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Abstract Electrophysiological methods, that is M/EEG, provide unique views into brain health.

Yet, when building predictive models from brain data, it is often unclear how electrophysiology

should be combined with other neuroimaging methods. Information can be redundant, useful

common representations of multimodal data may not be obvious and multimodal data collection

can be medically contraindicated, which reduces applicability. Here, we propose a multimodal

model to robustly combine MEG, MRI and fMRI for prediction. We focus on age prediction as a

surrogate biomarker in 674 subjects from the Cam-CAN dataset. Strikingly, MEG, fMRI and MRI

showed additive effects supporting distinct brain-behavior associations. Moreover, the contribution

of MEG was best explained by cortical power spectra between 8 and 30 Hz. Finally, we

demonstrate that the model preserves benefits of stacking when some data is missing. The

proposed framework, hence, enables multimodal learning for a wide range of biomarkers from

diverse types of brain signals.

Introduction
Non-invasive electrophysiology assumes a unique role in clinical neuroscience. Magneto- and electo-

phencephalography (M/EEG) have an unparalleled capacity for capturing brain rhythms without pen-

etrating the skull. EEG is operated in a wide array of peculiar situations, such as surgery

(Baker et al., 1975), flying an aircraft (Skov and Simons, 1965) or sleeping (Agnew et al., 1966).

Unlike EEG, MEG captures a more selective set of brain sources with greater spectral and spatial

definition (Ahlfors et al., 2010; Hari et al., 2000). Yet, neither of them is optimal for isolating ana-

tomical detail. Clinical practice in neurology and psychiatry, therefore, relies on additional neuroim-

aging modalities with enhanced spatial resolution such as magnetic resonance imaging (MRI),

functional MRI (fMRI), or positron emission tomography (PET). Recently, machine learning has

received significant interest in clinical neuroscience for its potential to predict from such heteroge-

neous multimodal brain data (Woo et al., 2017). Unfortunately, the effectiveness of machine learn-

ing in psychiatry and neurology is constrained by the lack of large high-quality datasets (Woo et al.,

2017; Varoquaux, 2017; Bzdok and Yeo, 2017; Engemann et al., 2018) and comparably limited

understanding about the data generating mechanisms (Jonas and Kording, 2017). This, potentially,
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limits the advantage of complex learning strategies proven successful in purely somatic problems

(Esteva et al., 2017; Yoo et al., 2019; Ran et al., 2019).

In clinical neuroscience, prediction can therefore be pragmatically approached with classical

machine learning algorithms (Dadi et al., 2019), expert-based feature engineering and increasing

emphasis on surrogate tasks. Such tasks attempt to learn on abundant high-quality data an outcome

that is not primarily interesting, to then exploit its correlation with the actual outcome of interest in

small datasets. This problem is also known as transfer learning (Pan and Yang, 2009) which, in its

simplest form, is implemented by reusing predictions from a surrogate-marker model as predictors

in the small dataset. Over the past years, predicting the age of a person from its brain data has crys-

talized as a surrogate-learning paradigm in neurology and psychiatry (Dosenbach et al., 2010). First

results suggest that the prediction error of models trained to learn age from brain data of healthy

populations provides clinically relevant information (Cole et al., 2018; Ronan et al., 2016;

Cole et al., 2015) related to neurodegenerative anomalies, physical and cognitive decline

(Kaufmann et al., 2019). For simplicity, this characteristic prediction error is often referred to as the

brain age delta D (Smith et al., 2019). Can learning of such a surrogate biomarker be enhanced by

combining expert-features from M/EEG, fMRI and MRI?

Research on aging has suggested important neurological group-level differences between young

and elderly people: Studies have found alterations in grey matter density and volume, cortical thick-

ness and fMRI-based functional connectivity, potentially indexing brain atrophy (Kalpouzos et al.,

2012) and decline-related compensatory strategies. Peak frequency and power drop in the alpha

band (8–12 Hz), assessed by EEG, has been linked to aging-related slowing of cognitive processes,

eLife digest How old are you? What about your body, and your brain? People are used to

answering this question by counting the years since birth. However, biological age could also be

measured by looking at the integrity of the DNA in cells or by measuring the levels of proteins in the

blood. Whether one goes by chronological age or biological age, each is simply an indicator of

general health – but people with the same chronological age may have different biological ages,

and vice versa.

There are different imaging techniques that can be used to study the brain. A method called MRI

reveals the brain’s structure and the different types of tissue present, like white and grey matter.

Functional MRIs (fMRIs for short) measure activity across different brain regions, while

electrophysiology records electrical signals sent between neurons. Distinct features measured by all

three techniques – MRI, fMRI and electrophysiology – have been associated with aging. For

example, differences between younger and older people have been observed in the proportion of

grey to white matter, the communication between certain brain regions, and the intensity of neural

activity.

MRIs, with their anatomical detail, remain the go-to for predicting the biological age of the brain.

Patterns of neuronal activity captured by electrophysiology also provide information about how well

the brain is working. However, it remains unclear how electrophysiology could be combined with

other brain imaging methods, like MRI and fMRI. Can data from these three techniques be

combined to better predict brain age?

Engemann et al. designed a computer algorithm stacking electrophysiology data on top of MRI

and fMRI imaging to assess the benefit of this three-pronged approach compared to using MRI

alone. Brain scans from healthy people between 17 and 90 years old were used to build the

computer model. The experiments showed that combining all three methods predicted brain age

better. The predictions also correlated with the cognitive fitness of individuals. People whose brains

were predicted to be older than their years tended to complain about the quality of their sleep and

scored worse on memory and speed-thinking tasks.

Crucially, Engemann et al. tested how the algorithm would hold up if some data were missing.

This can happen in clinical practice where some tests are required but not others. Positively,

prediction was maintained even with incomplete data, meaning this could be a useful clinical tool for

characterizing the brain.
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such as the putative speed of attention (Richard Clark et al., 2004; Babiloni et al., 2006). Increased

anteriorization of beta band power (15–30 Hz) has been associated with effortful compensatory

mechanisms (Gola et al., 2013) in response to intensified levels of neural noise, that is, decreased

temporal autocorrelation of the EEG signal as revealed by flatter 1/f slopes (Voytek et al., 2015).

Importantly, age-related variability in fMRI and EEG seems to be independent to a substantial

degree (Kumral et al., 2020).

The challenge of predicting at the single-subject level from such heterogenous neuroimaging

modalities governed by distinct data-generating mechanisms has been recently addressed with

model-stacking techniques (Rahim et al., 2015; Karrer et al., 2019; Liem et al., 2017).

Rahim et al., 2015 enhanced classification in Alzheimer’s disease by combining fMRI and PET using

a stacking approach (Wolpert, 1992), such that the stacked models used input data from different

modalities. Liem et al., 2017 have then applied this approach to age-prediction and found that

combining anatomical MRI with fMRI significantly helped reduce errors while facilitating detection of

cognitive impairment. This suggests that stacked prediction might also enable combining MRI with

electrophysiology. Yet, this idea faces one important obstacle related to the clinical reality of data

collection. It is often not practical to do multimodal assessments for all patients. Scanners may be

overbooked, patients may not be in the condition to undergo MRI and acute demand in intensive

care units may dominate priorities. Incomplete and missing data is, therefore, inevitable and has to

be handled to unleash the full potential of multimodal predictive models. To tackle this challenge,

we set out to build a stacking model for predicting age from electrophysiology and MRI such that

any subject was included if some data was available for at least one modality. We, therefore, call it

opportunistic stacking model.

At this point, there are very few multimodal databases providing access to electrophysiology

alongside MRI and fMRI. The Leipzig Mind-Brain-Body (LEMON) dataset (Babayan et al., 2019)

includes high-quality research-EEG with MRI and fMRI for 154 young subjects and 75 elderly sub-

jects. The dataset used in the present study is curated by the Cam-CAN (Shafto et al., 2014;

Taylor et al., 2017) and was specifically designed for studying the neural correlates of aging contin-

uously across the life-span. The Cam-CAN dataset is currently the largest public resource on multi-

modal imaging with high-resolution electrophysiology in the form of MEG alongside MRI data and

rich neuropsychological data for more than 650 healthy subjects between 17 and 90 years. The

choice of MEG over EEG may lead to a certain degree of friction with the aging-related literature in

electrophysiology, the bulk of which is based on EEG-studies. Fortunately, MEG and EEG share the

same classes of neural generators, rendering the aging-related EEG-literature highly relevant for

MEG-based modeling. On the other hand, the distinct biophysics of MEG and EEG makes both

modalities complementary methods. While EEG captures sources of any orientation, MEG preferen-

tially captures tangential but not radial sources. Compared to EEG, MEG benefits from the magnetic

transparency of the skull, which facilitates source localization by reducing the risk of errors due to an

incorrect head conductivity model, but also by limiting the large-scale mixing of neural sources. This

significantly increases the signal-to-noise ratio for MEG in higher frequencies, rendering it a formida-

ble technique for studying cortical oscillatory activity (Lehtelä et al., 1997; Gobbelé et al., 1998).

MEG is, therefore, an interesting modality in its own right for developing neuro-cognitive biomarkers

while its close link with EEG may potentially open the door to translatable electrophysiology markers

suitable for massive deployment with clinical EEG.

Our study focuses on the following questions: 1) Can MRI-based prediction of age be enhanced

with MEG-based electrophysiology? 2) Do fMRI and MEG carry non-redundant clinically relevant

information? 3) What are the most informative electrophysiological markers of aging? 4) Can poten-

tial advantages of multimodal learning be maintained in the presence of missing values?

Results

Opportunistic prediction-stacking approach
We begin by summarizing the proposed method. To build a model for predicting age from electro-

physiology, fMRI and anatomical MRI, we employed prediction-stacking (Wolpert, 1992). As in

Liem et al., 2017, the stacked models, here, referred to different input data instead of alternative

models on the same data. We used ridge regression (Hoerl and Kennard, 1970) to linearly predict
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age from high-dimensional inputs of each modality. Linear predictions were based on distinct fea-

tures from anatomical MRI, fMRI and MEG that have been commonly associated with aging. For

extracting features from MEG, in a first step, we drew inspiration from EEG-literature on aging and

considered evoked response latencies, alpha band peak frequency, 1/f slope topographies assessed

in sensor-space. Previous work on neural development and aging (Khan et al., 2018; Gola et al.,

2013) and Alzheimer’s disease (Gaubert et al., 2019) has pointed at the importance of spatial alter-

ations in stationary power spectra which can be exploited using high-dimensional regression techni-

ques (Fruehwirt et al., 2017). In this work, we have adapted this reasoning to the more general

problem of predicting age while exploiting the advanced source-modeling options supported by the

Cam-CAN dataset based on MEG and the individual MRIs. Therefore, it was our principal effort to

expose the geometry of stationary power spectra with minimal distortion by using source localization

based on the individual head geometry (Sabbagh et al., 2019) to then perform high-dimensional

regression. As a result, we predicted from the spatial distribution of power and bivariate interactions

between signals (connectivity) in nine frequency bands (Table 1).

For MRI and fMRI, we followed the method established in Liem et al., 2017 and included cortical

thickness, cortical surface area and subcortical volume as well as functional connectivity based on

the fMRI time-series. For detailed description of the features, see Table 2 and section Feature

extraction in Materials and methods. To correct for the necessarily biased linear model, we then

used a non-linear random forest regressor with age predictions from the linear model as lower-

dimensional input features.

Thereby, we made sure to use consistent cross-validation splits for all layers and automatically

selected central tuning-parameters of the linear model and the random forest with nested cross-vali-

dation. Our stacked models handle missing values by treating missing value as data, provided there

Table 1. Frequency band definitions.

