 
Number of capillaries per glomerulus 64 ± 14 
Mean capillary area ( μm2 ) 102 ± 15 
Relative capillary area ( %) 29.0 ± 3.6 

Quantitative data are expressed as means ± standard deviations, semi- 

quantitative data are expressed as numbers ( percentages) . 
a Banff score elements as previously published [7 ]. 
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The biopsies included a mean of 23 ± 11 glomeruli. None
f the biopsies met the histological criteria for rejection, viral
ephropathy or recurrence of the initial disease. Banff scores as
ell as histological predicted data are provided in Table 3 . The
ean inference time of CNNs was 5 min per biopsy. Within the
514 analyzed glomeruli, 57 323 parietal epithelial cells, 78 905
odocytes, 100 171 endothelial cells, 99 366 mesangial cells and
23 574 glomerular capillaries were detected. 

In univariate analysis, factors associated with eGFR at biopsy 
ncluded relative endothelial area ( r = 0.19, P = .027) , endothe-
ial cell density ( r = 0.20, P = .017) , mean parietal epithelial cell
rea ( r = –0.38, P < .001) , parietal epithelial cell density ( r = 0.29,
 < .001) , relative mesangial area ( r = 0.18, P = .030) and mesan-
ial cell density ( r = 0.22, P = .010) ( Fig. 3 ) . Relative capillary area
id not reach significance ( r = 0.16, P = .055) . Other factors as-
ociated with eGFR were donor and recipient age, BMI, histo-
ies of diabetes, donor sex, hypertension and histologic scores of
nterstitial fibrosis/tubular ( IF/TA) atrophy and vascular fibrous 
ntimal thickening ( cv) . As relative areas and densities, as well 
s the age of the donor and recipient, were considered covari-
tes, both relative areas and the recipient’s age were excluded
rom the multivariate analysis. In multiple linear regression, the
nly factors that remained associated with eGFR were endothe-
ial cell density [Beta = 0.13, 95% confidence interval ( CI) 0.06–
.32, P = .040) and donor age ( Beta = –0.68, 95% CI –0.80 to –0.56,
 < .001) ( Supplementary data, Table S4) . 

Histological factors associated with proteinuria at biopsy in-
luded endothelial cell density ( r = –0.22, P = .010) and mean
odocyte area ( r = 0.21, P = .016) . The mean podocyte ar-
as were significantly larger in the MCD biopsies ( Test cohort)
ompared with those from transplanted patients ( Application 
ohort) ( P < .001) ( Supplementary data, Fig. S2) . 

Relative capillary area correlated with initial hospitalization 
uration ( r = –0.17, P = .040) and eGFR at discharge ( r = 0.24,
 = .004) . Although not significant, patients with delayed graft
unction ( n = 16) tended to have a smaller relative capillary area
 P = .09) . 

Predicted parameters were mainly correlated with donor 
haracteristics such as gender, age and BMI. The correlated
ata are described in Supplementary data, Table S5. While 
elative capillary area was negatively correlated ( r = –0.31,
 < .001) , mesangial cell density was positively correlated
 r = 0.21, P < .009) with matrix expansion score ( mm) . Pa-
ients with an mm score ≥1 had lower relative capillary ar-
as, and higher mesangial cells densities and relative areas
 Supplementary data, Fig. S3) . 

ollow-up 

uring a mean follow-up of 44 ± 29 months, 10 patients ( 6%)
ied ( 6 of unknown causes, 2 of vascular causes, 1 of can-
er, 1 of suicide) , 6 ( 4%) experienced acute rejections ( 3 T-cell-
ediated, 3 antibody-mediated) , 6 ( 4%) lost their transplants 

 2 chronic mixed rejections, 2 BK polyomavirus infections, 1
rogressive decline and 1 recurrence of membranoproliferative 
lomerulonephritis) and 25 ( 16%) reached the primary compos- 
te endpoint ( initiation of dialysis, or a 30% decline in eGFR) . 

