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Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient.
The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware
performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall
simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI Allgather
collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of
processors though results in achieving concurrency and better performance but it inversely affects MPI Allgather which increases
communication time between processors. This necessitates improving communication methodology to decrease the spikes
exchange time over distributed memory systems. This work has improved MPI Allgather method using Remote Memory Access
(RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates
achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency
and has improved overall runtime making NEURONmore efficient for simulation of large neuronal network models.

1. Introduction

The brains complex computational behavior necessitated
developing large neuronal computational models. Huge
amount of data is integrated by models which work on simu-
lation tools to study the information regarding brain compu-
tational processing. This enables neuroscientists to practi-
cally observe the computational behavior similar to brain
and to carry out experiments along with fluctuating pro-
cesses on simulating environment. As a consequence better
understanding of brain functionality can be attained and
diseases like epilepsy, Parkinson’s disease, and so forth can be
diagnosed and cured. There is wide range of simulators that
have been developed for simulating neuronal behavior.NEST,
NEOSIM, SPLIT, andNEURONare few of important simula-
tors in practice today [1–5].The advantages of assorted simu-
lation environments are that each simulator has a broad range

of potency and this miscellany contributes to better devel-
opment and understanding of large neuronal models sim-
ulation processes. The valuable aspect of diverse simulation
environment is its sundry nature and wide-ranging strengths
enabling better understanding of computational behavior of
neuronal networks.This diversity has also resulted in improv-
ing the simulating environments capability of computations
unfolding the novel perspectives in overall computation and
simulation technology. One of the key beneficial features
is that fast and efficient architectures of computers can be
achieved by the help of these computational simulation
environments and neuronal models. These have the ability to
provide parallel, speedy, and efficient processing.

NEURON has become a widely adopted simulation tool
for building and analyzing neuronal models, using them for
solving multifaceted neuronal computations [6]. The perfor-
mance of NEURON simulator can be increased to support
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parallel environments by efficient utilization of machines. On
large number of processors interprocessor spikes exchange
consumes greater fraction of the total simulation time.
The MPI Allgather method is used in NEURON for spikes
exchange after incorporating the cell equations for smallest
amount specific time taken between spikes initialization and
release. MPI Allgather in MPI has feature of two-sided com-
munication based on first gathering on every processor and
sharing out among all other processors in the communication
world. This requires both sender and receiver to partici-
pate in the communication process explicitly and requires
extra synchronization among processes. MPI Allgather is
adopted in neuronal networks for collective communication,
thus using MPI Allgather for processors to gather spikes
from each processor and broadcasting to all the nodes in
its MPI communication world. To calculate this limitation
testing was done on two network models, Parscalebush and
Parbulbnet [7, 8], by increasing number of processors and
modifying number of cells and tstop. The communication
time relatively increases along with number of processors.
These models were downloaded from the ModelDB reposi-
tory (http://senselab.med.yale.edu/) and used parallel models
from Netmod [9]. In this work Remote Memory Access
(RMA) one-sided communication with recursive doubling is
implemented and tested to achieve better performance, thus
reducing the communication overhead in NEURON.

This paper is organized as follows: we begin with dis-
cussion on related work in Section 2. While Section 3 gives
background knowledge of NEURON, MPI, and recursive
doubling, in Section 4 parallel simulation in NEURON helps
to understand need for optimization. Implementation details
and NEURON optimization using RMA based on recursive
doubling are justified in Section 5 along with experimental
results in Section 6.The last section discusses our conclusions
and future work.

2. Related Work

Many studies exemplify that distributing network architec-
ture over multiple processors has features of fast processing
of data. For example, the scaffold functioning in NEURON
for parallel simulations and performance scaling can be
obtained by testing the model [9]. As far as the simulations
of large spike-coupled neuronal networks are concerned they
make use of parallel models for efficient simulation on large
computational clusters [10]. Many simulation environments
have the capability of provisioning desired functionalities
including NEST [11], pGENESIS [12], SPLIT [13], NCS [1],
and C2 [14]. These simulation environments give various
advantages like increase in simulation speed with increase in
number of processors; the rate of communication is limited
until each processor had very little work to do. Interprocessor
spikes exchange is one of the most important factors to be
considered in parallel network simulators.

