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Accurate prognostic stratification of patients can provide guidance for personalized
therapy. Many prognostic models for acute myeloid leukemia (AML) have been
reported, but most have considerable inaccuracies due to contained variables with
insufficient capacity of predicting survival and lack of adequate verification. Here, 235
genes strongly related to survival in AML were systematically identified through univariate
Cox regression analysis of eight independent AML datasets. Pathway enrichment analysis
of these 235 genes revealed that the IL-2/STAT5 signaling pathway was the most highly
enriched. Through Cox proportional-hazards regression model and stepwise algorithm,
we constructed a six-gene STAT5-associated signature based on the most robustly
survival-related genes related to the IL-2/STAT5 signaling pathway. Good prognostic
performance was observed in the training cohort (GSE37642-GPL96), and the signature
was validated in seven other validation cohorts. As an independent prognostic factor, the
STAT5-associated signature was positively correlated with patient age and ELN2017 risk
levels. An integrated score based on these three prognostic factors had higher prognostic
accuracy than the ELN2017 risk category. Characterization of immune cell infiltration
indicated that impaired B-cell adaptive immunity, immunosuppressive effects, serious
infection, and weakened anti-inflammatory function tended to accompany high-risk
patients. Analysis of in-house clinical samples revealed that the STAT5-assocaited
signature risk scores of AML patients were significantly higher than those of healthy
people. Five chemotherapeutic drugs that were effective in these high-risk patients were
screened in silico. Among the five drugs, MS.275, a known HDAC inhibitor, selectively
suppressed the proliferation of cancer cells with high STAT5 phosphorylation levels in
vitro. Taken together, the data indicate that the STAT5-associated signature is a reliable
prognostic model that can be used to optimize prognostic stratification and guide
personalized AML treatments.

Keywords: acute myeloid leukemia, IL-2/STAT5 pathway, prognostic model, immune infiltration, drug screening,
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INTRODUCTION

Acute myeloid leukemia (AML) is the most common form of
acute leukemia in adults, characterized by abnormal growth and
differentiation of hematopoietic stem cells (HSCs) (1). The
clinical outcomes of AML patients remain unsatisfactory, with
5-year overall survival rates of less than 50%, dropping to less
than 20% for patients older than 60 years (2). The poor prognosis
of AML may be attributed to the heterogeneity of therapeutic
responses among patients (3) and conventional clinical therapies
that have changed little over the past three decades (4). As a
consequence, there is an urgent need to better stratify patients
facilitating the development of personalized treatments for
different patients with AML.

Signal transducer and activator of transcription 5 (STAT5),
with its two isoforms STAT5A and STAT5B (5), is a key
component of the janus tyrosine kinase (JAK)-signal
transducer and activator of transcription (STAT) pathway (6).
As a transcription factor, STAT5 can be phosphorylated upon
interleukin-2 (IL-2) binding to its cognate receptor, followed by
the activation of its downstream targets (7). Abnormal activation
of STAT5 via phosphorylation frequently occurs in blast cells of
patients with AML (8), where it is important for the proliferation
of leukemic cells (9). High STAT5 levels are relevant to drug
resistance and can desensitize BCR-ABL1+ leukemia cells to
tyrosine kinase inhibitors (10). Additionally, phosphorylated
STAT5 can suppress antitumor immunity (11) and is also
engaged in the pathogenesis of chronic osteomyelitis via
immune dysregulation (12).

Transcriptomic variables have higher predictive accuracy
than clinical or genetic variables in myelodysplastic syndrome
(13), and similar trends were recently observed in AML
(14). However, the current widely used risk-stratification
system (European Leukemia Net (ELN)2017 risk category)
recommended by the National Comprehensive Cancer
Network (NCCN) AML guideline (15) was constructed based
on genetic variables, without considering transcriptomic changes
(14). Recently, increasing numbers of prognostic models
for AML based on transcriptomic data were reported,
encompassing distinct biological processes such as immunity
(16–18), autophagy (19), etc. However, there was no
comprehensive analysis of strongly survival-related genes in
AML prior to this study, which hampered the development of
more accurate prognostic models based on transcriptomic data.
MATERIALS AND METHODS

Retrieval of AML Datasets
We systematically retrieved AML datasets in the Gene Expression
Omnibus (GEO) database (Supplementary Table 1). All datasets
with more than 100 samples and available survival information
were collected. The dataset with the most complete data and the
largest sample size was selected when datasets overlapped.
Eventually, five GEO datasets including GSE106291, GSE12417-
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GPL96, GSE37642-GPL96, GSE37642-GPL570, and GSE71014
were screened out for the present study (20–23). In addition, an
AML cohort from The Cancer Genome Atlas (TCGA) (24), an
AML cohort from Therapeutically Applicable Research to
Generate Effective Treatments (TARGET), and an AML cohort
from a clinical study at Oregon Health & Science University
(OHSU) (3) also met the inclusion criteria and were included in
this study.

Total RNA samples isolated from bone marrow mononuclear
cells were used for probing gene expression levels in cohorts
GSE37642-GPL96, GSE37642-GPL570, GSE71014, and TCGA.
Total RNA-isolated samples from bone marrow (BM)
mononuclear cells and peripheral blood (PB) mononuclear
cells were used for detecting gene expression levels in cohorts
GSE106291 (details unavailable), GSE12417-GPL96 (161 BM
and 2 PB), OHSU (251 BM and 160 PB), and TARGET
(details unavailable).

Detection of gene expression levels in different cohorts was
performed on different platforms: ~20,000 encoding genes
detected using Illumina HiSeq 1500 in GSE106291; ~12,000
encoding genes detected using Affymetrix Human Genome
U133A Array in GSE12417-GPL96; ~12,000 encoding genes
detected using Affymetrix Human Genome U133A Array in
GSE37642-GPL96; ~18,000 encoding genes detected using
Affymetrix Human Genome U133 Plus 2.0 Array in
GSE37642-GPL570; ~20,000 encoding genes detected using
HumanHT-12 V4.0 expression beadchip in GSE71014; ~20,000
encoding genes detected using Illumina HiSeq 2500 in OHSU;
~20,000 encoding genes detected using Illumina HiSeq 2000 in
TARGET; and ~20,000 encoding genes detected using Illumina
HiSeq 2000 in TCGA.

Processed gene expression data with respective normalization
method were downloaded for bioinformatical analysis in this
study. All gene expression variables were scaled to a mean value
of 0 and variance equal to 1 (Z-score) in GSE10621.
Normalization was performed using the variance stabilizing
normalization (VSN) algorithm, and probe set expression
values were calculated by the median polish method in
GSE12417-GPL96. Normalization was performed using the
Robust Multichip Average (RMA) method in GSE37642-
GPL96 and GSE37642-GPL570. Expression values were
processed with log2 transformation and quantile normalization
in GSE71014. Normalization was performed using the
conditional quantile normalization procedure in OHSU.
Fragments per kilobase of exon model per million mapped
fragments (FPKM) values of genes were log2(FPKM+1)
transformed in TARGET. RNA-Seq by Expectation-
Maximization (RSEM) normalized counts (norm_count) of
genes were log2(norm_count +1) transformed in TCGA.

