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Parvalbumin (PV) is a calcium binding protein expressed by inhibitory

fast-spiking interneurons in the cerebral cortex. By generating a fast stream of

action potentials, PV+ interneurons provide a quick and stable inhibitory input

to pyramidal neurons and contribute to the generation of gamma oscillations

in the cortex. Their fast-firing rates, while advantageous for regulating cortical

signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells

are a type of PV+ interneuron that modulate the output of pyramidal neurons

and synchronize spikes within neuron populations by directly innervating the

pyramidal axon initial segment. Changes in the morphology and/or function

of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders.

In ASD, the number of PV+ Ch cells is decreased across several cortical

areas. Changes in the morphology and/or function of PV+ interneurons have

also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein,

we review the role of PV and PV+ Ch cell alterations in ASD and other

psychiatric disorders.
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Parvalbumin functional properties

Parvalbumin is a high affinity Ca2+ binding protein that acts as a buffer to sequester

calcium in the cytoplasm of inhibitory neurons (1). Parvalbumin binds Ca2+ with high

affinity (KD,Mg ∼ 5–100 uM) and to Mg2+ with medium affinity (KD,Mg ∼ 5–500 uM).

PV is considered a “slow buffer” molecule due to its binding kinetics to those two ions,

along with its slow association and dissociation rate (2). Action potentials in fast-spiking

PV+ neurons are characterized by high frequency firing rate with minimal adaptation,

narrow AP half width, short membrane time constant, and large afterhyperpolarization

(3–5). PV+ interneurons exhibit high depolarized resting membrane potentials and

small action potential amplitudes (6). Expression of unique voltage-gated Na+ and K+

channels contribute to the high-frequency repetitive firing patterns in PV+ interneurons

(7, 8). By generating such a fast stream of action potentials, PV+ interneurons evoke

a quick and stable GABA inhibitory postsynaptic current to pyramidal neurons that is

characterized by fast rise and decay phases. This fast synchronization of network activity
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is responsible for the generation of high frequency gamma

oscillations (9–11) that are associated with high level cognitive

functions such as attention, memory, and perception (12–17).

In-vivo optogenetic manipulation of PV+ interneuron activity

is sufficient to produce changes in the network oscillations

of the cerebral cortex of rats. Synchronous activity of PV+

cells amplify gamma oscillation and in-vivo inhibition of PV+

cells suppress gamma oscillations (10, 18). During firing, PV

buffers intracellular Ca2+ levels back to normal physiological

levels (19). The high abundance of mitochondria is the product

of the substantial energy input required for PV+ neurons

to sustain their characteristic high frequency firing patterns

(20, 21). This increases their vulnerability to developing

metabolic stress through the release of free radicals (22).

Specifically, loss of PV leads to the pathological accumulation

of mitochondrial Ca2+ levels that results in disruption of

the electron transport chain (23). This leads to a buildup of

intracellular reactive oxygen species (ROS) and cytochrome C

that renders vulnerability to apoptosis (24). ROS production is

highly correlated with PV concentration where alterations in

redox homeostasis leads to a cascade of events that contribute

to pathophysiological alterations in neurodevelopmental

disorders (25, 26).