Name Low d � a b1 b2 g1 g2 g3

range (Hz) 0.1 - 1.5 1.5 - 4 4 - 8 8 - 15 15 - 26 26 - 35 35 - 50 50 - 74 76 - 100

Multimodal input data

anatomical MRI

functional MRI

MEG

Layer I: Ridge Regression Age predictions Missing value coding

Layer II: Random Forest Regressor

tree = 1tree = 1

subject #i

age = 50

age #i = 53

age = 57 age = 52

tree = ... tree = B

Multimodal input data

anatomical MRI

functional MRI

MEG

Layer I: Ridge Regression Age predictions Missing value coding

Layer II: Random Forest Regressor

tree = 1tree = 1

subject #i

age = 50

age #i = 53

age = 57 age = 52

tree = ... tree = B
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Figure 1. Opportunistic stacking approach. The proposed method allows to learn from any case for which at least one modality is available. The

stacking model first generates, separately for each modality, linear predictions of age for held-out data. 10-fold cross-validation with 10 repeats is used.

This step, based on ridge regression, helps reduce the dimensionality of the data by generating predictions based on linear combinations of the major

directions of variance within each modality. The predicted age is then used as derived set of features in the following steps. First, missing values are

handled by a coding-scheme that duplicates the second-level data and substitutes missing values with arbitrary small and large numbers. A random

forest model is then trained to predict the actual age with the missing-value coded age-predictions from each ridge model as input features. This

potentially helps improve prediction performance by combining additive information and introducing non-linear regression on a lower-dimensional

representation.
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is an opportunity to see at least one modality (Josse et al., 2019). We, therefore, call it opportunistic

stacking model. Concretely, the procedure duplicated all variables and inserted once a small value

and once a very large value where data was initially missing for which we chose biologically implausi-

ble age values of �1000 and 1000, respectively. For an illustration of the proposed model architec-

ture, see Figure 1 section Stacked-Prediction Model for Opportunistic Learning in Materials and

methods for a detailed description of the model.

fMRI and MEG non-redundantly enhance anatomy-based prediction
Currently, anatomical MRI is the canonical modality for brain age prediction. However, MRI does not

access brain dynamics, whereas MEG and fMRI both capture neuronal activity, hence, convey addi-

tional information at smaller time-scales. How would they add to the prediction of brain age when

combined with anatomical MRI? Figure 2A depicts a model comparison in which anatomical MRI

served as baseline and which tracked changes in performance as fMRI and MEG were both added

through stacking (black boxplot). Anatomical MRI scored an expected generalization error of about

6 years (SD ¼ 0:6, P2:5;97:5 ¼ ½4:9; 7:16�), whereas expected chance-level prediction was about 15.5

years (SD ¼ 1:17, P2:5;97:5 ¼ ½13:26; 17:8�) based on a dummy-model proposing as prediction the aver-

age age of the training-data. MRI performed better than chance-level prediction in every single

cross-validation fold. The average improvement over chance-level prediction across folds was at

least 9 years (SD ¼ 1:33, P2:5;97:5 ¼ ½�12:073;�7:347�). Relative to MRI, age-prediction performance

was reduced by almost 1 year on average by adding either MEG

(Pr<MRI ¼ 91%, M ¼ �0:79, SD ¼ 0:57, P2:5;97:5 ¼ ½�1:794; 0:306�) or fMRI

(Pr<MRI ¼ 94%, M ¼ �0:96, SD ¼ 0:59, P2:5;97:5 ¼ ½�1:99; 0:15�). Finally, the performance gain was

greater than 1 year on average (Pr<MRI ¼ 99%, M ¼ �1:32, SD ¼ 0:672, P2:5;97:5 ¼ ½�2:43;�0:16�) when
adding both MEG and fMRI to the model, yielding an expected generalization error of about 4.7

years (SD ¼ 0:55, P2:5;97:5 ¼ ½3:77; 5:74�). Note that dependable numerical p-values are hard to obtain

for paired model comparisons based on cross-validation on the same dataset: Many datasets equiva-

lent to the Cam-CAN would be required. Nevertheless, the uncertainty intervals extracted from the

cross-validation distribution suggests that the observed differences in performance were systematic

and can be expected to generalize as more data is analyzed. Moreover, the out-of-sample ranking

between the different models was stable over cross-validation folds (Figure 2—figure supplement

1) with the full model achieving the first rank 71/100 times and performing at least 80/100 better

than the MRI + fMRI or the MRI + MEG model. This emphasizes that the relative importance of MEG

and fMRI for enhancing MRI-based prediction of age can be expected to generalize to future data.

Table 2. Summary of extracted features.

# Modality Family Input Feature Variants Spatial selection

1 MEG sensor mixed ERF latency aud, vis, audvis max channel

2 . . . . . . PSDa peak max channel

3 . . . . . . PSD 1/f slope low, g max channel in ROI

4 . . . source activity signal power low,d,�,a,b1;2, g1;2;3 MNE, 448 ROIs

5 . . . . . . envelope . . . . . . . . .

6 . . . source connectivity signal covariance . . . . . .

7 . . . . . . envelope . . . . . . . . .

8 . . . . . . env. corr. . . . . . .

9 . . . . . . env. corr. ortho. . . . . . .

10 fMRI connectivity time-series correlation . . . 256 ROIs

11 MRI anatomy volume cortical thickness 5124 vertices

12 . . . . . . surface cortical surface area 5124 vertices

13 . . . . . . volume subcortical volumes 66 ROIs

Note. ERF = event related field, PSD = power spectral density, MNE = Minimum Norm-Estimates, ROI = region of interest, corr. = correlation,

ortho. = orthogonalized.
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The improved prediction obtained by combining MEG and fMRI suggests that both modalities

carry independent information. If MEG and MRI carried purely redundant information, the random

forest algorithm would not have reached better out-of-sample performance. Indeed, comparing the

cross-validated prediction errors of MEG-based and fMRI-based models (Figure 2B), errors were

only weakly correlated (rSpearman ¼ 0:139, r2 ¼ 0:019, p ¼ 1:31� 10
�3). fMRI, sometimes, made extreme

errors for cases better predicted by MEG in younger people, whereas MEG made errors in distinct

cases from young and old age groups. When adding anatomical MRI to each model, the errors

became somewhat more dependent leading to moderate correlation

(rSpearman ¼ 0:45, r2 ¼ 0:20, p ¼ 2:2� 10
�16). This additive component also became apparent when

considering predictive simulations on how the model actually combined MEG, fMRI and MRI (Fig-

ure 2—figure supplement 2) using two-dimensional partial dependence analysis (Karrer et al.,

2019; Hastie et al., 2005, chapter 10.13.2). Moreover, exploration of the age-dependent improve-

ments through stacking suggest that stacking predominantly reduced prediction errors uniformly

(Figure 2—figure supplement 3) instead of systematically mitigating brain age bias (Le et al., 2018;

Smith et al., 2019).

These findings demonstrate that stacking allows to enhance brain-age prediction by extracting

information from MEG, fMRI and MRI while mitigating modality-specific errors. This raises the ques-

tion whether this additive information from multiple neuroimaging modalities also implies non-

redundant associations with behavior and cognition.
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Figure 2. Combining MEG and fMRI with MRI enhances age-prediction. (A) We performed age-prediction based on distinct input-modalities using

anatomical MRI as baseline. Boxes and dots depict the distribution of fold-wise paired differences between stacking with anatomical MRI (blue),

functional modalities, that is fMRI (yellow) and MEG (green) and complete stacking (black). Each dot shows the difference from the MRI testing-score at

a given fold (10 folds � 10 repetitions). Boxplot whiskers indicate the area including 95% of the differences. fMRI and MEG show similar improvements

over purely anatomical MRI around 0.8 years of error. Combining all modalities reduced the error by more than one year on average. (B) Relationship

between prediction errors from fMRI and MEG. Left: unimodal models. Right: models including anatomical MRI. Here, each dot stands for one subject

and depicts the error of the cross-validated prediction (10 folds) averaged across the 10 repetitions. The actual age of the subject is represented by the

color and size of the dots. MEG and fMRI errors were only weakly associated. When anatomy was excluded, extreme errors occurred in different age

groups. The findings suggest that fMRI and MEG conveyed non-redundant information. For additional details, please consider our supplementary

findings.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Rank statistics.

Figure supplement 2. Partial dependence.

Figure supplement 3. Relationship between predication performance and age.
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Brain age D learnt from MEG and fMRI indexes distinct cognitive
functions
The brain ageD has been interpreted as indicator of health where positive D has been linked to

reduced fitness or health-outcomes (Cole et al., 2015; Cole et al., 2018). Does improved perfor-

mance through stacking strengthen effect-sizes? Can MEG and fMRI help detect complementary

associations? Figure 3 summarizes linear correlations between the brain ageD and the 38 neuropsy-

chological scores after projecting out the effect of age, Equations 6- 8 (see Analysis of brain-behav-

ior correlation in Materials and methods for a detailed overview). As effect sizes can be expected to

be small in the curated and healthy population of the Cam-CAN dataset, we considered classical

hypothesis testing for characterizing associations. Traditional significance testing (Figure 3A) sug-

gests that the best stacking models supported discoveries for between 20% (7) and 25% (9) of the

scores. Dominating associations concerned fluid intelligence, depression, sleep quality (PSQI), sys-

tolic and diastolic blood pressure (cardiac features 1,2), cognitive impairment (MMSE) and different

types of memory performance (VSTM, PicturePriming, FamousFaces, EmotionalMemory). The model

coefficients in Figure 3B depict the strength and direction of association. One can see that stacking

models not only tended to suggest more discoveries as their performance improved but also led to

stronger effect sizes. However, the trend is not strict as fMRI seemed to support unique discoveries

that disappeared when including the other modalities. Similarly, some effect sizes were even slightly

stronger in sub-models, for example for fluid intelligence in MRI and MEG. A priori, the full model

enjoys priority over the sub-models as its expected generalization estimated with cross-validation

was lower. This could imply that some of the discoveries suggested by fMRI may suffer from overfit-

ting, but are finally corrected by the full model. Nevertheless, many of the remaining associations

were found by multiple methods (e.g. fluid intelligence, sleep quality assessed by PSQI) whereas

others were uniquely contributed by fMRI (e.g. depression). It is also noteworthy that the directions

of the effects were consistent with the predominant interpretation of the brain age D as indicator of

mental or physical fitness (note that high PSQI score indicate sleeping difficulties whereas lower
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Figure 3. Residual correlation between brain ageD and neuropsycholgical assessment. (A) Manhattan plot for linear fits of 38 neuropsychology scores

against brain ageD from different models (see scores for Table 5). Y-axis: �log10ðpÞ. X-axis: individual scores, grouped and colored by stacking model.

Arbitrary jitter is added along the x-axis to avoid overplotting. For convenience, we labeled the top scores, arbitrarily thresholded by the uncorrected

5% significance level, indicated by pyramids. For orientation, traditional 5%, 1% and 0.1% significance levels are indicated by solid, dashed and dotted

lines, respectively. (B) Corresponding standardized coefficients of each linear model (y-axis). Identical labeling as in (A). One can see that, stacking often

improved effect sizes for many neuropsychological scores and that different input modalities show complementary associations. For additional details,

please consider our supplementary findings.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Results based on joint deconfounding.

Figure supplement 2. Results based on joint deconfounding with additional regressors of non-interest.

Figure supplement 3. Distribution of neuropsychological scores by age.

Figure supplement 4. Distribution of neuropsychological scores by age after residualizing.

Figure supplement 5. Bootstrap estimates.
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MMSE scores indicate cognitive decline) and directly confirm previous findings (Liem et al., 2017;

Smith et al., 2019).