Normalized transcriptome data and clinical information were
acquired from three different databases: GEO datasets from GEO
database (http://www.ncbi.nlm.nih.gov/geo/), TCGA and TARGET
datasets from the UCSC Xena database (http://xena.ucsc.edu/), as
well as the OHSU dataset from cBioPortal (https://www.cbioportal.
org/) (25, 26). Clinical variables of the eight cohorts were
summarized in each dataset (Supplementary Table 2).
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Clinical data of GSE71014 only contained survival information.
Samples without survival information or transcriptome data were
excluded in each dataset. After exclusion, sample size in each cohort
was as follows: GSE106291 (n = 250), GSE12417-GPL96 (n = 163),
GSE37642-GPL96 (n = 417), GSE37642-GPL570 (n = 136),
GSE71014 (n = 104), OHSU (n = 411), TARGET (n = 156), and
TCGA (n = 151).

Screening of Robustly
Survival-Related Genes
The univariate Cox regression analysis was performed
individually in eight independent AML datasets (GSE106291,
GSE12417-GPL96, GSE37642-GPL96, GSE37642-GPL570,
GSE71014, OHSU, TARGET, TCGA). Survival-related genes
(HR > 1, p < 0.05) in each dataset were screened out
(Figure 1A, purple bars). A gene which was identified as a
survival-related gene in at least four datasets was defined as a
robustly survival-related gene in this study. Eventually, a total of
235 robustly survival-related genes were identified (red bars in
upper panel, Figure 1A; Supplementary Table 3).
Frontiers in Oncology | www.frontiersin.org 3
Pathway Enrichment Analysis
A total of 235 identified robustly survival-related genes
(Supplementary Table 3) were subjected to pathway
enrichment analysis using the Molecular Signatures Database
(MSigDB) on Enrichr (https://maayanlab.cloud/Enrichr/).
Briefly, we entered the 235 gene symbols on each row in the
text-box on the Enrichr (https://maayanlab.cloud/Enrichr/) and
submitted these gene symbols. We then clicked “Pathways”
module in the navigation (at the top). Detailed results
including enriched pathways and p-values could be found after
clicking the icon “MSigDB Hallmark 2020”.

Expression Distribution of STAT5A and
STAT5B Among 16 Different Organs
Online website The Human Protein Atlas (https://www.
proteinatlas.org/) contains information on genome-wide RNA
expression profiles of human protein-coding genes in 69 human
cell lines. These 69 cell lines are derived from 16 different organs
including: brain, liver and gallbladder, gastrointestinal tract,
pancreas, male reproductive system, kidney and urinary
A

B C

FIGURE 1 | Identification of genes related to survival in AML patients and construction of a STAT5-associated signature. (A) Landscape of survival-related genes
(purple bars) determined by univariate Cox regression analysis in eight independent datasets (lower panel). The frequency of a gene determined as a survival-related
gene (purple bar) among the eight datasets was quantified (upper panel). Red bars with counts ≥4 represent the robustly survival-related genes in the upper panel.
(B) Pathway enrichment of 235 robustly survival-related genes identified in (A) using the MSigDB database. The top 10 enriched pathways are shown. Annotated
genes in each pathway are indicated. (C) Forest plot of BATF, IFITM3, IGF2R, PIM1, SLC29A2, and SOCS2. The STAT5-associated signature risk score formula
was at the bottom. Error bars represent hazard ratio (HR) with 95% confidence intervals (CI).
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bladder, skin, eye, proximal digestive tract, lung, female
reproductive system, endothelial, muscle, mesenchymal,
lymphoid, and myeloid. Downloaded gene expression levels of
STAT5A (https://www.proteinatlas.org/ENSG00000126561-
STAT5A/cell+line) and STAT5B (https://www.proteinatlas.org/
ENSG00000173757-STAT5B/cell+line) in the 69 cell lines were
used for investigating the expression distribution of STAT5A and
STAT5B among the 16 different organs.

Protein-Protein Interaction Network
The search tool for the retrieval of interacting genes (STRING)
database (http://string.embl.de/) (27) was used to visualize the
associations among robustly survival-related genes related to the
IL-2/STAT5 pathway. Briefly, we selected function module
“Multiple proteins” in the left navigation and enter protein
names including STAT5A, STAT5B, and 11 robustly survival-
related genes (IFITM3, SOCS2, CCND3, BMP2, IL2RA, SCN9A,
COL6A1, PIM1, IGF2R, SLC29A2, and BATF) in the search box.
We selected “Homo sapiens” in the pull-down list of “Organism”
and clicked the icon “SEARCH” under the search box. We
clicked the icon “CONTINUE” in the pop-up interface and
waited for a moment. The results could be found in the next
pop-up interface. We downloaded the scalable vector graphic
from the “Exports” module.

Construction and Validation of a STAT5-
Associated Signature
Eleven robustly survival-related genes related to the IL-2/STAT5
pathway (IFITM3, SOCS2, CCND3, BMP2, IL2RA, SCN9A,
COL6A1, PIM1, IGF2R, SLC29A2, and BATF; Figure 1B) were
used for constructing a STAT5-associated signature. In the
training cohort (GSE37642-GPL96), the Cox proportional-
hazards model (28) was employed to estimate the optimal
weighting coefficients of these 11 robustly survival-related genes
with the function coxph in the package “survival” (29) on the basis
of maximizing the partial likelihood techniques (30, 31). For
building the best performing regression model, 6 genes (BATF,
IFITM3, IGF2R, PIM1, SLC29A2, SOCS2; Figure 1C) out of the
11 robustly survival-related genes were selected for constructing
the final Cox regression model with the function step in R
language based on the stepwise algorithm (32). The STAT5-
associated signature risk score was calculated according to the
sum of the coefficients multiplied by the gene expression level of
each selected gene. Patients were separated into low- and high-risk
groups according to the median STAT5-associated signature risk
score in each cohort. The prognostic performance of this model
was assessed using Kaplan-Meier analysis. The specificity of this
model was evaluated using curves with area under the receiver
operating characteristic (ROC) curve (AUC) values. The
prognostic independence of this model was confirmed by
univariate and multivariate Cox analysis.

Improvement of the European Leukemia
Net 2017 Risk Stratification System
An integrated risk model was constructed based on STAT5-
associated signature, age of patients, and ELN2017 risk category
Frontiers in Oncology | www.frontiersin.org 4
using the Cox proportional-hazards model (28). This risk model
was visualized by the nomogram produced by the R package
“rms” (33). The predictive accuracy of this integrated risk model
was assessed using calibration curves produced by the R package
“rms” (33).

Estimation of Immune Infiltration
Transcriptome data were used to estimate the composition of
tumor-infiltrating immune cells based on the deconvolution
algorithm of the Cell type Identification by Estimating Relative
Subsets of RNA Transcripts (CIBERSORT) (34). The relative
fractions of the 22 immune cell types in each sample were then
determined using the function CIBERSORT in R language (34).
An empirical p-value for the deconvolution was produced for
each sample through Monte Carlo sampling (34). Only outputs
with p < 0.05 were used for further analysis.

The correlations between STAT5-associated signature risk
scores and fractions of tumor-infiltrating immune cells were
further investigated using Spearman correlation analysis.
Proportions of immune cells and stromal cells were estimated
based on the immune score and stromal score, respectively.
These two tumor microenvironment scores were calculated
using the R package “estimate” (35).

In-House Human Samples
Total RNA of peripheral blood mononuclear cells (from 6
healthy donors and 28 AML patients) and peripheral blood
mononuclear cells (from 6 healthy donors and 6 AML
patients) were collected at the Department of Hematology, the
First Affiliated Hospital of Jinan University. These RNA samples
were collected from June, 2020 to November, 2020 and were
stored at −80°C. Peripheral blood mononuclear cells were
collected from June, 2020 to November, 2020 and were stored
at liquid nitrogen. Written informed consent was obtained from
all patients. The Ethics Committee of the First Affiliated Hospital
of Jinan University approved the study (No. KY-2020-022
in 2020).