Visual assessment revealed challenges in distinguishing 
iopsies with low versus high endothelial relative and mean ar-
as. However, in univariate analysis, having relative and mean
ndothelial areas below the medians were associated with the
ccurrence of the primary composite endpoint [hazard ratios
 HRs) of 2.24, 95% CI 1.03–5.12, P = .049, and 3.20, 95% CI 1.58–
.17, P = .003] ( Fig. 4 ) . The associations of parietal epithelial cell
ensity and mean podocyte area with the composite endpoint
id not reach significance. Hypertension, diabetes, BMI, donor-
pecific antibodies and BK polyomavirus replication at biopsy
lso tended to be associated with the prognosis ( Table 4 ) . In mul-
ivariate analysis, low relative endothelial area, mean endothe-
ial area and parietal epithelial cell density were associated with
he composite endpoint ( HRs, respectively, of 2.63, 95% CI 1.01–
.84, P = .048, and 2.60, 95% CI 1.05–6.44, P = .039, and 3.23,
5% CI 1.21–8.60, P = .019) . Recipient history of diabetes, and
K polyomavirus replication were also linked to the endpoint
 Table 4 ) . 

The mean time to rejection was 18 ± 16 months. Among
even patients with rejection, three ( two acute antibody- 
ediated and one chronic mix) achieved the primary compos-

te endpoint. Only one patient ( acute T-cell-mediated rejection) 
mong the seven had a relative endothelial area above the me-
ian. In univariate survival analyses of histological markers,
nly a relative endothelial area below the median was associ-
ted with an elevated rejection risk ( HR 8.62, 95% CI 1.51–30.76,
 = .014) ( Supplementary data, Fig. S4) . 

https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
https://academic.oup.com/ndtpls/article-lookup/doi/10.1093/ndtp/sfae019#supplementary-data
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Figure 3: Associations between CNNs’ predictions and eGFR at biopsy in the Application cohort. The significant correlations between eGFR and factors predicted by 
the convolutional neural networks were assessed by Spearman correlation test. 

Figure 4: Relation between mean and relative endothelial areas and kidney prognosis. Example of protocol transplant biopsies ( A –D) without significant interstitial 
fibrosis, inflammation or intimal fibrosis ( ×40 zoom) stained with Masson’s trichrome before ( A, C) and after ( B, D) CNN detection of endothelial cells. Endothelial cells 
were artificially colored by the network in purple. ( A, B) Biopsy of a patient with a high mean ( 19 μm2 ) and relative endothelial ( 5.2%) areas who did not reach the 
primary endpoint ( initiation of dialysis, or a 30% decline in GFR from biopsy) . ( C, D) Biopsy of a patient with a low mean ( 16 μm2 ) and relative endothelial ( 1.1%) areas 

who reach the primary endpoint. ( E , F) Kaplan–Meier curves of survival analysis and number at risk tables of the primary composite endpoint depending on whether 
mean and relative endothelial areas were above or under the medians. 
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ISCUSSION 

n this study, we fully automated the analysis of all cells and 
apillaries populating the non-pathological glomeruli and inves- 
igated their relationship with transplant function. These pre- 
ictions, particularly those related to endothelial cells, exhibited 
ssociations with eGFR, proteinuria and transplant prognosis. 

Our tool enabled an inexpensive and rapid analysis of in- 
rinsic glomerular parameters with a strong correlation be- 
ween predicted and observed structures. The highest accu- 
acy was achieved in detecting capillaries, while mesangial cells 
t
nd podocytes exhibited lower performance. Limitations in our 
raining included the restricted number of annotated glomeruli,
espite a considerable quantity of total objects. Another limi- 
ation was the lack of a comparison with immunohistochem- 
stry for each cell type to validate our annotations. Similar to 
ovind et al.’s approach in their podocyte nucleus recognition 
tudy, sequential labeling on the same section before or after 
richrome staining could have been employed [16 ]. Alternatively,
ach marker could have been established on individual sections.
dditionally, our collaborative analysis for annotation precluded 
he assessment of variability among pathologists. 
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Table 4: Survival analysis of the composite criteria dialysis initiation, or 30% eGFR sustained decline. 