A standard Message Passing Interface (MPI) is widely
adopted by most of simulators and functions on use of
the nonblocking point-to-point message passing utility.
NEURON selects basic spike distribution method, which
functions to distribute spikes among all processors [9].

The “Allgather” technique normally uses MPI Allgather and
irregularly MPI Allgatherv when there are additional spikes
to be sent that do not fit in the fixed sizeMPI Allgather buffer
[7]. The major objective is to get a baseline for future assess-
ment with more advanced point-to-point routing method-
ologies. For instance, in NEST it was observed that Allgather
give improved performance on their 96-core cluster using
InfiniBand switch in comparison with Complete Pairwise
Exchange algorithm [15, 16]. In terms of computational per-
formance improvement NEURON simulator on parallel
architectures can be enhanced bymassive computational par-
allelization using GPGPUs. GPU simulator that can surpass
CPU by 20 times was developed by Scorcioni [17]. Large scale
neural simulators memory limitations on large clusters were
elaborated in [18].

In the NBC library nonblocking extensions of collective
calls have been developed, which was presented in MPI-2.1
[19]. It provides nonblocking collective operations on top of
MPI two-sided point-to-point communication. Nonblocking
collective though is an integral part of MPI-3.0, but imple-
mentation of MPI-3.0 in NEURON is still not available.
RemoteMemoryAccess canmove two-sided communication
to one-sided communication, thus allowing synchronization
overhead reduction [20].The proposal for neighborhood col-
lectives was presented in [21]. For Blue Gene/P DCMF, active
message passing library was presented in [22], and for MPI
collective optimizationComponentCollectiveMessage Inter-
face was presented in [23]. The use of MPI Allgather method
increases the communication time along with increase in
number of processors.

3. Background

3.1. NEURON Simulation Environment. NEURON is a pow-
erful simulation environment for performing experiments on
models of neurons or network of neurons [24]. It is a tool for
constructing, managing, and exercising biologically realistic
neuronal models. The NEURON was extended from single
CPU to multiple CPUs to support complex computational
models simulation. It can run parallel simulations on small
clusters with 10–50 processors to large scale Blue Gene Super
Computer with thousands of processors [9]. For communica-
tion neurons generate spikes and usually send to thousands
of other neurons and receive from thousands of neurons.
NEURON source cells and their target are usually not on the
same processors; to handle this global identifier to cells on
each processor they are assigned and messages are passed
between hosts with appropriate weights and delays. Multi-
ple processors use MPI Allgather collective communication
method to exchange spikes between processors [9].

3.2. MPI. In multiprocessing environment processors either
performmultiple tasks simultaneously or distribute the same
task across multiple processors for achieving the adequate
level of concurrency. Message Passing Interface is used for
communication between parallel processors running pro-
cesses on distributed systems. MPI is an application pro-
grammer interface for inscription of message passing parallel
programs which functions to cover the details of underlying
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Figure 1: Two-sided communication in MPI.

system architecture. MPI is implemented as library since
it enables convenient program that can manage to run
similar program on parallel processors and has gone through
enhancements in various versions [25–27]. Communication
using MPI can be point-to-point or it can be collective
communication [28]. The basic methodology of MPI is
having multiple processes on distributed memory systems
which communicate using message passing. The numbers
of programs are always constant during the execution of
program. Debugging an MPI program is hard as program
cannot be distinguished into modules. Load balancing and
collaborative communication is also limitation in MPI. It
has its own programming structure and initializes with
MPI Init after that task is distributed among processors in its
communication world and the parallel execution is finished
with MPI Finalize.