Real-Time Quantitative PCR Assay
The real-time quantitative PCR (RT-qPCR) assay was performed
exactly as reported previously (36). Briefly, total RNA was
isolated using a Total RNA Purification Kit (B518651, Sangon
Biotech, Shanghai, China) following the manufacturer’s protocol.
Total RNA at 1 mg was then reverse transcribed using the
HiScript® II QRT SuperMix for qPCR (+ gDNA wiper) (R223-
01, Vazyme Biotech, Nanjing, China) following the
manufacturer’s protocol. PCR was performed in triplicate
using ChamQ™ SYBR® qPCR Master Mix (Low ROX
Premixed) (Q331-02/03, Vazyme Biotech) and a ViiA™ 7
Real-Time PCR System (Applied Biosystems, Waltham, MA,
USA) under the following conditions: 10 min at 95°C, followed
by 40 cycles of 95°C for 15 s and 60°C for 45 s. b-Actin was used
as the housekeeping control. Primers used in this assay are as
follows: BATF-forward: TATTGCCGCCCAGAAGAGC, BATF-
reverse: GCTTGATCTCCTTGCGTAGAG; IFITM3-forward:
AGGGACAGGAAGATGGTTGG, IFITM3-reverse: TGGG
ATGACGATGAGCAGAA; IGF2R-forward: CTGCCGCT
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ATGAAATTGAGTGG, IGF2R-reverse: CGCCGCTCAGAG
AACAAGTT; PIM1-forward: GAGAAGGACCGGATT
TCCGAC, PIM1-reverse: CAGTCCAGGAGCCTAATGACG;
SLC29A2-forward: TCAGTGCAGTCCTACAGGG, SLC29A2-
reverse: GGCGTGATAAAGTACCCCAGG; SOCS2-forward:
CAGATGTGCAAGGATAAGCGG, SOCS2-reverse: GCGGTT
TGGTCAGATAAAGGTG; b-actin-forward: ACTTAGTTGCG
TTACACCCTTTCT; b-actin-reverse: GACTGCTGTCAC
CTTCACCGT. Relative gene expression was normalized to b-
actin and calculated by the formula: relative target gene
expression = 2−DCT (DCT = CTtarget gene − CTb-actin). RT-qPCR
cycles were uploaded as a supplementary material (Supplementary
Table 4).

In Silico Screening of
Chemotherapy Drugs for the
Treatment of High-Risk Patients
Clinical drug responses could be predicted using baseline gene
expression levels (37). In brief, a ridge regression model was
fitted for baseline gene expression levels in the 700 cell lines
against the in vitro 138 drug half-maximal inhibitory
concentration (IC50) estimates, and this model was then
applied to the baseline tumor expression data from the clinical
trial, to yield drug sensitivity estimates (37). In the present study,
the ridge regression model was used to estimate the IC50 of 138
chemotherapeutic agents for each AML patient based on
transcriptomic data, followed by 10-fold cross-validation
implemented using the R package “pRRophetic” (38). A
chemotherapy drug with significantly lower IC50 in the high-
risk group was determined as a targeted drug for high-risk
patients in each cohort. The frequency with which a drug was
identified as a targeted drug for high-risk patients in eight
cohorts was quantified. Five drugs with the highest frequencies,
including bexarotene, bortezomib, erlotinib, rapamycin, and
MS.275 were screened as in silico hits.

Immunoblotting Assay
A specific antibody against pSTAT5 (1:1,000 dilution; #9395,
Cell Signaling Technology, Danvers, MA, USA) was used to
determine the levels of phosphorylated STAT5 in cancer
cell lines and peripheral blood mononuclear cells. The
immunoblotting assay was performed exactly as reported
previously (36). The protein bands were quantified
densitometrically using ImageJ software. The full uncropped
immunoblotting images were uploaded as a supplementary
material (Supplementary Figure 7).

Cell Viability Assay
Cell viability was assessed using the Cell Counting Kit-8 (CCK8;
C0005, Targetmol) following the manufacturer’s instructions.
Briefly, cells were seeded in triplicate into 96-well plates at a
density of 1,500–3,000 cells/well in 100 ml of medium. After
treatment with the indicated chemotherapy drugs for 3 days, dye
solution was added and the plates were incubated at 37°C for
3–4 h before the absorbance at 450 nm (A450) was measured. Cell
viability was calculated by the formula: cell viability (%) = [(As-
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Ab)/(Ac-Ab)] × 100 where As is the absorbance of the
experimental well (absorbance of cells, medium, CCK8, and
wells of the test compound), Ab is the blank well absorbance
(absorbance of wells containing medium and CCK8), and Ac is
the control well absorbance (absorbance of wells containing cells,
medium and CCK8).

Statistical Analysis
Statistical analyses were performed using R software (version
4.0.5; R foundation for statistical computing, Vienna, Austria)
and SPSS version 23.0 (IBM Corp., Armonk, NY, USA). Uni-
and multivariate Cox regression analyses were conducted using
the “survival” R package (29). Selected 6 genes constituting the
STAT5-associated signature were separated into low- and high-
expression groups based on the optimal cutoff determined using
the “survminer” package (39) with the minprop variable (the
minimal proportion of the observations/group) set to 20% (40).
Kaplan-Meier analysis was carried out using the packages
“survminer” (39) and “survival” (29), and the significance of
survival differences was determined using the log-rank test.
Time-dependent and time-independent receiver operating
characteristic (ROC) curves were generated using the packages
“timeROC” (41) and “survivalROC” (42), respectively.
Nomograms and calibration curves were generated using the
“rms” package (33). The statistical significance of differences
between mean values of two groups was assessed using unpaired
two-tailed Student’s t-test. Chi-squared analysis was used to
evaluate the relationship between risk categories and
clinicopathological parameters. The r- and p-values were
determined by Spearman correlation analyses. The
“pRRophetic” R package (38) was used to predict the responses
to chemotherapy. The IC50 values of different chemotherapeutics
in six cancer cell lines were estimated using the online tool IC50

calculator (https://www.aatbio.com/tools/ic50-calculator/).
Differences with p < 0.05 were considered statistically significant.
RESULTS