Note that the results were highly similar when performing deconfounding jointly via multiple

regression (Equation 9, Figure 3—figure supplement 1) instead of predicting age-residualized neu-

ropsychological scores, and when including additional predictors of non-interest, that is gender,

handedness and head motion (Equation 10, Figure 3—figure supplement 2). More elaborate con-

founds-modeling even seemed to improve SNR as suggested by an increasing number of discoveries

and growing effect sizes.

These findings suggest that brain age D learnt from fMRI or MEG carries non-redundant informa-

tion on clinically relevant markers of cognitive health and that combining both fMRI and MEG with

anatomy can help detect health-related issues in the first place. This raises the question of what

aspect of the MEG signal contributes most.

MEG-based age-prediction is explained by source power
Whether MEG or EEG-based assessment is practical in the clinical context depends on the predictive

value of single features, the cost for obtaining predictive features and the potential benefit of

improving prediction by combining multiple features. Here, we considered purely MEG-based age

prediction to address the following questions: Can the stacking method be helpful to analyze the

importance of MEG-specific features? Are certain frequency bands of dominating importance? Is

information encoded in the regional power distribution or more related to neuronal interactions

between brain regions? Figure 4A compares alternative MEG-based models stacking different com-

binations of MEG-features. We compared models against chance-level prediction as estimated with

a mean-regressor outputting the average age of the training data as prediction. Again, chance-level

was distributed around 15.5 years (SD ¼ 1:17, P2:5;97:5 ¼ ½13:26; 17:80�). All models performed

markedly better. The model based on diverse sensor space features from task and resting state

recordings showed the lowest performance around 12 years MAE (SD ¼ 1:04, P2:5;97:5 ¼ ½9:80; 13:52�),
yet it was systematically better than chance (Pr<Chance ¼ 98:00%, M ¼ �4, SD ¼ 1:64,

P2:5;97:5 ¼ ½�7:11;�0:44�). All models featuring source-level power spectra or connectivity (‘Source

Activity, Source Connectivity’) performed visibly better, with expected errors between 8 and 6.5

years and no overlap with the distribution of chance-level scores. Models based on source-level

power spectra (‘Source Activity’, M ¼ 7:40, SD ¼ 0:82, P2:5;97:5 ¼ ½6:01; 9:18�) and connectivity (‘Source

Connectivity’, M ¼ 7:58, SD ¼ 0:90, P2:5;97:5 ¼ ½6:05; 9:31�) performed similarly with a slight advantage

for the ‘Source Activity’ model. The best results were obtained when combining power and connec-

tivity features (‘Full’, M ¼ 6:75, SD ¼ 0:83, P2:5;97:5 ¼ ½5:36; 8:20�). Adding sensor space features did

not lead to any visible improvement of ‘Full’ over ‘Combine Source’ with virtually indistinguishable

error distributions. The observed average model-ranking was highly consistent over cross-validation

testing-splits (Figure 4—figure supplement 1), suggesting that the relative importance of the differ-

ent blocks of MEG features was systematic, hence, can be expected to generalize to future data.

The observed ranking between MEG models suggests that regional changes in source-level power

spectra contained most information while source-level connectivity added another portion of inde-

pendent information which helped improve prediction by at least 0.5 years on average. A similar pic-

ture emerged when inspecting the contribution of the Layer-I linear models to the performance of

the full model in terms of variable importance (Figure 4B). Sensor space features were least influen-

tial, whereas top contributing features were all related to power and connectivity, which, upon per-

mutation, increased the error by up to 1 year. The most informative input to the stacking model

were ridge regression models based on either signal power or the Hilbert analytic signal power

concatenated across frequency bands (Pcat, Ecat). Other noteworthy contributions were related to

power envelope covariance (without source leakage correction) as well as source power in the beta

(15–30 Hz) and alpha (8–15 Hz) band frequency range. The results suggest that regional changes in

power across different frequency bands are best summarized with a single linear model but addi-

tional non-linear additive effects may exist in specific frequency bands. The observed importance

rankings were highly consistent with importance rankings obtained from alternative methods for

extraction of variable importance (Figure 4—figure supplement 2), emphasizing the robustness of

these rankings.
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Moreover, partial dependence analysis (Karrer et al., 2019; Hastie et al., 2005, chapter 10.13.2)

suggested that the Layer-II random forest extracted non-linear functions (Figure 4—figure supple-

ment 3). Finally, the best stacked models scored lower errors than the best linear models (Figure 4—

figure supplement 4), suggesting that stacking achieved more than mere variable selection by

extracting non-redundant information from the inputs.

These findings show that MEG-based prediction of age is predominantly enabled by power spec-

tra that can be relatively easily accessed in terms of computation and data processing. Moreover,

the stacking approach applied to MEG data helped improve beyond linear models by upgrading to

non-linear regression.

Advantages of multimodal stacking can be maintained in populations
with incomplete data
One important obstacle for combining signals from multiple modalities in clinical settings is that not

all modalities are available for all cases. So far, we have restricted the analysis to 536 cases for which

all modalities were present. Can the advantage of multimodal stacking be preserved in the absence

of complete data or will missing values mitigate prediction performance? To investigate this ques-

tion, we trained our stacked model on all 674 cases for which we had the opportunity to extract at
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Figure 4. MEG performance was predominantly driven by source power. We used the stacking-method to investigate the impact of distinct blocks of

features on the performance of the full MEG model. We considered five models based on non-exhaustive combinations of features from three families.

‘Sensor Mixed’ included layer-1 predictions from auditory and visual evoked latencies, resting-state alpha-band peaks and 1/f slopes in low frequencies

and the beta band (sky blue). ‘Source Activity’ included layer-1 predictions from resting-state power spectra based on signals and envelopes

simultaneously or separately for all frequencies (dark orange). ‘Source Connectivity’ considered layer-1 predictions from resting-state source-level

connectivity (signals or envelopes) quantified by covariance and correlation (with or without orthogonalization), separately for each frequency (blue). For

an overview on features, see Table 2. Best results were obtained for the ‘Full’ model, yet, with negligible improvements compared to ‘Combined

Source’. (B) Importance of linear-inputs inside the layer-II random forest. X-axis: permutation importance estimating the average drop in performance

when shuffling one feature at a time. Y-axis: corresponding performance of the layer-I linear model. Model-family is indicated by color, characteristic

types of inputs or features by shape. Top-performing age-predictors are labeled for convenience (p=power, E = envelope, cat = concatenated across

frequencies, greek letters indicate the frequency band). It can be seen that solo-models based on source activity (red) performed consistently better

than solo-models based other families of features (blue) but were not necessarily more important. Certain layer-1-inputs from the connectivity family

received top-rankings, that is alpha-band and low beta-band covariances of the power envelopes. The most important and best performing layer-1

models concatenated source-power across all nine frequency bands. See Table 4 for full details on the top-10 layer-1 models. For additional details,

please consider our supplementary findings.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Rank statistics.

Figure supplement 2. Ranking-stability across methods for variable importance.

Figure supplement 3. Partial dependence.

Figure supplement 4. Performance of solo- versus stacking-models.

Engemann et al. eLife 2020;9:e54055. DOI: https://doi.org/10.7554/eLife.54055 9 of 32

Tools and resources Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.54055


least one feature on any modality, hence, opportunistic stacking (see Figure 1 and Table 3 in section

Sample in Materials and methods). We first compared the opportunistic model with the restricted

model on the cases with complete data Figure 5A. Across stacking models, performance was virtu-

ally identical, even when extending the comparison to the cases available to the sub-model with

fewer modalities, for example MRI and fMRI. We then scored the fully opportunistic model trained

on all cases and all modalities and compared it to different non-opportunistic sub-models on

restricted cases (Figure 5A, squares). The fully opportunistic model always out-performed the sub-

model. This raises the question of how the remaining cases would be predicted for which fewer

modalities were available. Figure 5B shows the performance of the opportunistic split by subgroups

defined by different combinations of input modalities available. As expected, performance

degraded considerably on subgroups for which important features (as delineated by the previous

results) were not available. See, for example, the subgroup for which only sensor-space MEG was

available. This is unsurprising, as prediction has to be based on data and is necessarily compromised

if the features important at train-time are not available at predict-time. One can, thus, say that the

opportunistic model operates conservatively: The performance on the subgroups reflects the quality

of the features available, hence, enables learning from the entire data.

It is important to emphasize that if missing values depend on age, the opportunistic model inevi-

tably captures this information, hence, bases its predictions on the non-random missing data. This

may be desirable or undesirable, depending on the applied context. To diagnose this model-behav-

ior, we propose to run the opportunistic random forest model with the observed missing values as

input and observations from the input modalities set to zero. In the current setting, the model

trained on missing data indicators performed at chance level

(Pr<Chance ¼ 30:00%, M ¼ 0:65, SD ¼ 1:68, P2:5;97:5 ¼ ½�2:96; 3:60�), suggesting that the missing values

were not informative of age.

Discussion
We have demonstrated improved learning of surrogate biomarkers by combining electrophysiology

as accessed through MEG, functional and anatomical MRI. Here, we have focused on the example of
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Figure 5. Opportunistic learning performance. (A) Comparisons between opportunistically trained model and models restricted to common available

cases. Opportunistic versus restricted model with different combinations scored on all 536 common cases (circles). Same analysis extended to include

extra common cases available for sub-models (squares). Fully opportunistic stacking model (all cases, all modalities) versus reduced non-opportunistic

sub-models (fewer modalities) on the cases available to the given sub-model (diamonds). One can see that multimodal stacking is generally of

advantage whenever multiple modalities are available and does not impact performance compared to restricted analysis on modality-complete data.

(B) Performance for opportunistically trained model for subgroups defined by different combinations of available input modalities, ordered by average

error. Points depict single-case prediction errors. Boxplot-whiskers show the 5% and 95% uncertainty intervals. When performance was degraded,

important modalities were absent or the number of cases was small, for example, in MEGsens where only sensor space features were present.
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age-prediction by multimodal modeling on 674 subjects from the Cam-CAN dataset, the currently

largest publicly available collection of MEG, fMRI and MRI data. Our results suggest that MEG and

fMRI both substantially improved age-prediction when combined with anatomical MRI. We have

then explored potential implications of the ensuing brain-age D as a surrogate-biomarker for cogni-

tive and physical health. Our results suggest that MEG and fMRI convey non-redundant information

on cognitive functioning and health, for example fluid intelligence, memory, sleep quality, cognitive

decline and depression. Moreover, combining all modalities has led to lower prediction errors.

Inspection of the MEG-based models suggested unique information on aging is conveyed by

regional distribution of power in the a (8–12 Hz) and b (15–30 Hz) frequency bands, in line with the

notion of spectral fingerprints (Keitel and Gross, 2016). When applied in clinical settings, multi-

modal approaches should make it more likely to detect relevant brain-behavior associations. We

have, therefore, addressed the issue of missing values, which is an important obstacle for multimodal

learning approaches in clinical settings. Our stacking model, trained on the entire data with an

opportunistic strategy, performed equivalently to the restricted model on common subsets of the

data and helped exploiting multimodal information to the extent available. This suggests that the

advantages of multimodal prediction can be maintained in practice.

fMRI and MEG reveal complementary information on cognitive aging
Our results have revealed complementary effects of anatomy and neurophysiology in age-prediction.