3.3. MPI Two-Sided Communication. MPI two-sided com-
munication gives semantic assurance implied by the stan-
dard and its implementation is subject to various practical
restraints. The communication pattern of MPI in two-sided
communication is based on two subdivisions MPI Send and
MPI Recv. MPI Send routines are used for sending messages
from source process to destination process and MPI Recv
routines for getting messages on target process sent by source
process as shown in Figure 1. When processors are synchro-
nized through acknowledgement of envelope match, data
must remain constant during the communication process.
The efficiency of program can be impacted by restrictions of
synchronization in two-sided communication. Correspond-
ing pattern of Send/Recv andmessage gathering limits choice
for hardware message ordering as memory is private and
sender has to wait until the receiver is ready to receive.
Also support is required at recipient side for management
of message size vagueness and message synchronization on
both ends results in corresponding restriction for buffer
allotment or memory registration. MPI Send and MPI Recv
also restrict the communicating processors unless the com-
plete data is transferred. There are two main communication
mechanisms, firstly point-to-point one in which both sender
and receiver participate explicitly andMPI collective commu-
nication which is used to optimize communication in wide
area distributed environments [29, 30]. Different collective
communication calls such as MPI Gather, MPI Allgather,
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Figure 2: MPI one-sided communication.

and MPI Reduce are used for communication among mul-
tiple processes.

3.4. MPI One-Sided Communication. All processes of MPI
communication in MPI one-sided communication are car-
ried out in framework of a window. Remote Memory Access
unlike two-sided communication decouples data transfer
from the synchronization of systems. Window is based on
compilation of elements defined at the time of conception
of window and adjacent area of memory at each process.
One-sided communication can be used to send and receive
data where one process can directly access memory address
space of another process without intervention of other pro-
cesses. Each processor declares a specified area of memory
for remote access by MPI Win Create. The use of MPI-3
standard is based on three types of one-sided communi-
cation functions: MPI Put, MPI Get, and MPI Accumulate.
Sending data from source to destination on remote window
is accomplished by using MPI Put operation [31]. On the
other handMPI Get is used to read data from the window of
remote host as shown in Figure 2.MPI Accumulate combines
data into the target from the origin, thus becoming applicable
by using MPI reduction operator which limits data into the
buffer. The presence of communication functions takes place
in framework of either active target synchronization time
or passive target synchronization [32]. All communication
processes are nonblocking and are finished without involving
other processors to synchronize for communication and do
not block both ends during the communication process.

3.5. Recursive Doubling Algorithm. The recursive doubling
algorithm initially was developed to solve tridiagonal linear
system of size 𝑛 on a parallel computer with 𝑝 processors
using 𝑂(log𝑝) parallel arithmetic steps [33]. Recursive dou-
bling mechanism can be used for collective communication
between 𝑝 processors requiring only 𝑂(log𝑝) number of
steps. In each step processors communicate with other
processors anddistance amongprocessors increases by power
of 2 and size of message in each coming step doubles as
compared to the previous step. Initially data exchange is
carried out by the processes which are distance 1 apart from
each other. After this, the processes which are distance 2 apart
share the data received from previous step and their own
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Figure 3: Recursive doubling mechanism for process communica-
tion.

data as shown in Figure 3.Thus data communication between
processors is done in limited steps in efficient manner.

4. Parallel Simulation in NEURON

The collective communication in MPI resolves around the
participation of all the processes in the communication group
known as communication world. The synchronization of
processes is mandatory; this means that all the processes in
communication group reach the point of synchronization so
they can continue execution. Spikes communication inNEU-
RON is handled by MPI Allgather by the collective process
based on two-sided communication routine. MPI Allgather
is just a wrapper above MPI Gather and MPI Bcast, which
in depth are another cover over MPI Send andMPI Recv for
sending and receivingmessages in the communication group.

Collective communication is the procedure of sending
and receiving data amongst all the processors of MPI com-
munication world. A processor in the MPI Allgather com-
municator’s world gathers data from every other process and
distributes its own data amongst the communication group.
In NEURON MPI Allgather is used for communication
between processors after each designated interval. The total
runtime for simulation of models decreases when numbers
of processors are increased.

On the other hand for communication between proces-
sors MPI Allgather time keeps increasing, thus becoming
bottleneck whenmoved to largemachines; even communica-
tion time may exceed computation time for simulating large
neuronal network models. Limitation on 2–32 processors is
depicted in Table 1. Experiments were done on Parscalebush
model while increasing number of processors and keeping
tstop constant (5000ms) to analyze the limitation, as illus-
trated in Figure 4.