N = 154 Univariate a Multivariate b 

Factors HR ( 95% CI) P- value HR ( 95% CI) P- value 

Recipient’s data at biopsy 
Age ( per year) 1.02 ( 0.99–1.05) .268 
Male sex 1.26 ( 0.61–3.14) .449 
Hypertension 3.31 ( 1.65–35.35) .10 
Diabetes mellitus 5.13 ( 3.05–42.00) < .001 2.92 ( 1.08–7.88) .035 
BMI ( per kg/m2 ) 1.12 ( 1.04–1.22) .004 
BK virus replication 6.01 ( 7.92–90.21) < .001 6.14 ( 2.32–16.28) < .001 
Donor-specific antibodies 3.67 ( 0.98–178.80) .056 
eGFR ( per mL/min/1.73m2 ) 0.99 ( 0.97–1.02) .818 
Proteinuria ( per g/day) 2.17 ( 0.73–6.46) .163 

Predicted histological data 
Relative parietal epithelial area c 1.73 ( 0.78–3.86) .183 
Mean parietal epithelial cell area c 0.82 ( 0.37–1.81) .619 
Parietal epithelial cell density c 2.23 ( 0.97–4.80) .064 3.23 ( 1.21–8.60) .019 
Mean podocyte area c 2.04 ( 1.06–5.83) .053 2.63 ( 0.91–7.61) .074 
Relative podocyte area c 0.69 ( 0.31–1.55) .377 
Podocyte density c 1.25 ( 0.56–2.80) .297 
Mean endothelial cell area c 3.20 ( 1.58–8.17) .003 2.60 ( 1.05–6.44) .039 
Relative endothelial area c 2.24 ( 1.03–5.12) .049 2.63 ( 1.01–6.84) .048 
Endothelial cell density c 1.72 ( 0.79–3.93) .179 
Mean mesangial cell area c 1.49 ( 0.67–3.33) .330 
Relative mesangial area c 1.04 ( 0.47–2.33) .925 
Mesangial cell density c 1.82 ( 0.84–4.24) .131 
Mean capillary area c 0.89 ( 0.40–1.96) .762 
Relative capillary area c 1.05 ( 0.47–2.35) .908 

Banff score d 

t score ≥1 2.15 ( 0.18–56.36) .435 
ptc score ≥1 0.35 ( 0.02–5.62) .457 
g score ≥1 1.61 ( 0.15–22.43) .635 
mm score ≥1 0.84 ( 0.33–2.17) .731 
cg score ≥1 4.34 ( 0.50–15.85) .111 
i score ≥1 1.74 ( 0.16–28.15) .579 
ah score ≥1 1.02 ( 0.46–2.27) .966 
IF/TA score ≥1 1.72 ( 0.79–4.02) .173 
cv score ≥1 1.27 ( 0.53–3.13) .581 

a Log-Rank survival test or Cox survival test 
b Cox Survival Model including hypertension, diabetes mellitus, BMI, BK polyomavirus replication, donor-specific antibodies positivity, parietal epithelial cell density, 
mean podocyte area, mean endothelial cell area and relative endothelial area. 
c Under versus above the median. 
d Banff score elements as previously published [7 ]. 
P -values of the factors statistically associated with the endpoint occurrence are in bold type. 
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We used the same CNN as in our previous works which
s suited for the segmentation of small-sized elements like 
lomerular cells [12 , 13 , 20 ]. Even if Masson’s trichrome al-
ows the recognition of glomerular elements, most of glomeru- 
ar studies are performed with periodic acid–Schiff [21 –23 ]. We
hose Masson’s trichrome as our previous algorithms target- 
ng glomeruli were only trained and evaluated with this stain.
he strong association observed between glomerular predic- 
ions and donor characteristics reinforces the credibility of the 
NN’s predictions. From our perspective, including native kid- 
eys biopsies in the training dataset did not introduce a sig-
ificant bias as discerning a MCD glomerulus from a trans-
lant glomerulus appeared nearly impossible. Additionally, the 
raining included transplant biopsies, and predictions on nor- 
al transplant biopsies in the Test cohort appeared as robust
s those on MCD. The inclusion of native kidney biopsies may
nable pathologists to utilize these algorithms for other indica- 