When adding either MEG or fMRI to the anatomy-based stacking model, the prediction error

markedly dropped (Figure 2A). Both, MEG and fMRI helped gain almost 1 year of error compared

to purely anatomy-based prediction. This finding suggests that both modalities access equivalent

information. This is in line with the literature on correspondence of MEG with fMRI in resting state

networks, highlighting the importance of spatially correlated slow fluctuations in brain oscillations

(Hipp and Siegel, 2015; Hipp et al., 2012; Brookes et al., 2011). On the other hand, recent find-

ings suggest that age-related variability in fMRI and EEG is independent to a substantial degree

(Kumral et al., 2020; Nentwich et al., 2020). Interestingly, the prediction errors of models with

MEG and models with fMRI were rather weakly correlated (Figure 2B, left panel). In some subpopu-

lations, they even seemed anti-correlated, such that predictions from MEG or fMRI, for the same

cases, were either accurate or extremely inaccurate. This additional finding suggests that the

improvements of MEG and fMRI over anatomical MRI are due to their access to complementary

information that helps predicting distinct cases. Indeed, as we combined MEG and fMRI in one com-

mon stacking model alongside anatomy, performance improved on average by 1.3 years over the

purely anatomical model, which is almost half a year more precise than the previous MEG-based and

fMRI-based models.

These results strongly argue in favor of the presence of an additive component, in line with the

common intuition that MEG and fMRI are complementary with regard to spatial and temporal reso-

lution. In this context, our results on performance decomposition in MEG (Figure 4) deliver one

potentially interesting hint. Source power, especially in the að8� 15HzÞ and bð15� 26HzÞ range were

the single most contributing type of feature (Figure 4A). However, connectivity features, in general,

and power-envelope connectivity, in particular, contributed substantively (Figure 4B, Table 4). Inter-

estingly, applying orthogonalization (Hipp et al., 2012; Hipp and Siegel, 2015) for removing source

leakage did not notably improve performance (Table 4). Against the background of research on

MEG-fMRI correspondence highlighting the importance of slow fluctuations of brain rhythms

(Hipp and Siegel, 2015; Brookes et al., 2011), this finding suggests that what renders MEG non-

redundant with regard to fMRI are regional differences in the balance of fast brain-rhythms, in partic-

ular in the a� b range.

Table 3. Available cases by input modality.

Modality MEG sensor MEG source MRI fMRI Common cases

cases 589 600 621 626 536

Note. MEG sensor space cases reflect separate task-related and resting state recordings corresponding to family ‘sensor mixed’ in Table 2. MEG source

space cases were exclusively based on the resting state recordings and mapped to family ‘source activity’ and ‘source connectivity’ in Table 2.
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While this interpretation may be enticing, an important caveat arises from the fact that fMRI sig-

nals are due to neurovascular coupling, hence, highly sensitive to events caused by sources other

than neuronal activity (Hosford and Gourine, 2019). Recent findings based on the dataset analyzed

in the present study have shown that the fMRI signal in elderly populations might predominantly

reflect vascular effects rather than neuronal activity (Tsvetanov et al., 2015). The observed comple-

mentarity of the fMRI and MEG in age prediction might, therefore, be conservatively explained by

the age-related increase in the ratio of vascular to neuronal contributions to the fMRI signal, while

MEG signals are directly induced by neuronal activity, regardless of aging. Nevertheless, in the con-

text of brain-age prediction these mechanisms are less important than the sensitivity of the predic-

tion, for instance, regarding behavioral outcomes.

In sum, our findings suggest that electrophysiology can make a difference in prediction problems

in which fast brain rhythms are strongly statistically related to the biomedical outcome of interest.

Brain age D as sensitive index of normative aging
In this study, we have conducted an exploratory analysis on what might be the cognitive and health-

related implications of our prediction models. Our findings suggest that the brain age D shows sub-

stantive associations with about 20–25% of all neuropsychological measures included. The overall

big-picture is congruent with the brain age literature (see discussion in Smith et al., 2019 for an

overview) and supports the interpretation of the brain age D as index of decline of physical health,

well-being and cognitive fitness. In this sample, larger values of the D were globally associated with

elevated depression scores, higher blood pressure, lower sleep quality, lower fluid intelligence,

lower scores in neurological assessment and lower memory performance. Most strikingly, we found

that fMRI and MEG contributed additive, if not unique information (Figure 3). For example, the

association with depression appeared first when predicting age from fMRI. Likewise, the association

with fluid intelligence and sleep quality visibly intensified when including MEG.

This extends the previous discussion in suggesting that MEG and fMRI are not only complemen-

tary for prediction but also with regard to characterizing brain-behavior mappings. In this context, it

is worwhile considering that predicting biomedical outcomes from multiple modalities may reduce

susceptibility to ‘modality impurity’ as often observed in modeling of individual differences in cogni-

tive abilities (Friedman and Miyake, 2004; Miyake et al., 2000). In the present study, it was remark-

able that cardiac measures were exclusively related to fMRI-based models and vanished as MEG was

included. This may not be entirely surprising as the fMRI signal is a combination of, both, vascular

and neuronal components (Hosford and Gourine, 2019) and aging affects both of them differently,

which poses an important challenges to fMRI-based studies of aging (Geerligs et al., 2017;

Tsvetanov et al., 2016). It is imaginable that the cardiac measures were not associated with brain

age estimates from fMRI when combined with the modalities as vascular components may have

enhanced the SNR of neuronal signals through deconfounding (for extensive discussion on this topic,

see Tsvetanov et al., 2019).

Table 4. Top-10 Layer-1 models from MEG ranked by variable importance.

ID Family Input Feature Variant Importance MAE

5 source activity envelope power Ecat 0.97 7.65

4 source activity signal power Pcat 0.96 7.62

7 source connectivity envelope covariance a 0.37 10.99

7 source connectivity envelope covariance blow 0.36 11.37

4 source activity signal power blow 0.29 8.79

5 source activity envelope power blow 0.28 8.96

7 source connectivity envelope covariance � 0.24 11.95

8 source connectivity envelope correlation a 0.21 10.99

8 source connectivity envelope correlation blow 0.19 11.38

6 source connectivity signal covariance bhi 0.19 12.13

Note. ID = mapping to rows from features. MAE = prediction performance of solo-models as in Figure 4.
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Which neuronal components might explain the enhanced brain-behavior links extracted from the

multimodal models? It is enticing to speculate that the regional power of fast-paced a and b band

brain rhythms captures fast-paced components of cognitive processes such as attentional sampling

or adaptive attention (Gola et al., 2013; Richard Clark et al., 2004), which, in turn might explain

unique variance in certain cognitive facets, such as fluid intelligence (Ouyang et al., 2020) or visual

short-term memory (Tallon-Baudry et al., 2001). On the other hand, functional connectivity between

cortical areas and subcortical structures, in particular the hippocampus, may be key for depression

and is well captured with fMRI (Stockmeier et al., 2004; Sheline et al., 2009; Rocca et al., 2015).

Unfortunately, modeling such mediation effects exceeds the scope of the current work, although it

would be worth being tested in an independent study with a dedicated design.

Could one argue that the overall effect sizes were too low to be considered practically interest-

ing? Indeed, the strength of linear association was below 0.5 in units of standard deviations of the

normalized predictors and the target. On the other hand, it is important to consider that the Cam-

CAN sample consists of healthy individuals only. It, thus, appears as rather striking that systematic

and neuropsychologically plausible effects can be detected. Our findings, therefore, argue in favor

of the brain age D being a sensitive marker of normative aging. The effects are expected to be far

more pronounced when applying the method in clinical settings, that is, in patients suffering from

mild cognitive impairment, depression, neurodevelopmental or neurodegenerative disorders. This

suggests that brain age D might be used as a screening tool for a wide array of clinical settings for

which the Cam-CAN dataset could serve as a normative sample.

Translation to the clinical setting
One critical factor for application of our approach in the clinic is the problem of incomplete availabil-

ity of medical imaging and physiological measurements. Here, we addressed this issue by applying

an opportunistic learning approach which enables learning from the data available at hand. Our anal-

ysis of opportunistic learning applied to age prediction revealed viable practical alternatives to con-

fining the analysis to cases for which all measurements are available. In fact, adding extra cases with

incomplete measurements never harmed prediction of the cases with complete data and the full

multimodal stacking always outperformed sub-models with fewer modalities (Figure 5A). Moreover,

the approach allowed maintaining and extending the performance to new cases with incomplete

modalities (Figure 5B). Importantly, performance on such subsets was explained by the performance

of a reduced model with the remaining modalities. Put differently, opportunistic stacking performed

as good as a model restricted to data with all modalities. In practice, the approach allows one to

improve predictions case-wise by including electrophysiology next to MRI or MRI next to electro-

physiology, whenever there is the opportunity to do so.

A second critical factor for translating our findings into the clinic is that, most of the time, it is not

high-density MEG that is available but low-density EEG. In this context, our finding showed that the

source power was the most important feature, which is of clear practical interest. This is because it

suggests that a rather simple statistical object accounts for the bulk of the performance of MEG.

Source power can be approximated by the sensor-level topography of power spectra which can be

computed on any multichannel EEG device in a few steps and only yields as many variables per fre-

quency band as there are channels. Moreover, from a statistical standpoint, computing the power

spectrum amounts to estimating the marginal expectation of the signal variance, which can be

thought of as main effect. On the other hand, connectivity is often operationalized as bivariate inter-

action, which gives rise to a more complex statistical object of higher dimensionality whose precise,

reproducible estimation may require far more samples. Moreover, as is the case for power envelope

connectivity estimation, additional processing steps each of which may add researcher degrees of

freedom (Simmons et al., 2011), such as the choice between Hilbert (Brookes et al., 2011) versus

Wavelet filtering (Hipp et al., 2012), types of orthogonalization (Baker et al., 2014), and potentially

thresholding for topological analysis (Khan et al., 2018). This nourishes the hope that our findings

will generalize and similar performance can be unlocked on simpler EEG devices with fewer chan-

nels. While clinical EEG may not well resolve functional connectivity it may be good enough to

resolve changes in the source geometry of the power spectrum (Sabbagh et al., 2020). On the other

hand, source localization may be critical in this context as linear field spread actually results in a non-

linear transform when considering the power of a source (Sabbagh et al., 2019). However, in prac-

tice, it may be hard to conduct high-fidelity source localization on the basis of low-density EEG and
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frequently absent information on the individual anatomy. It will, therefore, be critical to benchmark

and improve learning from power topographies in clinical settings.

Finally, it is worthwhile to highlight that, here, we have focused on age in the more specific con-

text of the brain age D as surrogate biomarker. However, the proposed approach is fully compatible

with any target of interest and may be easily applied directly to clinical end points, for example drug

dosage, survival or diagnosis. Moreover, the approach presented here can be easily adapted to

work with classification problems, for instance, by substituting logistic regression for ridge regression

and by using a random forest classifier in the stacking layer. We have provided all materials from our

study in form of publicly available version-controlled code with the hope to help other teams of bio-

medical researchers to adapt our method to their prediction problem.

Limitations
For the present study, we see four principal limitations: availability of data, interpretability, non-

exhaustive feature-engineering and potential lack of generalizability due to the focus on MEG.

The Cam-CAN is a unique resource of multimodal neuroimaging data with sufficient data points

to enable machine learning approaches. Yet, from the point of view of machine learning, the Cam-

CAN dataset is a small dataset. This has at least two consequences. If the Cam-CAN included many

more data points, for example beyond 10–100 k subjects, the proposed stacking model might possi-

bly be of limited advantage compared to purely non-linear models, for example random forests, gra-

dient boosting or deep learning methods (Bzdok and Yeo, 2017). At the same time, the fact that

the Cam-CAN has been unique so far, hinders generalization testing to equivalent multimodal data-

sets from other sites based on alternative scanning methodologies, protocols and devices

(Engemann et al., 2018). This also renders computation of numerical hypothesis tests (including

p-values) more difficult in the context of predictive modeling: The majority of data points is needed

for model-fitting and metrics derived from left-out cross-validation splits, for example, predictions of

brain age, lack statistical independence. This breaks essential assumptions of inferential statistics to

an arbitrary and unknown degree. Our inferences were, therefore, predominantly based on esti-

mated effect-sizes, that is the expected generalization error and its uncertainty assessed through

cross-validation.