Dataset Selection and Clinical Variables of
Selective Eight Datasets
Eight publicly available datasets with more than 100 samples and
available survival information were selected (Supplementary
Table 1). GSE37642-GPL96 (n = 417) with the largest sample
size was used as a training cohort, and seven datasets including
GSE106291 (n = 250), GSE12417-GPL96 (n = 163), GSE37642-
GPL570 (n = 136), GSE71014 (n = 104), OHSU (n = 411),
TARGET (n = 156), and TCGA (n = 151) were set aside as
validation cohorts. Clinical variables of the eight cohorts were
summarized in each dataset (Supplementary Table 2). Some
clinically relevant features of the eight cohorts were observed. All
of the patients in OHSU, for example, were under age 60 while
about half of the patients in the seven other cohorts were under
age 60. The ratio of men to women was close to 1:1 in the eight
cohorts. Each cohort consisted mainly of M1, M2, M4, and
M5 patients.
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Identification of Robustly Survival-Related
Genes in AML
Univariate Cox regression analysis was performed individually in
eight independent AML cohorts (GSE106291, GSE12417-
GPL96, GSE37642-GPL96, GSE37642-GPL570, GSE71014,
OHSU, TARGET, and TCGA; Figure 1A) and survival-related
genes (HR > 1, p < 0.05) in each cohort were identified
(Figure 1A; lower panel, purple bars). A gene which was
determined to be survival related in at least four cohorts was
defined as a robustly survival-related gene in the present study
(Figure 1A; upper panel, red bars). A total of 235 identified
robustly survival-related genes (Figure 1A; upper panel, red bars;
Supplementary Table 3) were then subjected to pathway
enrichment analysis using the Molecular Signatures Database
(MSigDB), and the IL-2/STAT5 pathway was the most highly
enriched item with 11 annotated genes including IFITM3,
SOCS2, CCND3, BMP2, IL2RA, SCN9A, COL6A1, PIM1,
IGF2R, SLC29A2, and BATF (Figure 1B). In addition, the
gene expression levels of STAT5A and STAT5B were found to
be organ specific and were significantly higher in cancer cells
derived from lymphoid and myeloid organs (Supplementary
Figure 1A). However, there was no difference in the expression
levels of the two STAT5 genes between cancer cells derived from
lymphoid and myeloid (Supplementary Figure 1A). The
abnormal STAT5 expression pattern suggested that genes
involved in STAT5-associated pathways might be alternative
prognostic biomarkers for hematological malignancies.

Construction of a
STAT5-Associated Signature
Eleven identified robustly survival-related genes annotated in the
IL-2/STAT5 pathway (Supplementary Figure S1B, text in
white) were subjected to construct a STAT5-associated
signature using Cox proportional-hazards regression model
and stepwise algorithm in the training cohort (GSE37642-
GPL96) (Details seen in the method section; Figure 1C). The
STAT5-associated signature was described using the formula risk
score = ExpBATF ∗ 0.245 + ExpIFITM3 ∗ 0.133 + ExpIGF2R ∗ 0.174 +
ExpPIM1 ∗ 0.217 + ExpSLC29A2 ∗ 0.689 + ExpSOCS2 ∗ 0.181
(Figure 1C). The STAT5-associated signature risk score of each
Frontiers in Oncology | www.frontiersin.org 6
AML patient was then calculated and used to stratify patients into
low- and high-risk groups according to the median risk score in
each cohort.

The prognostic performance of the selected 6 genes that
constitute this model was assessed using Kaplan-Meier analysis
after classification into low- and high-expression groups in the
training cohort (GSE37642-GPL96) (Supplementary Figures
1C–H). AML patients with high expression of any one of
the six genes had significantly shorter overall survival
(Supplementary Figures 1C–H). Among the six genes,
SLC29A2 with the biggest weighting coefficient in the STAT5-
associated signature might be the most significant prognostic
marker to stratify AML patients (Figure 1C).

Performance of the STAT5-Associated
Signature
The prognostic performance of the signature was next assessed in
the training cohort (GSE37642-GPL96), as well as the seven
validation cohorts GSE106291, GSE12417-GPL96, GSE37642-
GPL570, GSE71014, OHSU, TARGET, and TCGA. The
relationship between STAT5-associated signature risk scores
and survival status of patients in the cohorts is shown in
Supplementary Figures 2A–H. Kaplan-Meier analysis indicated
that patients in the high-risk group had significantly shorter overall
survival in the training cohort (GSE37642-GPL96, p = 7.783e−10,
Table 1; Supplementary Figure 3A). In line with the performance
in the training cohort (GSE37642-GPL96), we found that the
STAT5-associated signature also worked well in external
validation cohorts, where patients in the high-risk group had
shorter overall survival (GSE106291, p = 3.654e−04, Table 1 and
Supplementary Figure 3B; GSE12417-GPL96, p = 1.282e−02,
Table 1 and Supplementary Figure 3C; GSE37642-GPL570, p =
7.086e−04,Table 1 and Supplementary Figure 3D; GSE71014, p =
2.618e−03, Table 1 and Supplementary Figure 3E; OHSU,
p = 1.478e−05, Table 1 and Supplementary Figure 3F;
TARGET, p = 8.45e−04, Table 1 and Supplementary Figure 3G
and TCGA, p = 8.631e−05, Table 1 and Supplementary Figure
3H). The time-independent AUC value of this model reached
0.705 in the training cohort (GSE37642-GPL96), with time-
dependent AUC values for 1-, 3- and 5-year survival of 0.705,
TABLE 1 | Estimation of STAT5-associated signature risk scores: Kaplan-Meier analysis and AUG of time-independent and time-dependent ROC curves in the 8
cohorts.

Prognostic Performance (Kaplan-Meier analysis) Predictive Accuracy (AUG of ROC curves)

Higher Risk Score Indicated
Poorer Prognosis?

p Overall 1 Year 3 Years 5 Years

GSE37642-GPL96 Yes 0.0000 0.705 0.705 0.731 0.703
GSE10691 Yes 0.0004 0.675 0.677 0.627 0.691
GSE12417-GPL96 Yes 0.0128 0.723 0.726 0.668 NA
GSE37642- Yes 0.0007 0.674 0.675 0.633 0.677
GPL570
GSE71014 Yes 0.0026 0.720 0.734 0.746 0.729
OHSU Yes 0.0000 0.667 0.662 0.616 0.538
TARGET Yes 0.0008 0.608 0.608 0.662 0.651
TCGA Yes 0.0001 0.708 0.698 0.678 0.660
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0.731, and 0.703, respectively (Table 1; Supplementary Figure 4A).
Moreover, the STAT5-associated signature also showed high
predictive accuracy in most of the validation cohorts (GSE106291,
Table 1 and Supplementary Figure 4B; GSE12417-GPL96, Table 1
and Supplementary Figure 4C; GSE37642-GPL570, Table 1
and Supplementary Figure 4D; GSE71014, Table 1 and
Supplementary Figure 4E; OHSU, Table 1 and Supplementary
Figure 4F; TARGET, Table 1 and Supplementary Figure 4G; and
TCGA, Table 1 and Supplementary Figure 4H).

Evaluating Prognostic Independence of
the STAT5-Associated Signature
The prognostic independence of the STAT5-associated signature
was assessed through uni- and multivariate Cox regression
analyses in the training cohort (GSE37642-GPL96) and all of
the validation cohorts except for GSE71014, which lacked
clinicopathological variables (Supplementary Table S5). In
univariate Cox analysis, age, cytogenetic risk category,
ELN2017 risk category, and STAT5-associated signature risk
score were significantly correlated with overall survival of AML
patients (Figure 2A). In multivariate Cox analysis, the STAT5-
associated signature was proved to be an independent predictor
of survival in the TCGA cohort, with HR of 1.49 (1.09–2.05, p =
0.0136, Figure 2A). The predictive independence was also
confirmed in other validation cohorts and corresponding
values were 1.67 (1.39–2.00; p < 0.001) in GSE37642-GPL96,
1.05 (1.02–1.09; p = 0.003) in GSE106291, 1.21 (1.13–1.31; p <
0.001) in GSE12417-GPL96, 2.66 (1.66–4.25; p < 0.001) in
GSE37642-GPL570, and 1.01 (1.00–1.03; p = 0.035) in OHSU
(Supplementary Table S5). In low- and high-risk groups,
subgroup survival analyses by ages, percentage bone marrow
blasts, FLT3 status, gender, NPM1 status, and platelet counts
were performed in the TCGA cohort (Figures 2B–G). The
STAT5-associated signature was also a promising prognostic
predictor of overall survival in subgroups of patients in the
TCGA cohort (Figures 2B–G). These results indicated that the
STAT5-associated signature was an independent prognostic
biomarker for AML.