ions. s  
Decreased endothelial cell density, relative area and mean
rea were linked to kidney function, proteinuria and the occur-
ence of the composite endpoint. Glomerular endothelial cells,
ining capillary lumens with fenestrated endothelium, play a
ivotal role in various pathologies. They secrete nitric oxide, ex-
ibiting anti-inflammatory and vasodilatory properties. Damage 
an induce a pro-inflammatory and vasoconstrictive pheno- 
ype [24 ]. Chronic kidney disease is often linked to markers of
ndothelial dysfunction and apoptosis [25 , 26 ]. Kidney trans-
lant factors, such as ischemia–reperfusion injuries, rejection 
pisodes and calcineurin inhibitors, contribute to endothelial 
njury [27 , 28 ]. This dysfunction leads to microvascular rarefac-
ion and increased fibrosis, both associated with chronic graft
ysfunction [24 ]. A low relative endothelial area was associated
ith a higher risk of rejection. The occurrence of the primary
ndpoint may in part result from this heightened susceptibility.
ndothelial cells are a central target for the host immune
ystem and can activate T cells [29 ]. Sis et al . showed that
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ncreased expression of endothelial transcripts predicts 
ntibody-mediated allograft lesions and poor graft outcomes 
30 ]. The relative endothelial area might correlate with the T-cell 
ctivation profile of these cells, and its decrease could be an 
arly indicator of rejection. Our results should be interpreted 
ith caution as all type of rejections were collectively analyzed 
nd were infrequent, and only three out of seven patients 
ith rejection met the primary outcome. We also could not 
etermine whether endothelial depletion and reduced volume 
aused kidney function loss or were a consequence. Regarding 
roteinuria, studies have suggested that glomerular endothelial 
ell injuries contribute to albuminuria onset in animal models 
f diabetic nephropathy [31 ]. The loss of their glycocalyx would 
ead to increased permeability and albuminuria [32 ]. Mito- 
hondrial damage of these cells would also precede podocyte 
amage, and proteinuria [31 , 33 ]. 
Kidney function decline correlated with parietal epithelial 

ell density. Glomerular parietal epithelial cells, forming the 
arietal layer of the urinary chamber [34 , 35 ], help to maintain 
he filtration barrier by generating new podocytes [36 , 37 ]. Ac- 
ording to Chang et al., these cells can exhibit a high intracel- 
ular albumin concentration, limiting its entry into the urinary 
pace [38 ]. Smeets et al. found that their alterations are involved 
n focal segmental glomerulosclerosis occurrence, contributing 
o the formation of synechiae [39 ]. These findings might explain 
hy patients with higher parietal epithelial cell density experi- 
nced better kidney prognosis. 

eGFR at biopsy correlated with mesangial cell density in uni- 
ariate analysis. Mesangial cells support the glomerular tuft 
hrough the mesangial matrix, regulate the filtration barrier and 
elp with the clearance of microparticles [40 ]. Under pathologi- 
al stimuli, they can secrete growth factors and cytokines like 
ransforming growth factor- β, contributing to chronic kidney 
isease progression. In glomerular diseases, mesangial prolifer- 
tion is often associated with eGFR deterioration [41 ]. One could 
ypothesize that physiological depletion also signifies a limita- 
ion in their support quality. It should be noted that the effect 
f mesangial cell density was no longer significant in multivari- 
te analysis. This univariate association may indirectly reflect 
orrelations between endothelial and mesangial densities. 

As expected, proteinuria at the time of biopsy was pos- 
tively associated with mean podocyte area. Indeed, the in- 
rease in podocyte volume is one of the main lesions of dia- 
etic nephropathy and focal segmental glomerulosclerosis [42 ,
3 ]. Podocytes lesions are responsible for disorganization of their 
ytoskeleton, foot process effacement, loss of slit diaphragm 