5. Proposed Method

Collective communication is significant and is adopted in
NEURON for communication between processors, but two-
sided communication usingMPI Allgather makes implemen-
tation for optimization possible. MPI Allgather is enhanced
to RMA Allgather one-sided communication using recursive
doubling for efficient spikes exchange between processors.
One-sided communication requires only one processor for
communication, thus ensuring that both sender and receiver
are not bounded to each other during whole communication
process, enabling efficient communication. To minimize

Table 1: Communication versus computation percentage time for
Parscalebush model.

Cells Number of procs. 2 4 8 16 32

500 MPI Allgather% 0.81 4.98 6.79 6.84 18.02
Computation time% 99.18 95.01 93.2 93.15 81.97

1000 MPI Allgather% 2.04 1.69 3.14 7.81 14.26
Computation time% 97.95 98.3 96.85 92.18 85.73

2000 MPI Allgather% 2.71 1.18 4.28 3.64 12.88
Computation time% 97.28 98.81 95.71 96.35 87.11

4000 MPI Allgather% 1.38 2.8 5.83 4.97 14.29
Computation time% 98.62 97.19 94.16 95.02 85.7

the number of steps for efficient spikes exchange recur-
sive doubling mechanism was implemented which reduced
the number of steps for exchange, thus ensuring message
exchange in 𝑂(log𝑝) steps, where 𝑛 is number of proces-
sors. This paper is based on limited processor version of
the recursive doubling algorithm for points of multifaceted
sharing between multiple processors using time interval
for one-sided communication. The following are algorithms
for RMA Allgather and target calculation that were imple-
mented and tested in NEURON.

Calculation of target by every processor in each step lays
foundation for appropriate communication. In the first step
every processor communicates with other processors which
is distance 1 apart and as the step increases their distance
doubles as in Figure 5. Algorithm 1 ensures the appropriate
target calculation, as it is necessary because in each step target
varies according to processor ID and step.

The recursive doubling algorithm is adopted to resolve
communication bottleneck on parallel machines with 𝑝 pro-
cessors in𝑂(log𝑝) parallel arithmetic steps. In order to allow
other processors to write remotely, the processor exposes
its memory, and RMA enables the processors to access data
and communicate without requiring other processors to be
part of communication process. This enables processors to
concurrently carry out the communication process.

RMA Allgather is carried out instead of MPI Allgather
and thus decouples data communication from system syn-
chronization. It is nonblocking approach which allows pro-
cesses to communicate concurrently without waiting for
other processors to synchronize. The whole process is com-
pleted efficiently in 𝑂(log𝑝) steps where 𝑛 is number of
processors. Algorithm 2 also enlightens the calculation of
exact origin address for message to be communicated which
is necessary as size of message to be communicated increases
in each step, and after first step each processor has to send
its own data along with the spikes information obtained in
previous steps. After origin and appropriate target calcula-
tion, MPI Win Fence is used to synchronize the processors
in each step, and every processor uses MPI Put for writing
spikes data on window of remote process; this reduces extra
immediate buffering and dual synchronization overhead
required in two-sided communication.Thus, combination of
both RMA and recursive doubling when applied results in
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Figure 4: Parscalebush model spikes exchange time and computation time analysis graph.

optimization of NEURON for simulation of large neuronal
network models.

6. Experimental Results

This section will demonstrate the impact of proposed
RMA Allgather method through several experiments per-
formed after implementation of the algorithms in NEURON
on a 4-node HP BL460c cluster placed at Kadir Has Univer-
sity.The SMP cluster has 2 × 2.66GHz Intel Xeon Quad Core

CPUs and RAMof 24GB and has 8 processing cores per node
running Linux 2.6.18 connectedwith 20Gbps InfiniBand.The
experiment is performed 5 times for obtaining each result and
the results are average of 5 runs as shown in Tables 2 and 3.