Construction of an Integrated Risk Score
In multivariate analyses, the STAT5-associated signature risk
score and age of patients were independent predictors of survival,
respectively (Figure 2A and Supplementary Table S5). To
improve the predictive accuracy of the ELN2017 risk
categories, the STAT5-associated signature risk score, age of
patients, and ELN2017 risk category were integrated into an
integrated score to predict the 1-, 3-, and 5-year survival
probabilities in the training cohort (GSE37642-GPL96), which
was visualized by a nomogram (Supplementary Figure 5A). The
calibration curves were used to assess the predictive accuracy of
the integrated score and revealed that the predicted survival 1-,
3-, and 5-year probabilities by integrated score were in good
accordance with the corresponding actual survival probabilities
(The higher the overlap between the red lines and black dashed
lines, the more accurate the integrated score; Supplementary
Figure 5B). The integrated scores with higher AUC values had
Frontiers in Oncology | www.frontiersin.org 7
higher predictive accuracy than the ELN2017 risk category alone
(Supplementary Figures 5C, D). Furthermore, the advantage of
the integrated score was confirmed in two additional validation
cohorts (Supplementary Figures 5E, F).

Distribution of STAT5-Associated
Signature Risk Scores in
Different Subgroups
The distribution of STAT5-associated signature risk scores in
diverse clinical and genetic risk subgroups was also investigated.
Patients with an age of >60 years had significantly higher STAT5-
associated signature risk scores compared with those with an age
of ≤60 years in the training cohort (GSE37642-GPL96, p = 0.039;
Figure 3A). Similar associations were also observed in GSE106291
(p = 0.012), OHSU (p = 0.010), and TCGA (p = 0.013)
(Figure 3A). The STAT5-associated signature risk scores
correlated well with the ELN2017 risk categories and increased
along with the unfavorable ELN2017 risk levels in the training
cohort (GSE37642-GPL96, r = 0.481, p < 0.0001, Spearman
correlation, Figure 3B). This correlation was confirmed in two
other validation cohorts (OHSU, r = 0.446, p < 0.0001, Spearman
correlation; TCGA, r = 0.334, p < 0.0001, Spearman correlation;
Figure 3B). However, no correlation between STAT5-associated
signature risk scores and percentage of bone marrow blasts was
observed in the TARGET and TCGA cohorts, except for the
OHSU cohort (Figure 3C).

Characterization of Immune Cell
Infiltration in Distinct
STAT5-Associated Risk Groups
The characterization of immune-cell infiltration in distinct
STAT5-associated risk groups was explored. The fractions of
tumor-infiltrating immune cells were determined using
CIBERSORT (34). The correlations between the fractions of
tumor-infiltrating immune cells and STAT5-associated
signature risk scores were assessed by Spearman correlation
analysis in the training cohort (GSE37642-GPL96) and seven
other cohorts (Figure 4A). The STAT5-associated signature risk
scores were positively correlated with fractions of naïve B cells,
naïve CD4+ T cells, activated CD4+ memory T cells, regulatory T
cells (Tregs), activated NK cells, M0 macrophages, and
neutrophils (Figure 4A). On the contrary, the STAT5-
associated signature risk scores were negatively correlated with
fractions of memory B cells, plasma cells, M2 marcophages,
resting dendritic cells, resting mast cells (Figure 4A). In terms of
the tumor microenvironment, patients in high-risk groups had
significantly higher fractions of stromal cells and immune cells in
some cohorts (Figures 4B, C).

Validation of the STAT5-Associated
Signature by Analysis of In-House
Clinical Samples
To validate the STAT5-associated signature, we detected the
gene expression of the selected 6 genes for constructing the
signature in peripheral blood mononuclear cells derived from 6
healthy donors and 28 AML patients using RT-qPCR
February 2022 | Volume 12 | Article 785899
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A

B C D

E F G

FIGURE 2 | Prognostic independence of the STAT5-associated signature. (A) Univariate and multivariate Cox regression analyses of the STAT5-associated
signature and clinicopathological variables. Error bars represent hazard ratio (HR) with 95% confidence intervals (CI). (B–G) Kaplan-Meier survival analysis of
subgroups stratified by age <60 and ≥60 (B), bone marrow blasts ≤70% and >70% (C), FLT3 wild-type and mutant subgroups (D), female and male subgroups
(E), NPM1 wild-type and mutant subgroups (F), platelets ≤40 and >40 × 109/L (G), respectively.
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(Figure 5A). Gene expression levels of BATF, IFITM3, IGF2R,
and SLCA29A2 were significantly higher in primary cells from
AML patients than from healthy donors (Figure 5A). No
difference in gene expression levels of PIM1 and SOCS2 was
observed between primary cells from healthy donors and AML
patients (Figure 5A). The STAT5-associated signature risk
scores of all people were calculated based on the gene
expression levels of the 6 genes in Figure 5A. AML patients
had significantly higher STAT5-associated signature risk scores
than healthy donors (Figure 5B). Phosphorylation of STAT5 is a
prerequisite for activation of STAT5-associated pathways (43).
As expected, phosphorylated STAT5 (pSTAT5) levels were
higher in peripheral blood mononuclear cells from AML
patients than healthy donors (Figure 5C).

In Silico Screening of Chemotherapy Drugs
for Treatment of High-Risk AML Patients
Half-maximal inhibitory concentrations (IC50) of 138
chemotherapeutic agents were estimated for each patient based
on the transcriptomic data using the “pRRophetic” R package
Frontiers in Oncology | www.frontiersin.org 9
(38) (details seen in the Method section). A drug with
significantly lower IC50 in the high-risk group was determined
as a targeted drug for high-risk patients in each cohort. The
frequency with which a drug was determined as a targeted drug
for high-risk patients among eight cohorts were quantified
(Figure 6A), and five drugs with the highest frequencies were
selected as screening hits, including bexarotene, bortezomib,
er lot inib, rapamycin, and MS.275 (Figure 6A and
Supplementary Figure 6A).

Further exploration of the underlying mechanism through
which these five drugs targeted high-risk patients was also
conducted. Phosphorylation of STAT5 is a prerequisite for
activation of STAT5-associated pathways (43). Accordingly, the
sensitivity of cell lines with different protein levels of
phosphorylated STAT5 (Figure 6B) to these five drugs was
determined in a cell proliferation assay (Figures 6C–G). The cell
proliferation assay showed that the IC50 values of MS.275 were
negatively correlated with the protein levels of phosphorylated
STAT5 in six cancer cell lines (r = −0.812, p = 0.0499; Figure 6E).
However, no correlation was observed for four other drugs
A

B

C

FIGURE 3 | Distribution of STAT5-associated signature risk scores for different subgroups in the indicated cohorts. (A) Age, (B) ELN2017 risk category, and (C)
bone marrow blasts. Among the total 8 cohorts, some cohorts were excluded due to inaccessibility of corresponding variables.
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(Figures 6C, D, F, G). Overall, MS.275 might be a promising
chemotherapy drug for the treatment of high-risk patients by
targeting STAT5-associated pathways.
DISCUSSION

In the present study, 235 robustly survival-related genes for AML
were systematically identified through univariate Cox regression
analysis of eight independent AML datasets. Pathway
enrichment analysis with these 235 genes determined IL-2/
STAT5 signaling pathway was the most highly enriched. In
addition, it was reported that other enriched pathways
including mechanistic target of rapamycin complex 1
(mTORC1) signaling pathway, androgen response, cholesterol
homeostasis, estrogen response, and interferon gamma response
were related to AML (44–48). Prognostic models based on these
Frontiers in Oncology | www.frontiersin.org 10
gene pathways might be alternative candidates for predicting
prognosis of AML patients.