unction and the onset of proteinuria [44 ]. In transplantation,
ransitioning from the state of having two kidneys to one graft 
esults in kidney hypertrophy and hyperfiltration [45 ]. This hy- 
erfiltration induces cytoskeletal reorganization with podocyte 
ypertrophy, dedifferentiation through Pax2 overexpression and 
educed transcription of glomerular basement membrane adhe- 
ion genes ( nephrin , integrin α3 and synaptopodin) , ultimately lead- 
ng to their detachment into the urinary chamber [45 –48 ]. These 
henomena promoting proteinuria and glomerulosclerosis may 
e exacerbated by donor–recipient size mismatches, immuno- 
uppressive agents and the occurrence of glomerular injuries 
uch as transplant glomerulopathy [47 –50 ]. Monitoring the mean 
odocyte area could help identify patients who might benefit 
rom early treatment with a renin–angiotensin system blocker.
owever, this podocyte hypertrophy associated with the alter- 
tion of the actin cytoskeleton appears to be less pronounced 
han that observed in MCD [51 ]. Indeed, in our study, podocytes 
rom MCD had larger mean areas compared with those in trans- 
lant biopsies. While not statistically significant, the transplant 
odocyte area tended to be negatively associated with the risk 
f eGFR deterioration. These patients with higher initial pro- 
einuria potentially received renin–angiotensin system blockers 
ore frequently for improved nephroprotection. In contrast to 
ur results, several studies have demonstrated that podocyte 
ensity and podocyte loss were correlated with eGFR and long- 
erm allograft failure [45 , 49 , 52 ]. Naik et al. showed that this ac-
elerated loss of podocytes preceded proteinuria and eGFR de- 
line [53 ]. This phenomenon was associated with donor size,
hus appearing to contrast with our findings where podocyte 
ensity showed a negative association with the donor’s BMI. In 
ur study, a lack of statistical power and the influence of other 
arkers, such as endothelial cells, may have diminished the im- 
act of podocyte density on transplant outcomes. 
The relative capillary area correlated with hospitalization du- 

ation and eGFR at hospital discharge. Doreille et al. had pre- 
iously reported an association between peri-tubular capillary 
ensity and delayed graft function [54 ]. The alignment between 
ur results and those of Doreille et al. may stem from the ter-
inal nature of kidney vascularization, with peritubular capil- 

aries representing a continuation of glomerular capillaries. Our 
valuation was conducted after the initial hospitalization, which 
imits its interpretation. 

The predicted data seemed to accurately mirror the archi- 
ecture of the donors’ kidneys, often aligning with the donors’ 
haracteristics at the time of donation. Obtaining these data 
rom protocol biopsies at 1 year or later might have increased 
he likelihood of correlating with recipient characteristics. Denic 
t al. found that glomerular volume and percentage of ischemic 
lomeruli correlated more strongly with donor data when biop- 
ies were conducted within the first year and with recipient data 
hen performed later [10 ]. 
Our study benefits from a relatively homogeneous popu- 

ation limiting bias linked to the effects of treatments varia- 
ions, rejections and infections. We provide novel insights into 
he impact of various cellular and capillary elements within 
lomerular architecture, which have not been comprehensively 
escribed before. The predicted parameters demonstrated a cor- 
elation with eGFR close to that of IF/TA. However, these associ- 
tions between histological features and clinical measurements 
ere rather small. Factors such as hydration status or the dosage 
f calcineurin inhibitors may independently affect kidney func- 
ion, limiting the impact of the glomerular architecture. It should 
e noted that in multivariate analysis, none of the Banff Classi- 
cation scores remained associated with eGFR, while endothe- 
ial density did. Given that our study primarily focuses on most 
ormal biopsies, we have opted to employ a composite end- 
oint that includes a decline in eGFR. Similar composite crite- 
ia are commonly used in transplantation and radical nephrec- 
omy studies that analyze kidney prognosis [55 –57 ]. Because of 
he stringent inclusion criteria, our cohort is relatively small, po- 
entially explaining the absence of multivariate effects observed 
or several glomerular parameters. The relatively low number of 
vents also limits the interpretation of the multivariate analy- 
is. Future work could explore the temporal evolution of these 
arameters through repeated biopsies, evaluate the impact of 
herapeutic interventions or assess them in a pathological con- 
ext with distorted glomeruli, such as antibody-mediated rejec- 
ions. We did not train our model on mesangial matrix since it
s assessed in the mesangial matrix score, and we have previ- 
usly trained a model for evaluating the tuft [12 ]. The 2019 Banff
lassification recommends the use of electron microscopy, es- 
ecially for assessing cg1a and peritubular capillary basement 
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embrane multilayering [17 ]. The fact that we do not routinely
erform electron microscopy in our centers deviates from inter- 
ational standards and constitutes a potential limitation that 
ould potentially impact the diagnosis of antibody-mediated re- 
ection. 

Our study effectively automated the specific recognition,
uantification and measurement of intraglomerular cells and 
apillaries of non-pathological glomeruli. Our findings suggest 
hat the assessment of endothelial and parietal epithelial cells 
ay hold promise as potential markers for predicting the risk of
raft loss in kidney transplants. 
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