Second, at this point, statistical modeling faces the dilemma of whether inference or prediction is

the priority. Procedures optimizing prediction performance in high dimensions are not yet supported

by the in-depth understanding required to guarantee formal statistical inferences, whereas models

with well-established procedures for statistical inference lack predictive capability (Bzdok et al.,

2018; Bzdok and Ioannidis, 2019). Forcing interpretation out of machine learning models, there-

fore, often leads to duplicated analysis pipelines and model specifications, which is undesirable in

terms of methodological coherence (for example Hoyos-Idrobo et al., 2019; Haufe et al., 2014;

Biecek, 2018). In the present work, we refrained from conducting fine-grained inferential analysis

beyond the model comparisons presented, in particular inspection of layer-1 weightmaps whose

interpretation remains an ongoing research effort. We hope, nevertheless, that the insights from our

work will stimulate studies investigating the link between MEG, fMRI and MRI across the life-span

using an inference-oriented framework.

Third, the MEG-features used in the present study were non-exhaustive. Based on the wider

MEG/EEG-literature beyond the neuroscience of aging, many other features could have been

included. Instead, feature-engineering was based on our aging-specific literature review constrained

by biophysical considerations. In particular, the distinction between sensor-space and source-space

features was purely descriptive and not substantive. From an empirical perspective, mirroring all fea-

tures in sensor-space and source-space could have yielded more specific inferences, for example

regarding the role of source-power. On the other hand, biophysical prior knowledge implies that

oscillatory peak frequencies and evoked response latencies are not modified by source localization,

whereas source localization or data-driven approximations thereof are essential for predicting from

M/EEG power spectra (Sabbagh et al., 2019). It is also fair to admit that, in the present paper, our

passion was preferentially attracted by source modeling of neural power spectra. However, one

could imagine that with equal investment of resources, more information could have been extracted

from the sensor-level features (see Gemein et al., 2020 for approaches to tackle the important

methodological issue of unbalanced investment of development-time). Related, the current work has

strongly benefited from expertise on modeling of MEG power spectra under the assumption of
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stationary as captured by global power spectra, covariance or connectivity. Recent findings suggest

that non-stationary analyses focusing on transient electrophysiological events may uncover clinically

relevant information on cognitive brain dynamics (Barttfeld et al., 2015; Baker et al., 2014;

Vidaurre et al., 2018; Van Schependom et al., 2019). It is, therefore, important to highlight that

our proposed framework is open and readily enables integration of additional low- or high-dimen-

sional inputs related to richer sensor-level features or non-stationary dynamics, beyond MEG as input

modality.

Finally, while MEG and EEG share the same types of neural generators, their specific biophysics

render these methods complementary for studying neuronal activity. At this point, unfortunately,

there is no public dataset equivalent of the Cam-CAN including EEG or, both, EEG and MEG. Such

a data resource would have enabled studying the complementarity between MEG with EEG as well

as generalization from stacking with MRI and MEG to stacking models with MRI and EEG.

We hope that our method will help other scientists to incorporate the multimodal features related

to their domain expertise into their applied regression problems.

Materials and methods

Sample
We included MEG (task and rest), fMRI (rest), anatomical MRI and neuropsychological data (cognitive

tests, home-interview, questionnaires) from the CAM-Can dataset (Shafto et al., 2014). Our sample

comprised 674 (340 female) healthy individuals between 18 (female = 18) to 88 (female = 87) years

with an average of 54.2 (female = 53.7) and a standard deviation of 18.7 (female = 18.8) years. We

included data according to availability and did not apply an explicit criterion for exclusion. When

automated processing resulted in errors, we considered the data as missing. This induced additional

missing data for some cases. A summary of available cases by input modality is reported in Table 3.

For technical details regarding the MEG, fMRI, and MRI data acquisition, please consider the Cam-

CAN reference publications (Shafto et al., 2014; Taylor et al., 2017).

Feature extraction
Feature extraction was guided by the perspective of predictive modeling. For the goal of enhancing

prediction performance as opposed to statistical inference (Bzdok and Ioannidis, 2019), we empha-

sized on differences between modalities, hence, chose modality-specific methods and optimizations

at the risk of sacrificing direct comparability between features used for MEG, fMRI and MRI. The

selection of features was guided by our literature review on the neuroscience of aging presented in

the introduction.

For MEG, we analyzed sensor space features related to timing (Price et al., 2017), peak fre-

quency (Richard Clark et al., 2004) and temporal autocorrelation (Voytek et al., 2015). Source

space features included the power of source-level signals (Sabbagh et al., 2019) and envelopes and

their bivariate interactions (Khan et al., 2018) in nine frequency bands (see Table 1, adapted from

the Human Connectome Project, Larson-Prior et al., 2013). The inclusion of power envelopes was

theoretically important as the slow fluctuations of source power and their bivariate interactions have

been repeatedly linked to fMRI resting state networks (Hipp and Siegel, 2015; Brookes et al.,

2011). On the other hand, we specifically focused on the unique capacity of MEG to access spatial

information induced by fast-paced brain rhythms emerging from regional sources (King and

Dehaene, 2014; Stokes et al., 2015).

For extracting features from MRI and fMRI, we adapted the approach established by Liem et al.,

2017. For fMRI, we computed bivariate functional connectivity estimates. For MRI, we focused on

cortical thickness, cortical surface area and subcortical volumes. An overview on all features used is

presented in Table 2. In the remainder of this section, we describe computation details.

MEG features
Peak evoked latency
Sensory processing may slow down in the course of aging (Price et al., 2017). Here, we assessed

the evoked response latency during auditory, visual and simultaneous audiovisual stimulation (index

1, Table 2). For each of the conditions, we first computed the evoked response. Then, we computed
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the root-mean-square across gradiometers and looked up the time of the maximum. In total, this

yielded three latency values per subject.

a-band peak frequency
Research suggests that the alpha-band frequency may be lower in older people. Here, we computed

the resting-state power spectrum using a Welch estimator (index 2, Table 2). Then, we estimated

the peak frequency between 6 and 15 Hz on occipito-parietal magnetometers after removing the 1/f

trend using a polynomial regression (degree = 15) by computing the maximum power across sensors

and looking up the frequency bin. This yielded one peak value per subject.

1/f slope
Long-range auto-correlation in neural time-series gives rise to the characteristic 1/f decay of power

on a logarithmic scale. Increases of neural noise during aging are thought to lead to reduced auto-

correlation, hence a more shallow slope (Voytek et al., 2015). We computed the 1/f slope from the

Welch power spectral estimates above on all magnetometers using linear regression (index 3,

Table 2). The slope is given by the b̂ of the linear fit with the log-frequencies as predictor and the

log-power as target. We obtained one estimate for each of the 102 magnetometers, resulting in a 1/

f topography. No further reduction was applied.

Power and connectivity of source-level signals
The cortical generators of the brain-rhythms dominating the power spectrum change across life-

span. To predict from the spatial distribution of MEG power spectra, we relied on source-localization

to mitigate distortions due to individual head geometry. We adopted the pipeline optimized for

high-dimensional regression presented in Sabbagh et al., 2019 and modeled power spectra in the

time-domain based on covariance estimates after bandpass-filtering. We considered nine frequency

bands (see Table 1), computed bandpass-filtered minimum norm source-estimates and then summa-

rized the source-time courses ROI-wise by the first principal components with alignment to the sur-

face normals using the ‘pca_flip’ option provided by MNE-Python (Gramfort et al., 2013). To

mitigate the curse of dimensionality we used a subdivision of the Desikan-Killiany atlas

(Desikan et al., 2006) comprising 448 ROIs. This set of ROIs proposed by Khan et al., 2018 for pre-

dictive modeling of neurodevelopmental trajectories was specifically designed to generate approxi-

mately equal ROI-size to avoid averaging over inhomogeneous regions with distinct leadfield

coverage or to avoid averaging over larger regions that may contain multiple sources cancelling

each other. Subsequently, we computed the covariance matrix from the concatenated epochs and

used the 448 diagonal entries as power estimates (index 4 Table 2). The off-diagonal entries served

as connectivity estimates. Covariance matrices live in a non-Euclidean curved space. To avoid model

violations at the subsequent linear-modeling stages, we used tangent space projection

(Varoquaux et al., 2010) to vectorize the lower triangle of the covariance matrix. This projection

allows one to treat entries of the covariance or correlation matrix as regular Euclidean objects, hence

avoid violations to the linear model used for regression (Sabbagh et al., 2019). This yielded

448� 448=2� ð448=2Þ ¼ 100; 128 connectivity values per subject (index 6 Table 2).

Power and connectivity of source-level envelopes
Brain-rhythms are not constant in time but fluctuate in intensity. These slow fluctuations are techni-

cally captured by power envelopes and may show characteristic patterns of spatial correlation. To

estimate power envelopes, for each frequency band, we computed the analytic signal using the Hil-

bert transform. For computational efficiency, we calculated the complex-valued analytic signal in

sensor space and then source-localized it using the linear minimum norm operator. To preserve lin-

earity, we only extracted the power envelopes by taking the absolute value of the analytic signal

after having performed averaging inside the ROIs. Once the envelope time-series was computed,

we applied the same procedure as for source power (paragraph above) to estimate the source

power of the envelopes (index 5, Table 2) and their connectivity. Power and covariance were com-

puted from concatenated epochs, correlation and orthogonalized correlation were computed

epoch-wise. Note that, for systematic reasons, we also included power estimates of the envelope

time-series applying the same method as we used for the time-series. In the MEG literature, enve-

lope correlation is a well-established research topic (Hipp et al., 2012; Brookes et al., 2011). Thus,
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in addtition to the covariance, we computed the commonly used normalized Pearson correlations

and orthogonalized Pearson correlations which are designed to mitigate source leakage (index 7–9,

Table 2). However, as a result of orthogonalization, the resulting matrix is not any longer positive

definite and cannot be projected to the tangent space using Riemannian geometry. Therefore, we

used Fisher’s Z- transform (Silver and Dunlap, 1987) to convert the correlation matrix into a set of

standard-normal variables. The transform is defined as the inverse hyperbolic tangent function of the

correlation coefficient: z ¼ arctanhðrÞ ¼ 1

2
logð1þr

1�r
Þ. This yielded 448 power envelope power estimates

and 100,128 connectivity values per estimator.

fMRI features
Functional connectivity
Large-scale neuronal interactions between distinct brain networks has been repeatedly shown to

change during healthy aging. Over the past years, for fMRI-based predictive modeling using func-

tional atlases from about 50 to 1000 ROIs have emerged as a fundamental element for mitigating

heterogeneity and dimensionality reduction, especially in small- to medium-sized datasets such as

the Cam-CAN with less than 1000 observations (Dadi et al., 2019; Abraham et al., 2017). To esti-

mate macroscopic functional connectivity, we deviated from the 197-ROI BASC atlas Bellec et al.,

2010 used in Liem et al., 2017. Instead, we used an atlas with 256 sparse and partially overlapping

ROIs obtained from Massive Online Dictionary Learning (MODL) (Mensch et al., 2016). Initial pilot-

ing suggested that both methods gave approximately equivalent results on average with slightly

reduced variance for the MODL atlas. Then, we computed bivariate amplitude interactions using

Pearson correlations from the ROI-wise average time-series (index 10, Table 2). Again, we used tan-

gent space projection (Varoquaux et al., 2010) to vectorize the correlation matrices. This yielded

32,640 connectivity values from the lower triangle of each matrix. No further reduction was applied.