The STAT5-associated prognostic signature for AML was
constructed based on the genes BATF, IFITM3, IGF2R, PIM1,
SLC29A2, and SOCS2. BATF, basic leucine zipper transcription
factor ATF-like, is an important positive transcriptional
regulator of the immune system that is particularly important
in classical dendritic cell development, T follicular helper cell
function and antibody production (49). IFITM3, interferon-
induced transmembrane protein, plays a key role in cancer cell
growth and maintenance, and is a marker of poor prognosis with
high expression in many cancers, including AML (50). IGF2R,
insulin-like growth factor 2 receptor, is currently considered a
tumor suppressor gene, but it is upregulated and correlated with
poor prognosis in cervical cancer (51) and glioblastomas (52).
PIM1, proviral insertion site in murine leukemia virus (PIM)
kinase 1, belongs to the PIM kinase family and has been
implicated in the control of cancer cell proliferation, migration,
A B

C

FIGURE 4 | The characterization of immune cell infiltration based on the STAT5-associated signature. (A) Heatmap showing the relationship between fractions of
tumor-infiltrating immune cells and STAT5-associated signature risk scores in each cohort. Twelve immune cell types that have strong correlations with STAT5-
associated signature risk scores were highlighted in bold font. (B, C) Floating bars showing the differential composition of stromal cells (B) and immune cells (C) in
the low- and high-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, N.S., not significant.
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and apoptosis, particularly in prostate cancer and leukemia (53).
SLC29A2, solute carrier family 29 member 2, is aberrantly
upregulated and is a survival predictor in both hepatocellular
carcinoma (54) and mantle cell lymphoma (55). SOCS2,
suppressor of cytokine signaling-2, is highly upregulated and
has tumor-promoting functions in the advanced stage of chronic
myeloid leukemia (56) and in high-grade anal intraepithelial
lesions (57). Furthermore, upregulation of SOCS2 is recognized
as a potential prognostic marker for prostate cancer (58).

The good performance of the STAT5-associated signature
was reproduced in most of the validation cohorts. Moreover, this
signature was proven to be an independent prognostic factor
upon multivariate Cox regression analysis and stratified survival
analyses of several clinical characteristics. These results suggest
that the STAT5-associated prognostic model may help predict
the survival of AML patients.

It was reported that transcriptomic variables have higher
predictive accuracy than genetic variables (13). However, the
widely used clinical risk stratification system for AML, ELN2017,
was constructed based on genetic and not transcriptomic
variables (15). To complement this risk-assessment tool, an
integrated score encompassing ELN2017 risk stratification,
STAT5-associated signature risk scores and age of patients was
constructed in the training cohort (GSE37642-GPL96). The
STAT5-associated signature could improve the prognostic
accuracy of ELN2017 risk categories in the training cohort
(GSE37642-GPL96) as well as in two other independent cohorts.
Frontiers in Oncology | www.frontiersin.org 11
Persistently phosphorylated STAT5 was found to suppress
antitumor immunity (11). This suggests that immunological
features also need to be investigated in myeloid neoplasms,
since they will likely improve our knowledge of the underlying
pathogenesis and inform novel therapies (18). Here, we
characterized immune cell infiltration based on STAT5-
associated risk stratification. The STAT5-associated signature
risk scores were positively correlated with fractions of naïve B
cells, and negatively correlated with fractions of memory B cells
and plasma cells, which suggested impaired B-cell adaptive
immunity in patients with high STAT5-associated signature
risk scores (59, 60). Fractions of regulatory T cells (Tregs) and
naïve CD4+ T cells were found to be positively correlated with
STAT5-associated signature risk scores, which implied
immunosuppressive effects in the patients with high STAT5-
associated signature risk scores (61, 62). Along with increasing
STAT5-associated signature risk scores, we observed increasing
neutrophils, increasing activated CD4+ memory T cells,
decreasing resting mast cells, and decreasing resting dendritic
cells, which indicated severe infection in the patients with high
STAT5-associated signature risk scores (63–66). At the same
time, the anti-inflammatory function of high-risk patients might
be weakened due to negative association of STAT5-associated
signature risk scores with fractions of M2 macrophages and
positive association of STAT5-associated signature risk scores
with M0 macrophages (67). Unexpectedly, fractions of activated
NK cells were positively correlated with STAT5-associated
A

B C

FIGURE 5 | Validation of the STAT5-associated signature by analysis of in-house clinical samples. (A) Scatter dot plots showing gene expression levels of the
indicated 6 genes used for constructing the STAT5-associated signature in peripheral blood mononuclear cells from 6 healthy donors and 28 AML patients.
(B) Scatter dot plots showing the STAT5-associated signature risk scores of 6 healthy donors and 28 AML patients. (C) Protein levels of phosphorylated STAT5
(pSTAT5) in peripheral blood mononuclear cells from 6 healthy donors and 6 AML patients (left panel). Scatter dot plots showing the statistical analysis of quantified
pSTAT5 levels in the left panel (right panel). Error bars in (A–C) represent means with standard deviation (SD). p-values in (A–C) were determined using two-tailed
Student’s t-test.
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signature risk scores. However, similar results were observed in
another independent study (40), which might indicate tumor
escape via defective expression of NK cell-triggering receptors by
leukemic cells (68).

Chemotherapy remains the main treatment strategy for AML
(69), and screening more effective chemotherapy drugs for high-
risk patients might be a quick and economical strategy for
Frontiers in Oncology | www.frontiersin.org 12
improving survival. To potentially improve the prognosis of
high-risk patients, five chemotherapy drugs that were likely to
be effective in high-risk patients were selected through in silico
screening. The underlying mechanisms through which these five
drugs target the high-risk patients were then investigated using
cell viability assays. Among the five drugs, MS.275 selectively
suppressed the cell lines with highly phosphorylated STAT5.
A

B C

D E

F G

FIGURE 6 | In silico screening of chemotherapy drugs for treatment of high-risk AML patients. (A) Half-maximal inhibitory concentration (IC50) of 138
chemotherapeutic agents for each patient was estimated based on the transcriptomic data. A drug with significantly lower IC50 in the high-risk group
was determined as a targeted drug for high-risk patients in each cohort. The frequency with which a drug was determined as a targeted drug for high-
risk patients among eight cohorts was quantified. Five drugs with the highest frequencies were screened out (red dots). (B) Baselines of phosphorylated
STAT5 (pSTAT5) protein levels in six cancer cell lines. (C–G) Six cancer cell lines with different protein levels of phosphorylated STAT5 were treated with
the indicated drugs for three days, followed by determination of cell viability. The correlations between IC50 values and protein levels of phosphorylated
STAT5 were determined by Spearman correlation analysis.
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This result suggested that MS.275 might be a promising drug for
the treatment of high-risk AML patients by targeting STAT5-
associated pathways. MS.275 (Entinostat) is an oral class I
histone deacetylase (HDAC) inhibitor that blocks cell
proliferation and promotes apoptosis in breast cancer (70).
The antitumor activity of MS.275 in AML was also reported,
including the induction of robust differentiation of AML cell
lines (71), inducing apoptosis in AML cell lines (72), and
inhibited disease maintenance in a mouse model of AML (73).
Clinical trials of MS.275 for the treatment of hematological
cancers including AML were also performed by different
groups (NCT00015925, NCT01159301, NCT01132573,
NCT00313586, NCT01305499, NCT00462605, NCT00101179,
NCT01383447). These concerted efforts will enrich the therapy
regimen for AML in the clinic, and hopefully improve the
prognosis of high-risk patients.