Simulation tests were conducted on two published neu-
ronal network models, Parscalebush and Parbulbnet [7, 8],
exhibiting different spike patterns alongwith implementation
of RMA Allgather with recursive doubling mechanism. To
examine the resulting performance of implementation on
models, they were examined in diverse environment. The
results were calculated for Parbulbnet model along with
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Input: Step number, Rank of processor
Output: target

Start
flag = Rank/(2∧(step − 1))
if flag is even

if IsPowerOfTwo(step)
target← rank + (2∧(step − 1))

else
diff← step − previous power of two from rank

if diff is positive number
target← Rank + (2∧(diff + previous power of two − 1))

else
target← Rank + 2∧(Previous power of two)

else
if IsPowerOfTwo(step)

target← Rank − (2∧(step − 1))
else
diff← step − previous power of two from Rank
if diff is positive

target← Rank − (2∧(diff + previous power of two − 1))
else

target← Rank − 2∧(Previous power of two)
Return target value
End

Algorithm 1: Recursive doubling algorithm for target calculation.

Input parameters: sendbuf, count, datatype, MPI Comm World
Output Parameters: Recv buf

Start:
Initialize local variables target, displacement, step, origin
Calculate number of steps = log (total number of processors)
if first step then

Get communication size and proc id
Initialize recv bufer
Create window according to recv bufer

for 𝑖 = 1 to log (number of processors)
Calculate origin addr as
Origin Addr← rank − (mod (rank, 2∧(step − 1)))
Calculate target according to step and id (Algo→ 1)
MPI Fence (Synchronization)
MPI Put values from origin to target
Next 𝑖

End

Algorithm 2: RMA Allgather for spikes communication between processors.

varying number of processors and cells while numbers of
cells were kept constant; see Table 2. For Parscalebush tstop
and numbers of processors were varied while tstop was kept
constant to obtain the comparative results and analyze the
efficiency of the proposed technique; see Table 3.

It was observed that along with gradual increase in
number of processors the size of subnet on single processor
becomes smaller and MPI Allgather becomes source of

communication overhead on large number of processors.
RMA Allgather when applied to NEURON provides much
better results than existing communication mechanism.
Tables 2 and 3 depict that proposed technique is almost
10% more efficient than existing MPI Allgather adopted in
NEURON simulation environment, thus reducing commu-
nication time (Figures 6 and 7) and improving the overall
efficiency of NEURON.
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Figure 5: Logical view of RMA Allgather based on recursive doubling algorithm.
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Figure 6: Parbulbnet model runtime comparison between MPI Allgather and RMA Allgather with cells = 2525.
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Figure 7: Parscalebush model runtime comparison between MPI Allgather and RMA Allgather with tstop = 5000.

Table 2: Runtime comparison of MPI Allgather versus RMA All-
gather in Parbulbnet.

Parbulbnet: cells = 2525
Tstop 1000ms 2000ms 5000ms
Procs. MPI RMA MPI RMA MPI RMA
2 117.94 104.25 247.78 220.48 635.64 580.52
4 52.97 44.86 113.49 101.45 283.26 269.73
8 19.31 15.33 37.33 34.54 93.47 86.25
16 8.82 7.61 17.26 15.03 41.45 36.92
32 6.06 5.87 10.64 9.16 26.32 23.38

7. Conclusion

Speedup from parallelizing large network models in NEU-
RON is found nearly proportional to number of processors,
but spikes exchange time was found inversely affecting
runtime along with increasing number of processors. In

Table 3: Runtime comparison of MPI Allgather versus RMA All-
gather in Parscalebush.

Parscalebush: tstop = 5000ms
Cells 1000 2000 5000
Procs. MPI RMA MPI RMA MPI RMA
2 766.32 705.22 1973.5 1824.25 7449.68 6825.24
4 277.83 250.49 792.49 732.85 3092.29 2725.24
8 115.3 102.28 293.66 266.8 1185.74 1097.65
16 59.65 51.56 120.23 112.45 477.9 420.35
32 35.24 31.88 73.56 66.48 213.99 196.78

this paper, an optimization method RMA Allgather using
recursive doubling is applied for exchange of spikes in
NEURON simulator that reduces spike exchange time almost
10% as compared to the existing MPI Allgather method.
RMA facilitates advantage of direct memory access to data of
remote processor and reduces the synchronization overhead
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whereas recursive doubling limits the overall communication
steps, thus benefiting the performance of NEURON for
simulating large neuronal network models. In future we
plan to improve remote direct memory access in NEURON
by exchanging only the updated spikes to optimize the
communication process.
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