MRI features
The extraction of features from MRI followed the previously established strategy presented in

Liem et al., 2017 which is based on cortical surface reconstruction using the FreeSurfer software.

For scientific references to specific procedures, see the section MRI data processing and the Free-

Surfer website http://freesurfer.net/.

Cortical thickness
Aging-related brain atrophy has been related to thinning of the cortical tissue (for example

Thambisetty et al., 2010). We extracted cortical thickness, defined as shortest distance between

white and pial surfaces, from the Freesurfer (Fischl, 2012) segmentation using a surface tessellation

with 5124 vertices in fsaverage4 space obtained from the FreeSurfer command mris_preproc

using default parameters (index 11, Table 2). No further reduction was computed.

Cortical surface area
Aging is also reflected in shrinkage of the cortical surface itself (for example Lemaitre et al., 2012).

We extracted vertex-wise cortical surface area estimates, defined as average of the faces adjacent to

a vertex along the white surface, from the Freesurfer segmentation using a surface tessellation with

5124 vertices in fsaverage4 space obtained from the FreeSufer command mris_preproc using

default parameters (index 12, Table 2). No further reduction was computed.

Subcortical volumes
The volume of subcortical structures has been linked to aging (for example Murphy et al., 1992).

Here, we used the FreeSurfer command asegstats2table, using default parameters, to obtain

estimates of the subcortical volumes and global volume, yielding 66 values for each subject with no

further reductions (index 13, Table 2).

Stacked-prediction model for opportunistic learning
We used the stacking framework (Wolpert, 1992) to build our predictive model. However, we made

the important specification that input models were regularized linear models trained on input data
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from different modalities, whereas stacking of linear predictions was achieved by a non-linear regres-

sion model. Our model can be intuitively denoted as follows:

y¼ f ð½X1b1 . . .Xmbm�Þ (1)

Here, each Xjbj is the vector of predictions ŷj of the target vector y from the jth model fitted using

input data Xj:

fy¼ X1b1 þ �1; . . . ;y¼ Xmbmþ �mg (2)

We used ridge regression as input model and a random forest regressor as a general function

approximator f [Ch. 15.4.3](Hastie et al., 2005). A visual illustration of the model is presented in

Figure 1.

Layer-1: Ridge regression
Results from statistical decision theory suggests that, for linear models, the expected out-of-sample

error increases only linearly with the number of variables included in a prediction problem

(Hastie et al., 2005, chapter 2), not exponentially. In practice, biased (or penalized) linear models

with Gaussian priors on the coefficients, that is ridge regression (or logistic regression for classifica-

tion) with ‘2-penalty (squared ‘2 norm) are hard to outperform in neuroimaging settings (Dadi et al.,

2019). Ridge regression can be seen as extension of ordinary least squares (OLS) where the solution

is biased such that the coefficients estimated from the data are conservatively pushed toward zero:

b̂ridge ¼ ðX>XþlIÞ�1
X>y; (3)

The estimated coefficients approach zero as the penalty term l grows, and the solution

approaches the OLS fit as l gets closer to zero. This shrinkage affects directions of variance with

small singular values more strongly than the ones with large singular values (see eqs. 3.47-3.50 in

Hastie et al., 2005, ch. 3.4.1), hence, can be seen as smooth principal component analysis as direc-

tions of variance are shrunk but no dimension is ever fully discarded. This is the same as assuming

that the coefficient vector comes from a Gaussian distribution centered around zero such that

increasing shrinkage reduces the variance s2 of that distribution [chapter 7.3] (Efron and Hastie,

2016):

b~N 0;
s2

l
I

� �

(4)

In practice, the optimal strength for this Gaussian prior is often unknown. For predictive model-

ing, l is commonly chosen in a data-driven fashion such that one improves the expected out-of-sam-

ple error, for example tuned using cross-validation. We tuned l using generalized cross-validation

(Golub et al., 1979) and considered 100 candidate values on an evenly spaced logarithmic scale

between 10-3 and 105. This can be regarded equivalent to assuming a flat but discrete hyper-prior (a

prior distribution of the hyper-parameters assumed for the model parameters) on the distribution of

candidate regularization-strengths. Note that this procedure is computationally efficient and, on our

problem, returned entire regularization paths within seconds. While this approach is standard-prac-

tice in applied machine learning and particularly useful with massive and high-dimensional data,

many other methods exist for data-driven choice of the prior which may be more appropriate in sit-

uations on smaller datasets and where parameter inference, not prediction, is the priority.

Layer-2: Random forest regression
However, the performance of the ridge model in high dimensions comes at the price of increasing

bias. The stacking model tries to alleviate this issue by reducing the dimensionality in creating a

derived data set of linear predictions, which can then be forwarded to a more flexible local regres-

sion model. Here, we chose the random forest algorithm (Breiman, 2001) which can be seen as a

general function approximator and has been interpreted as an adaptive nearest neighbors algorithm

(Hastie et al., 2005, chapter 15.4.3). Random forests can learn a wide range of functions and are

capable of automatically detecting non-linear interaction effects with little tuning of hyper-
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parameters. They are based on two principles: regression trees and bagging (bootstrapping and

aggregating). Regression trees are non-parametric methods and recursively subdivide the input data

by finding combinations of thresholds that relate value ranges of the input variables to the target.

The principle is illustrated at the right bottom of Figure 1. For a fully grown tree, each sample falls

into one leaf of the tree which is defined by its unique path through combinations of input-variable

thresholds through the tree. However, regression trees tend to easily overfit. This is counteracted by

randomly generating alternative trees from bootstrap replica of the dataset and randomly selecting

subset of variables for each tree. Importantly, thresholds are by default optimized with regard to a

so-called impurity criterion, for which we used mean squared error. Predictions are then averaged,

which mitigates overfitting and also explains how continuous predictions can be obtained from

thresholds.

In practice, it is common to use a generous number of trees as performance plateaus once a cer-

tain number is reached, which may lay between hundreds or thousands. Here, we used 1000 trees.

Moreover, limiting the overall depth of the trees can increase bias and mitigate overfitting at the

expense of model complexity. An intuitive way of conceptualizing this step is to think of the tree-

depth in terms of orders interaction effects. A tree with three nodes enables learning three-way

interactions. Here, we tuned the model to choose between depth-values of 4, 6, or 8 or the option

of not constraining the depth. Finally, the total number of features sampled at each node determines

the degree to which the individual trees are independent or correlated. Small number of variables

de-correlate the trees but make it harder to find important variables as the number of input variables

increases. On the other hand, using more variables at once leads to more exhaustive search of good

thresholds, but may increase overfitting. As our stacking models had to deal with different number

of input variables, we had to tune this parameter and let the model select between
ffiffiffi

p
p

, logðpÞ and

all p input variables. We implemented selection of tuning-parameters by grid search as (nested) 5-

fold cross-validation with the same scoring as used for evaluation of the model performance,

that is mean absolute error. The choice of the mean absolute error is a natural choice for the study

of aging as error is directly expressed in the units of interest.

Stacked cross-validation
We used a 10-fold cross-validation scheme. To mitigate bias due to the actual order of the data, we

repeated the procedure 10 times while reshuffling the data at each repeat. We then generated age-

predictions from each layer-1 model on the left-out folds, such that we had for each case one age-

prediction per repeat. We then stored the indices for each fold to make sure the random forest was

trained on left-out predictions for the ridge models. This ensured that the input-layer train-test splits

where carried forward to layer-2 and that the stacking model was always evaluated on left-out folds

in which the input ages are actual predictions and the targets have not been seen by the model.

Here, we customized the stacking procedure to be able to unbox and analyze the input-age predic-

tions and implement opportunistic handling of missing values.

Variable importance
Random forest models and, in general, regression trees are often inspected by estimating the

impact of each variable on the prediction performance. This is commonly achieved by computing

the so-called variable importance. The idea is to track and sum across all trees the relative reduction

of impurity each time a given variable is used to split, hence, the name mean decrease impurity

(MDI). The decrease in impurity can be tracked by regular performance metrics. Here we used mean

squared error, which is the default option for random forest regression in scikit-learn

(Pedregosa et al., 2011). It has been shown that in correlated trees, variable importance can be

biased and lead to masking effects, that is, fail to detect important variables (Louppe et al., 2013)

or suggest noise-variables to be important. One potential remedy is to increase the randomness of

the trees, for example by selecting randomly a single variable for splitting and using extremely ran-

domized trees (Geurts et al., 2006; Engemann et al., 2018), as it can be mathematically guaran-

teed that in fully randomized trees only actually important variables are assigned importance

(Louppe et al., 2013). However, such measures may mitigate prediction performance or lead to

duplicated model specifications (one model for predicting, one for analyzing variable importance).

Here, we used the approach from the original random forest paper (Breiman, 2001), which consists
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in permuting k times one variable at a time and measuring the drop in performance at the units of

performance scoring, that is mean absolute error in years. We computed permutation importance

with k ¼ 1000 after fitting the random forest to the cross-validated predictions from the layer-1

models.

In-sample permutation importance is computationally convenient but may potentially suffer from

an irreducible risk of overfitting, even when taking precautions such as limiting the tree-depth. This

risk can be avoided by computing the permutations on left-out data, that is by permuting the varia-

bles in the testing-set, which can be computationally expensive. However, permutation importance

(whether computed on training- or testing -data) has the known disadvantage that it does not cap-

ture conditional dependencies or higher order interactions between variables. For example, a vari-

able may not be so important in itself but its interaction with other variables makes it an important

predictor. Such conditional dependencies between variables can be captured with MDI importance.

To diagnose potential overfitting and to assess the impact of conditional dependencies, we addi-

tionally reported out-of-sample permutation importance and MDI importance. We computed out-of-

sample permutation importance for each of the 100 splits from our cross-validation procedure with a

reduced number of permutations (k ¼ 100) to avoid excessive computation times. MDI importance

was based on the same model fit as the in-sample permutations.

Opportunistic learning with missing values
An important option for our stacking model concerns handling missing values. Here, we imple-

mented the double-coding approach (Josse et al., 2019) which duplicates the features and once

assigns the missing value a very small and once a very large number (see also illustration in Figure 1).

As our stacked input data consisted of age predictions from the ridge models, we used biologically

implausible values of �1000 and 1000. This amounts to turning missing values into features and let

the stacking model potentially learn from the missing values, as the reason for the missing value may

contain information on the target. For example, an elderly patient may not be in the best conditions

for an MRI scan, but nevertheless qualifies for electrophysiological assessment.

To implement opportunistic stacking, we considered the full dataset with missing values and then

kept track of missing data while training layer-1. This yielded the stacking-data consisting of the

age-predictions and missing values. Stacking was then performed after applying the feature-coding

of missing values. This procedure made sure that all training and test splits were defined with regard

to the full cases and, hence, the stacking model could be applied to all cases after feature-coding of

missing values.

Statistical inference
Rejecting a null-hypothesis regarding differences between two cross-validated models is problematic

in the absence of sufficiently large unseen data or independent datasets: cross-validated scores are

not statistically independent. Fortunately, cross-validation yields useful empirical estimates of the

performance (and its dispersion) that can be expected on unseen data (Hastie et al., 2005, Ch.