However, there are also some limitations to the current study.
In the subgroup analysis used to validate the prognostic
independence of this model, the difference was not statistically
significant due to an insufficient number of patients in some
subgroups, such as the mutant NPM1 subgroup. The underlying
mechanisms through which the five chemotherapy drugs other
than MS.275 target AML in high-risk patients are still unknown.
Potential biases of this model exist due to heterogeneity of
patients, therapy regimens, and disease stage. Additionally, this
is a retrospective study with a few experiments, so the findings
remain to be further validated in both the laboratory and
the clinic.

In conclusion, we comprehensively analyzed the genes that
are most strongly related to survival in AML. Pathway
enrichment analysis of these robustly survival-related genes
indicated that IL-2/STAT5 is the most highly enriched
signaling pathway. A STAT5-associated signature was
constructed on the basis of robustly survival-related genes
related to the IL-2/STAT5 signaling pathway. The signature
could independently predict survival of AML patients, and our
prognostic model might complement and improve the current
risk system based on genetic variables, such as the ELN2017 risk
categories. The immune infiltration was also investigated based
on the risk phenotype, which will contribute to immunotherapy
of high-risk patients in the future. Analysis of in-house clinical
samples revealed that the STAT5-assocaited signature risk scores
of AML patients were significantly higher than those of healthy
people. MS.275, a known HDAC inhibitor, was demonstrated as
a targeted drug for high-risk patients by interfering with STAT5-
associated pathways. This reliable model could be used for
prognostic assessment and guidance for precision therapy
for AML.
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Supplementary Figure 1 | Identification of genes related to survival in AML
patients and construction of a STAT5-associated signature. (A) The gene
expression levels of STAT5A and STAT5B in 69 cancer cell lines derived from 16
distinct organs. Each dot represents a cancer cell line. P values were determined
using two-tailed Student’s t-test. (B) The protein-protein interaction (PPI) network of
robustly survival-related genes (text in white) mapping to the IL-2/STAT5 pathway.
(C–H) Kaplan–Meier survival analysis of low- and high-expression groups of BATF,
IFITM3, IGF2R, PIM1, SLC29A2, and SOCS2.

Supplementary Figure 2 | The relationship between STAT5-associated
signature risk scores and survival status. (A–H) STAT5-associated signature risk
scores arrangement and survival status analyses in GSE37642-GPL96 (A),
GSE106291 (B), GSE12417-GPL96 (C), GSE37642-GPL570 (D), GSE71014 (E),
OHSU (F), TARGET (G), and TCGA (H).

Supplementary Figure 3 | Kaplan–Meier survival analyses. (A–H) Kaplan–Meier
curves for overall survival stratified by different risk levels in GSE37642-GPL96 (A),
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GSE106291 (B), GSE12417-GPL96 (C), GSE37642-GPL570 (D), GSE71014 (E),
OHSU (F), TARGET (G), and TCGA (H).

Supplementary Figure 4 | Time-independent and time-dependent ROC
analyses. (A–H) AUC of time-independent (left) and time-dependent (right) ROC
curves of STAT5-associated signature in GSE37642-GPL96 (A), GSE106291 (B),
GSE12417-GPL96 (C), GSE37642-GPL570 (D), GSE71014 (E), OHSU (F),
TARGET (G), and TCGA (H).

Supplementary Figure 5 | Construction of an integrated risk score. (A)
Nomogram visualizing the integrated risk model constructed based on the STAT5-
associated signature risk score, patient age, and ELN2017 risk category in the
Frontiers in Oncology | www.frontiersin.org 14
training cohort (GSE37642-GPL96). (B) Calibration curves of the nomogram in
terms of agreement between predicted and observed 1-year, 3-year, 5-year survival
in the training cohort (GSE37642-GPL96). Error bars represent actual overall
survival probability with 95% confidence intervals (CI). (C) Comparison of the time-
dependent ROC curves of the integrated risk score and its component single risk
categories in the training cohort (GSE37642-GPL96). (D–F) Comparison of the
time-independent ROC curves of the integrated risk score and its component single
risk categories in GSE37642-GPL96 (D), OHSU (E), and TCGA (F).

Supplementary Figure 6 | In silico screening of chemotherapy drugs for
treatment of high-risk AML patients. (A) Estimated IC50 for the five hits from in the
indicated cohorts.
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53. Brasó-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-
Domenech E, et al. PIM1 Kinase Regulates Cell Death, Tumor Growth and
Chemotherapy Response in Triple-Negative Breast Cancer. Nat Med (2016)
22(11):1303–13. doi: 10.1038/nm.4198
Frontiers in Oncology | www.frontiersin.org 15
54. Chen C-F, Hsu E-C, Lin K-T, Tu P-H, Chang H-W, Lin C-H, et al.
Overlapping High-Resolution Copy Number Alterations in Cancer
Genomes Identified Putative Cancer Genes in Hepatocel lular
Carc inoma. Hepato l (Bal t imore Md) (2010) 52(5) :1690–701.
doi: 10.1002/hep.23847

55. Hartmann E, Fernàndez V, Moreno V, Valls J, Hernández L, Bosch F, et al.
Five-Gene Model to Predict Survival in Mantle-Cell Lymphoma Using
Frozen or Formalin-Fixed, Paraffin-Embedded Tissue. J Clin Oncol Off J
Am Soc Clin Oncol (2008) 26(30):4966–72. doi : 10.1200/JCO.
2007.12.0410

56. Schultheis B, Carapeti-Marootian M, Hochhaus A, Weisser A, Goldman JM,
Melo JV. Overexpression of SOCS-2 in Advanced Stages of Chronic Myeloid
Leukemia: Possible Inadequacy of a Negative Feedback Mechanism. Blood
(2002) 99(5):1766–75. doi: 10.1182/blood.V99.5.1766

57. Arany I, Muldrow M, Tyring SK. The Endogenous Interferon System in Anal
Squamous Epithelial Lesions With Different Grades From HIV-Positive
Individuals. Int J STD AIDS (2001) 12(4):229–33. doi: 10.1258/
0956462011922977

58. Zhu J-G, Dai Q-S, Han Z-D, He H-C, Mo R-J, Chen G, et al. Expression of
SOCSs in Human Prostate Cancer and Their Association in Prognosis. Mol
Cell Biochem (2013) 381(1-2):51–9. doi: 10.1007/s11010-013-1687-6

59. Seifert M, Küppers R. HumanMemory B Cells. Leukemia (2016) 30(12):2283–
92. doi: 10.1038/leu.2016.226

60. Allen HC, Sharma P. Histology, Plasma Cells. In: StatPearls. Treasure Island,
FL: StatPearls Publishing (2021).

61. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the Recruitment of
Naive CD4(+) T Cells Reverses Immunosuppression in Breast Cancer. Cell Res
(2017) 27(4):461–82. doi: 10.1038/cr.2017.34