7.10). Here, we relied on uncertainty estimates of paired differences based on the stacked cross-vali-

dation with 10 folds and 10 repeats. To provide a quantitative summary of the distributions of paired

split-wise differences in performance, we extracted the mean, the standard deviation, the 2.5 and

97.5 percentiles (inner 95% of the distribution) as well as the number of splits in which a model was

better than a given reference (Pr<Ref Þ. We estimated chance-level prediction using a dummy regres-

sor that predicts the average of the training-set target using the same cross-validation procedure

and identical random seeds to ensure split-wise comparability between non-trivial models. While not

readily supporting computation of p-values, dummy estimates are computationally efficient and yield

distributions equivalent to those obtained from label-permutation procedures. For statistical analy-

ses linking external measurements with model-derived quantities such as the cross-validated age

prediction or the brain age D, we used classical parametric hypothesis-testing. It should be clear,

however, that hypothesis-testing, here, provides a quantitative orientation that needs to be contex-

tualized by empirical estimates of effect sizes and their uncertainty to support inference.
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Analysis of brain-behavior correlation
To explore the cognitive implications of the brain age D, we computed correlations with the neuro-

behavioral score from the Cam-CAN dataset. Table 5 lists the scores we considered. The measures

fall into three broad classes: neuropsychology, physiology and questionnaires (‘Type’ columns in

Table 5). Extraction of neuropsychological scores sometimes required additional computation, which

followed the description in Shafto et al., 2014, (see also ‘Variables’ column in scores). For some

neuropsychological tasks, the Cam-CAN dataset provided multiple scores and sometimes the final

score of interest as described in Shafto et al., 2014, had yet to be computed. At times, this

amounted to computing ratios, averages or differences between different scores. In other scores, it

was not obvious how to aggregate multiple interrelated sub-scores, hence, we extracted the first

principal component explaining between about 50% and 85% of variance, hence offering reasonable

summaries. In total, we included 38 variables. All neuropsychology and physiology scores (up to #17

in Table 5) were the scores available in the ‘cc770-scored’ folder from release 001 of the Cam-CAN

dataset. We selected the additional questionnaire scores (#18-23 in Table 5) on theoretical grounds

to provide an assessment of clinically relevant individual differences in cognitive functioning. The

brain age D was defined as the difference between predicted and actual age of the person

BrainAgeD ¼ agepred � age; (5)

Table 5. Summary of neurobehavioral scores.

# Name Type Variables (38)

1 Benton faces neuropsychology total score (1)

2 Emotional expression recognition . . . PC1 of RT (1), EV = 0.66

3 Emotional memory . . . PC1 by memory type (3), EV = 0.48,0.66,0.85

4 Emotion regulation . . . positive and negative reactivity, regulation (3)

5 Famous faces . . . mean familiar details ratio (1)

6 Fluid intelligence . . . total score (1)

7 Force matching . . . Finger- and slider-overcompensation (2)

7 Hotel task . . . time(1)

9 Motor learning . . . M and SD of trajectory error (2)

10 Picture priming . . . baseline RT, baseline ACC (4)

. . . . . . . . . M prime RT contrast, M target RT contrast

11 Proverb comprehension . . . score (1)

12 RT choice . . . M RT (1)

13 RT simple . . . M RT (1)

14 Sentence comprehension . . . unacceptable error, M RT (2)

15 Tip-of-the-tounge task . . . ratio (1)

16 Visual short term memory . . . K (M,precision,doubt,MSE) (4)

17 Cardio markers physiology pulse, systolic and diastolic pressure 3)

18 PSQI questionnaire total score (1)

19 Hours slept . . . total score (1)

20 HADS (Depression) . . . total score (1)

21 HADS (Anxiety) . . . total score (1)

22 ACE-R . . . total score (1)

23 MMSE . . . total score (1)

Note. M = mean, SD = standard deviation, RT = reaction time, PC = principal component, EV = explained variance

ratio (between 0 and 1), ACC = accuracy, PSQI = Pittsburgh Sleep Quality Index HADS = Hospital Anxiety and epres-

sion Scale, ACE-R = Addenbrookes Cognitive Examination Revised, MMSE = Mini Mental State Examination. Num-

bers in parentheses indicate how many variables were extracted.
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such that positive values quantify overestimation and negative value underestimation. A common

problem in establishing brain-behavior correlations for brain age is spurious correlations due to

shared age-related variance in the brain age D and the neurobehavioral score (Smith et al., 2019).

To mitigate confounding effects of age, we computed the age residuals as

scoreresid ¼ score� scoreage; (6)

where score is the observed neuropsychological score and scoreage is its prediction from the following

polynomial regression:

scoreage ¼ ageb1 þ age2b2þ age3b3þ �; (7)

The estimated linear association between the residualized score and the brain age D was given by

b1 in

scoreresid ¼BrainAgeDb1 þ �; (8)

To obtain comparable coefficients across scores, we standardized both the age and the scores.

We also included intercept terms in all models which are omitted here for simplicity.

It has been recently demonstrated, that such a two-step procedure can lead to spurious associa-

tions (Lindquist et al., 2019). We have, therefore, repeated the analysis with a joint deconfounding

model where the polynomial terms for age are entered into the regression model alongside the

brain age predictor.

score¼BrainAgeDb1 þ ageb2 þ age2b3 þ age3b4 þ �: (9)

Finally, the results may be due to confounding variable of non-interest. To assess the importance

of such confounders, we have extended the model (Equation 9) to also include gender, handedness

(binarized) and a log Frobenius norm of the variability of motion parameters (three translation, three

rotation) over the 241 acquired images.

score ¼BrainAgeDb1 þ genderb2 þhandbinaryb3þ
logðnormðmotionÞÞb4 þ ageb5þ age2b6 þ age3b7 þ �:

(10)

Note that motion correction was already performed during preprocessing of MRI and fMRI. Like-

wise, MEG source localization took into account individual head geometry as well as potentially con-

founding environmental noise through whitening with the noise covariance obtained from empty

room recordings. Following the work by Liem et al., 2017, we included total grey matter and total

intracranial volume as important features of interest among the MRI-features.

MEG data processing
Data acquisition
MEG recorded at a single site using a 306 VectorView system (Elekta Neuromag, Helsinki). This sys-

tem is equipped with 102 magnetometers and 204 orthogonal planar gradiometers is placed in a

light magnetically shielded room. During acquisition, an online filter was applied between around

0.03 Hz and 1000 Hz. This resulted in a sampling-frequency of 1000 Hz. To support offline artifact

correction, vertical and horizontal electrooculogram (VEOG, HEOG) as well as electrocardiogram

(ECG) signal was concomitantly recorded. Four Head-Position Indicator (HPI) coils were used to mea-

sure the position of the head. All types of recordings, that is resting-state, passive stimulation and

the active task lasted about 8 min. For additional details on MEG acquisition, please consider the

reference publications of the Cam-CAN dataset (Taylor et al., 2017; Shafto et al., 2014). The fol-

lowing sections will describe the custom data processing conducted in our study.

Artifact removal
Environmental artifacts
To mitigate contamination of the MEG signal with artifacts produced by environmental magnetic

sources, we applied temporal signal-space-separation (tSSS) (Taulu and Kajola, 2005). The method

uses spherical harmonic decomposition to separate spatial patterns produced by sources inside the
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head from patterns produced by external sources. We used the default settings with eight

components for the harmonic decomposition of the internal sources, and three for the external sour-

ces on a ten seconds sliding window. We used a correlation threshold of 98% to ignore segments in

which inner and outer signal components are poorly distinguishable. We performed no movement

compensation, since there were no continuous head monitoring data available at the time of our

study. The origin of internal and external multipolar moment space was estimated based on the

head-digitization. We computed tSSS using the MNE maxwell_filter function (Gramfort et al.,

2013) but relied on the SSS processing logfiles from Cam-CAN for defining bad channels.

Physiological artifacts
To mitigate signal distortions caused by eye-movements and heart-beats we used signal space pro-

jection (SSP) (Uusitalo and Ilmoniemi, 1997). This method learns principal components on contami-

nated data-segments and then projects the signal into the sub-space orthogonal to the artifact. To

obtain clean estimates, we excluded bad data segments from the EOG/ECG channels using the

‘global’ option from autoreject (Jas et al., 2017). We then averaged the artefact-evoked signal (see

‘average’ option in mne.preprocessing.compute_proj_ecg) to enhance subspace estimation

and only considered one single projection vector to preserve as much signal as possible.

Rejection of residual artifacts
To avoid contamination with artifacts that were not removed by SSS or SSP, we used the ‘global’

option from autoreject (Jas et al., 2017). This yielded a data-driven selection of the amplitude range

above which data segments were excluded from the analysis.

Temporal filtering
To study band-limited brain dynamics, we applied bandpass-filtering using the frequency band defi-

nitions in Table 1. We used default filter settings from the MNE software (development version 0.19)

with a windowed time-domain design (firwin) and Hamming taper. Filter length and transition band-

width was set using the ‘auto’ option and depended on the data.

Epoching
For the active and passive tasks, we considered time windows between �200 and 700 ms around

stimulus-onset and decimated the signal by retaining every eighth time sample.

For resting-state, we considered sliding windows of 5 s duration with no overlap and no baseline

correction. To reduce computation time, we retained the first 5 min of the recording and decimated

the signal by retaining every fifth time sample. Given the sampling frequency of 1000 Hz, this left

unaffected the bulk of the features, only reducing the spectral resolution in the high gamma band to

75–100 Hz (instead of 75–120 Hz in the definition proposed by the Human Connectome Project [Lar-

son-Prior et al., 2013]).

Channel selection
It is important to highlight that after SSS, the magnetometer and gradiometer data are reprojected

from a common lower dimensional SSS coordinate system that typically spans between 64 and 80

dimensions. After SSS, magnetometers and gradiometers are reconstructed from the same basis

vectors, which makes them linear combinations of another (Taulu and Kajola, 2005). As a result,

both sensor types contain highly similar information and yield equivalent results in many situations

(Garcés et al., 2017). Consequently, after applying SSS, the MNE software manipulates a single sen-

sor type for source localization and uses as degrees of freedom the number of underlying SSS

dimensions instead of the number of channels. Note, however, that after SSS, magnetometers and

gradiometers can still yield systematically different results in sensor-space analyses despite being lin-

ear combinations of another. This happens once a non-linear transform is applied on the sensor-

space, for example power, which is explained by the fact that SSS is a linear transform and powers in

sensors space breaks linearity. On the other hand, once source localization is correctly performed,

which takes into account the SSS solution, differences between gradiometers and gradiometers

become negligible for, both, linear transforms and non-linear transforms. We, nevertheless, used all

102 magnetometers and 204 gradiometers for source analysis to stick with a familiar configuration.

Note that while short-cuts can be achieved by processing only one of the sensor types, they should
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be avoided when other methods than SSS are used for preprocessing. However, driven by initial

visual exploration, for some aspects of feature engineering in sensor space, that is, extraction of

alpha peaks or computation of 1/f power spectra, we used the 102 magnetometers. For extraction

of evoked response latencies, we used the 204 gradiometers. Nevertheless, due to the characteristic

of SSS to combine sensor types into one common representation, in all analyses, magnetic fields

sampled from, both, magnetometers and gradiometers were exploited even if only one type of sen-

sors was formally included.

Covariance modeling
To control the risk of overfitting in covariance modeling (Engemann and Gramfort, 2015), we used

a penalized maximum-likelihood estimator implementing James-Stein shrinkage (James and Stein,

1992) of the form

Ŝbiased ¼ ð1�aÞŜþa
TraceðŜÞ

p
I; (11)

where a is the regularization strength, Ŝ is the unbiased maximum-likelihood estimator, p is the num-

ber of features and I the identity matrix. This, intuitively, amounts to pushing the covariance toward

the identity matrix. Here, we used the Oracle Approximation Shrinkage (OAS) (Chen et al., 2010) to

compute the shrinkage factor a mathematically.

Source localization
To estimate cortical generators of the MEG signal, we employed the cortically constraint Minimum-

Norm-Estimates (Hämäläinen and Ilmoniemi, 1994) based on individual anatomy of the subjects.

The resulting projection operator exclusively captures inputs from the anatomy of the subject and

additional whitening based on the noise covariance. On the other hand, beamforming methods, con-

sider the segments of MEG data to be source-localized through the data covariance. Methods from

the MNE-family are therefore also referred to as non-adaptive spatial filters, whereas beamforming

methods are referred to as adaptive spatial filters. The MNE-operator can be expressed as

WMNE ¼G>ðGG>þlIPÞ�1: (12)

Here G2RP�Q with P sensors and Q sources denotes the forward model quantifying the spread

from sources to M/EEG observations and l a regularization parameter that controls the ‘2-norm of

the activity coefficients. This parameter implicitly controls the spatial complexity of the model with

larger regularization strength leading to more spatially smeared solutions. The forward model is

obtained by numerically solving Maxwell’s equations based on the estimated head geometry, which

we obtained from the Freesurfer brain segmentation. Note that from a statistical perspective, the

MNE-solution is a Ridge model (see Equations 3-4) predicting the magnetic field at a given sensor

from a linear combination of corresponding entries in the leadfields. The inferred source activity is

given by multiplication of the MNE-operator with sensor-level magnetic fields.

We estimated the source amplitudes on a grid of 8196 candidate dipole locations equally spaced

along the cortical mantle. We used spatial whitening to approximate the model assumption of

Gaussian noise (Engemann and Gramfort, 2015). The whitening operator was based on the empty

room noise covariance and applied to the MEG signal and the forward model. We applied no noise

normalization and used the default depth weighting (Lin et al., 2006) as implemented in the MNE

software (Gramfort et al., 2014) with weighting factor of 0.8 (Lin et al., 2006) and a loose-con-

straint of 0.2. The squared regularization parameter l2 was expressed with regard to the signal-to-

noise ratio and fixed at the default value of 1

SNR2 with SNR ¼ 3 for all subjects. This conservative

choice was also motivated by the computational burden for optimizing the regularization parameter.

Optimizing this hyper-parameter would have required pre-computing hundreds of MNE solutions to

then perform grid search over the derived source-level outputs. As the goal was prediction from the

source localized signals, not inference on spatial effects, we have instead relied on the subsequent

data-driven shrinkage through the level-1 ridge model (see Equations 3-4). It may be worthwhile to

systematically investigate the interplay between shrinkage at the MNE-level and the ridge-level for

predictive modeling with MEG in future research.
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MRI data processing
Data acquisition
For additional details on data acquisition, please consider the reference publications of the CAM-

Can (Taylor et al., 2017; Shafto et al., 2014). The following sections will describe the custom data

processing conducted in our study.

Structural MRI
For preprocessing of structural MRI data we used the FreeSurfer (version 6.0) software (http://surfer.

nmr.mgh.harvard.edu/)) (Fischl, 2012). Reconstruction included the following steps (adapted from

the methods citation recommended by the authors of FreeSurfer http://freesurfer.net/fswiki/FreeSur-

ferMethodsCitation): motion correction and average of multiple volumetric T1-weighted images

(Reuter et al., 2010), removal of non-brain tissue (Ségonne et al., 2004), automated Talairach trans-

formation, segmentation of the subcortical white matter and deep gray matter volumetric structures

(Fischl et al., 2002; Fischl et al., 2004) intensity normalization (Sled et al., 1998), tessellation of the

gray-matter/white matter boundary, automated topology correction (Fischl et al., 2001;

Ségonne et al., 2004), and surface deformation following intensity gradients (Dale et al., 1999;

Fischl and Dale, 2000). Once cortical models were computed, so-called deformable procedures

were applied including surface inflation (Fischl et al., 1999), registration to a spherical atlas

(Fischl et al., 1999) and cortical parcellation (Desikan et al., 2006).

fMRI
The available fMRI data were visually inspected. The volumes were excluded from the study pro-

vided they had severe imaging artifacts or head movements with amplitude larger than 2 mm. After

the rejection of corrupted data, we obtained a subset of 626 subjects for further investigation. The

fMRI volumes underwent slice timing correction and motion correction to the mean volume. Follow-

ing that, co-registration between anatomical and function volumes was done for every subject.

Finally, brain tissue segmentation was done for every volume and the output data were morphed to

the MNI space.

Scientific computation and software
Computing environment
For preprocessing and feature-extraction of MEG, MRI and fMRI we used a high-performance Linux

server (72 cores, 376 GB RAM) running Ubuntu Linux 18.04.1 LTS. For subsequent statistical model-

ing, we used a golden Apple MacBook 12’�(early 2016) running MacOS Mojave (8 GB RAM). General

purpose computation was carried out using the Python (3.7.3) language and the scientific Python

stack including NumPy, SciPy, Pandas, and Matplotlib. For embarrassingly parallel processing, we

used the joblib library.

MEG processing
For MEG processing, we used the MNE-Python software (https://mne.tools) (Gramfort et al., 2014)

(version 0.19). All custom analysis code was scripted in Python and is shared in a dedicated reposi-

tory including a small library and scripts (see section Code Availability).

MRI and fMRI processing
For anatomical reconstruction we used the shell-scripts provided by FreeSurfer (version 6.0) software

(Fischl et al., 2002). We used the pypreprocess package, which reimplements parts of the SPM12

software for the analysis of brain images (The Wellcome Centre for Human Neuroimaging, 2018),

complemented by the Python-Matlab interface from Nipype (Gorgolewski et al., 2011). For feature

extraction and processing related to predictive modeling with MRI and fMRI, we used the NiLearn

package (Abraham et al., 2014).

Statistical modeling
For predictive modeling, we used the scikit-learn package (Pedregosa et al., 2011) (version 0.21).

We used the R (3.5.3) language and its graphical ecosystem (R Development Core Team, 2019;
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Wickham, 2016; Slowikowski, 2019; Clarke and Sherrill-Mix, 2017; Canty and Ripley, 2017) for

statistical visualization of data. For computation of ranking-statistics, we used the pmr R-package

(Lee and Yu, 2013).

Code availability
We share all code used for this publication on GitHub: https://github.com/dengemann/meg-mri-sur-

rogate-biomarkers-aging-2020. (Engemann, 2020; https://github.com/elifesciences-publications/

meg-mri-surrogate-biomarkers-aging-2020) Our stacked model architecture can be compactly

expressed using the StackingRegressor class in scikit-learn (Pedregosa et al., 2011) as of version

0.22.

Acknowledgements
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Trapp S, et al. 2019. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in
young and old adults. Scientific Data 6:180308. DOI: https://doi.org/10.1038/sdata.2018.308

Babiloni C, Binetti G, Cassarino A, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Galderisi S, Hirata K,
Lanuzza B, Miniussi C, Mucci A, Nobili F, Rodriguez G, Luca Romani G, Rossini PM. 2006. Sources of cortical
rhythms in adults during physiological aging: a multicentric EEG study. Human Brain Mapping 27:162–172.
DOI: https://doi.org/10.1002/hbm.20175, PMID: 16108018

Baker JD, Gluecklich B, Watson CW, Marcus E, Kamat V, Callow AD. 1975. An evaluation of
electroencephalographic monitoring for carotid study. Surgery 78:787–794. DOI: https://doi.org/10.5555/uri:
pii:0039606075902068, PMID: 1188621

Baker AP, Brookes MJ, Rezek IA, Smith SM, Behrens T, Probert Smith PJ, Woolrich M. 2014. Fast transient
networks in spontaneous human brain activity. eLife 3:e01867. DOI: https://doi.org/10.7554/eLife.01867,
PMID: 24668169

Engemann et al. eLife 2020;9:e54055. DOI: https://doi.org/10.7554/eLife.54055 27 of 32

Tools and resources Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.54055.sa1
https://doi.org/10.7554/eLife.54055.sa2
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://github.com/dengemann/meg-mri-surrogate-biomarkers-aging-2020
https://github.com/dengemann/meg-mri-surrogate-biomarkers-aging-2020
https://github.com/elifesciences-publications/meg-mri-surrogate-biomarkers-aging-2020
https://github.com/elifesciences-publications/meg-mri-surrogate-biomarkers-aging-2020
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
http://www.ncbi.nlm.nih.gov/pubmed/24600388
https://doi.org/10.1016/j.neuroimage.2016.10.045
http://www.ncbi.nlm.nih.gov/pubmed/27865923
https://doi.org/10.1111/j.1469-8986.1966.tb02650.x
http://www.ncbi.nlm.nih.gov/pubmed/5903579
https://doi.org/10.1007/s10548-010-0154-x
http://www.ncbi.nlm.nih.gov/pubmed/20640882
https://doi.org/10.1038/sdata.2018.308
https://doi.org/10.1002/hbm.20175
http://www.ncbi.nlm.nih.gov/pubmed/16108018
https://doi.org/10.5555/uri:pii:0039606075902068
https://doi.org/10.5555/uri:pii:0039606075902068
http://www.ncbi.nlm.nih.gov/pubmed/1188621
https://doi.org/10.7554/eLife.01867
http://www.ncbi.nlm.nih.gov/pubmed/24668169
https://doi.org/10.7554/eLife.54055


Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. 2015. Signature of consciousness in the dynamics
of resting-state brain activity. PNAS 112:887–892. DOI: https://doi.org/10.1073/pnas.1418031112,
PMID: 25561541

Bellec P, Rosa-Neto P, Lyttelton OC, Benali H, Evans AC. 2010. Multi-level bootstrap analysis of stable clusters in
resting-state fMRI. NeuroImage 51:1126–1139. DOI: https://doi.org/10.1016/j.neuroimage.2010.02.082,
PMID: 20226257

Biecek P. 2018. Dalex: explainers for complex predictive models in r. The Journal of Machine Learning Research
19:3245–3249.

Breiman L. 2001. Random forests. Machine Learning 45:5–32. DOI: https://doi.org/10.1023/A:1010933404324
Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG. 2011.
Investigating the electrophysiological basis of resting state networks using magnetoencephalography. PNAS
108:16783–16788. DOI: https://doi.org/10.1073/pnas.1112685108, PMID: 21930901

Bzdok D, Engemann D, Grisel O, Varoquaux G, Thirion B. 2018. Prediction and inference diverge in biomedicine:
simulations and Real-World data. bioRxiv. DOI: https://doi.org/10.1101/327437

Bzdok D, Ioannidis JPA. 2019. Exploration, inference, and prediction in neuroscience and biomedicine. Trends in
Neurosciences 42:251–262. DOI: https://doi.org/10.1016/j.tins.2019.02.001, PMID: 30808574

Bzdok D, Yeo BTT. 2017. Inference in the age of big data: future perspectives on neuroscience. NeuroImage
155:549–564. DOI: https://doi.org/10.1016/j.neuroimage.2017.04.061, PMID: 28456584

Canty A, Ripley BD. 2017. Boot: Bootstrap R (S-Plus) Functions. R Package.
Chen Y, Wiesel A, Eldar YC, Hero AO. 2010. Shrinkage algorithms for MMSE covariance estimation. IEEE
Transactions on Signal Processing 5016–5029. DOI: https://doi.org/10.1109/TSP.2010.2053029

Clarke E, Sherrill-Mix S. 2017. ggbeeswarm: Categorical Scatter (Violin Point) Plots. R Package.
Cole JH, Leech R, Sharp DJ, Alzheimer’s Disease Neuroimaging Initiative. 2015. Prediction of brain age suggests
accelerated atrophy after traumatic brain injury. Annals of Neurology 77:571–581. DOI: https://doi.org/10.
1002/ana.24367, PMID: 25623048

Cole JH, Ritchie SJ, Bastin ME, Valdés Hernández MC, Muñoz Maniega S, Royle N, Corley J, Pattie A, Harris SE,
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