62. Xu Y, Mou J, Wang Y, Zhou W, Rao Q, Xing H, et al. Regulatory T Cells
Promote the Stemness of Leukemia Stem Cells Through IL10 Cytokine-Related
Signaling Pathway. Leukemia (2021). doi: 10.1038/s41375-021-01375-2

63. Banchereau J, Steinman RM. Dendritic Cells and the Control of Immunity.
Nature (1998) 392(6673):245–52. doi: 10.1038/32588

64. MacLeod MK, Clambey ET, Kappler JW, Marrack P. CD4 Memory T Cells:
What Are They and What Can They Do? Semin Immunol (2009) 21(2):53–61.
doi: 10.1016/j.smim.2009.02.006

65. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast Cell: A Multi-
Functional Master Cell. Front Immunol (2015) 6:620. doi: 10.3389/
fimmu.2015.00620

66. Jenne CN, Liao S, Singh B. Neutrophils: Multitasking First Responders of
Immunity and Tissue Homeostasis. Cell Tissue Res (2018) 371(3):395–7.
doi: 10.1007/s00441-018-2802-5

67. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado JDD, Popovich PG, Partida-
Sanchez S, et al. Novel Markers to Delineate Murine M1 and M2
Macrophages. PloS One (2015) 10(12):e0145342. doi: 10.1371/journal.pone.
0145342

68. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci M-J,
Reviron D, et al. Defective Expression and Function of Natural Killer Cell-
Triggering Receptors in Patients With Acute Myeloid Leukemia. Blood (2002)
99(10):3661–7. doi: 10.1182/blood.V99.10.3661

69. Nair R, Salinas-Illarena A, Baldauf H-M. New Strategies to Treat AML: Novel
Insights Into AML Survival Pathways and Combination Therapies. Leukemia
(2021) 35(2):299–311. doi: 10.1038/s41375-020-01069-1

70. Trapani D, Esposito A, Criscitiello C, Mazzarella L, Locatelli M, Minchella I,
et al. Entinostat for the Treatment of Breast Cancer. Expert Opin Investig
Drugs (2017) 26(8):965–71. doi: 10.1080/13543784.2017.1353077

71. Blagitko-Dorfs N, Jiang Y, Duque-Afonso J, Hiller J, Yalcin A, Greve G, et al.
Epigenetic Priming of AML Blasts for All-Trans Retinoic Acid-Induced
Differentiation by the HDAC Class-I Selective Inhibitor Entinostat. PloS
One (2013) 8(10):e75258. doi: 10.1371/journal.pone.0075258

72. Zhou L, Ruvolo VR, McQueen T, Chen W, Samudio IJ, Conneely O, et al.
HDAC Inhibition by SNDX-275 (Entinostat) Restores Expression of Silenced
Leukemia-Associated Transcription Factors Nur77 and Nor1 and of Key Pro-
Apoptotic Proteins in AML. Leukemia (2013) 27(6):1358–68. doi: 10.1038/
leu.2012.366

73. Ramsey JM, Kettyle LMJ, Sharpe DJ, Mulgrew NM, Dickson GJ, Bijl JJ,
et al. Entinostat Prevents Leukemia Maintenance in a Collaborating
Oncogene-Dependent Model of Cytogenetically Normal Acute Myeloid
February 2022 | Volume 12 | Article 785899

https://doi.org/10.1016/j.csda.2013.09.016
https://doi.org/10.1016/j.csda.2013.09.016
https://doi.org/10.1111/biom.12569
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.ccell.2020.11.013
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1371/journal.pone.0107468
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://doi.org/10.1158/1078-0432.CCR-20-3417
https://doi.org/10.1002/sim.5958
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1038/s41419-020-2335-1
https://doi.org/10.1182/blood.V78.4.1085.1085
https://doi.org/10.3324/haematol.2009.013797
https://doi.org/10.1200/JCO.2016.70.4999
https://doi.org/10.1158/1535-7163.mct-17-0292
https://doi.org/10.1182/blood.2021012788
https://doi.org/10.1038/nri3470
https://doi.org/10.3389/fonc.2020.593245
https://doi.org/10.1038/s41419-019-2117-9
https://doi.org/10.18632/oncotarget.7917
https://doi.org/10.1038/nm.4198
https://doi.org/10.1002/hep.23847
https://doi.org/10.1200/JCO.2007.12.0410
https://doi.org/10.1200/JCO.2007.12.0410
https://doi.org/10.1182/blood.V99.5.1766
https://doi.org/10.1258/0956462011922977
https://doi.org/10.1258/0956462011922977
https://doi.org/10.1007/s11010-013-1687-6
https://doi.org/10.1038/leu.2016.226
https://doi.org/10.1038/cr.2017.34
https://doi.org/10.1038/s41375-021-01375-2
https://doi.org/10.1038/32588
https://doi.org/10.1016/j.smim.2009.02.006
https://doi.org/10.3389/fimmu.2015.00620
https://doi.org/10.3389/fimmu.2015.00620
https://doi.org/10.1007/s00441-018-2802-5
https://doi.org/10.1371/journal.pone.0145342
https://doi.org/10.1371/journal.pone.0145342
https://doi.org/10.1182/blood.V99.10.3661
https://doi.org/10.1038/s41375-020-01069-1
https://doi.org/10.1080/13543784.2017.1353077
https://doi.org/10.1371/journal.pone.0075258
https://doi.org/10.1038/leu.2012.366
https://doi.org/10.1038/leu.2012.366
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tang et al. STAT5-Related Prognostic Model for AML
Leukemia. Stem Cells (Dayton Ohio) (2013) 31(7):1434–45. doi: 10.1002/
stem.1398
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
Frontiers in Oncology | www.frontiersin.org 16
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Tang, Xiao, Wang, Liang, Xing, Wu and Lu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
February 2022 | Volume 12 | Article 785899

https://doi.org/10.1002/stem.1398
https://doi.org/10.1002/stem.1398
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	A Prognostic Model for Acute Myeloid Leukemia Based on IL-2/STAT5 Pathway-Related Genes
	Introduction
	Materials and Methods
	Retrieval of AML Datasets
	Screening of Robustly Survival-Related Genes
	Pathway Enrichment Analysis
	Expression Distribution of STAT5A and STAT5B Among 16 Different Organs
	Protein-Protein Interaction Network
	Construction and Validation of a STAT5-Associated Signature
	Improvement of the European Leukemia Net 2017 Risk Stratification System
	Estimation of Immune Infiltration
	In-House Human Samples
	Real-Time Quantitative PCR Assay
	In Silico Screening of Chemotherapy Drugs for the Treatment of High-Risk Patients
	Immunoblotting Assay
	Cell Viability Assay
	Statistical Analysis

	Results
	Dataset Selection and Clinical Variables of Selective Eight Datasets
	Identification of Robustly Survival-Related Genes in AML
	Construction of a STAT5-Associated Signature
	Performance of the STAT5-Associated Signature
	Evaluating Prognostic Independence of the STAT5-Associated Signature
	Construction of an Integrated Risk Score
	Distribution of STAT5-Associated Signature Risk Scores in Different Subgroups
	Characterization of Immune Cell Infiltration in Distinct STAT5-Associated Risk Groups
	Validation of the STAT5-Associated Signature by Analysis of In-House Clinical Samples
	In Silico Screening of Chemotherapy Drugs for Treatment of High-Risk AML Patients

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