Parvalbumin is downregulated in various neurological

conditions, such as in ASD Spectrum Disorder (ASD), a

neurodevelopmental disorder characterized by deficits in social

interaction and stereotypical behavior. Alterations of PV in the

human ASD brain suggest that PV changes may promote an

ASD like phenotype. PV-/- mice that constitutively lack PV

expression showed ASD-like behavioral deficits, also suggesting

that absent PV expression is sufficient to cause behavioral

abnormalities (27). Genes, such as En2, Mecp2, Fmr1, Cntnap2,

Shank1 and Shank 3, Ube3, Nlgn3, and KV3.1b, are implicated

in ASD development and based on evidence derived from KO

models are also believed to contribute to PV+ interneuron

dysfunction (28–37). The knockout animal of the Fmr1 gene–

responsible for Fragile X Syndrome, the knockout of the Shank3

gene–responsible for the Phelan-Mcdermind Syndrome, and the

knockout of the Ube3a–responsible for Angelman syndrome,

experience neuronal hyperexcitability, presumably because of

impaired PV+ interneuron function (38–40). The Nlgn3 animal

model of ASD presents with decreased excitability of fast

spiking interneurons and dysfunction of gamma oscillations,

which are necessary for memory and attention (41). And the

PV+ interneuron voltage-gated potassium channel KV3.1b,

responsible for regulating the fast-spiking properties of PV+

interneurons, is reduced in the cortex and thalamus of

Valproic Acid (VPA)-exposed mice, a widely used model

of ASD (8). These findings indicate that a series of genes

that play a direct or indirect role in regulating PV levels

and function, are implicated in ASD. In addition, many

EEG studies in human show that ASD individuals have

abnormal gamma oscillations (41–43). Due to the functional

role of PV+ cells in generation of gamma oscillations, and

the evidence found in human and animal studies, it has

been speculated that gamma oscillations could potentially

be a physiological biomarker for abnormal functioning of

PV+ neurons.

Parvalbumin+ chandelier cells

Interneurons in the cortex exhibit a wide variety of

morphological, physiological, and molecular characteristics.

Interneurons can be classified based on the expression of specific

molecular markers, among them fast-spiking interneurons can

be recognized by their expression of PV. PV+ interneurons

are GABAergic and modulate the output of pyramidal neurons

by directly innervating their soma or the axon initial segment

(AIS). In the cerebral cortex, PV+ interneurons include two

distinct types, chandelier (Ch) cells and basket (Bsk) cells (44,

45). In mice, PV+ cells account collectively for approximately

40–50% of all interneurons in the cerebral cortex (46), with

Bsk cells being more numerous and Ch cells making up less

than 5% of all interneurons in the cortex. In other species,

like Rhesus macaque, approximately 75% of all GABAergic

neurons in the primary visual cortex are PV+ neurons (47).

Ch cells and Bsk cells exhibit substantially different innervation

properties and distinct firing properties. Physiologically, Bsk

cells have a greater firing latency while Ch cells have a higher

firing frequency and adaptation (48, 49). Anatomically, Bsk

cells innervate the soma and proximal dendrites of pyramidal

neurons, while Ch cells innervate the AIS of pyramidal neurons

(44, 45). Basket cells are multipolar PV+ interneurons located

throughout layers II–VI, while their prominent basket structures

are mostly restricted to layer IV. Bsk cells establish multiple

connections with the soma and proximal dendrites of pyramidal

neurons in a manner that outlines the pyramidal cell body

acquiring a basket-like shape. Bsk cells can also innervate

other Bsk cells and non-PV+ GABA cells, like purkinje cells

in the cerebellum (49–51). Basket cells are subdivided into

small, large, and nest basket cells, that present with differential

size, dendritic and axonal projections, firing properties, and

the expression of additional molecular markers (52, 53). Ch

cells are involved in the generation of gamma oscillations

generated by the cortex (45, 54, 55). Specifically, synaptic

inhibition from Ch cells controls the firing rate of pyramidal

cells, synchronizes spikes within populations of neurons, and

participates in cortical executive functions (52, 56, 57). While

GABAergic input on dendrites originates from many types

of interneurons, the AIS only receives input from Ch cells

(58). Therefore, Ch cells play a central role in regulating the

final output of excitatory pyramidal neurons. The terminal

portions of Ch cell axons form vertical rows of synaptic

boutons that resemble candlesticks and are known as cartridges

(54, 59) (Figure 1). Ch cartridges express PV but are more
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FIGURE 1

Chandelier cell connectivity and immunostaining. (A) Chandelier

cells (blue) have a unique and structurally complex morphology

characterized by vertically oriented axon terminal cartridges (red

and green), that are perpendicular to the pial surface. Ch cells

synapse onto the AIS of pyramidal neurons (orange) and can

innervate up to 250 pyramidal cells at once, allowing for fine

inhibitory control. (B) Ch cell in primary somatosensory cortex

stained with an anti-PV antibody that labels the soma and

proximal processes (BA3). Triple enzymatic stain of CR (Blue), CB

(Brown) and PV (Pink) labeled interneurons reveals loss of PV+

interneurons in BA3 of both control (C) and ASD cortex (D).

Scale Bars = 20 µm.

easily detected by their expression of GABA transporter 1

(GAT1) (44, 60, 61). Each Ch cell has many cartridges lined

with boutons and each cartridge can selectively innervate the

AIS of a pyramidal neuron. A single pyramidal cell receives

input from 1 to 4 Ch cells, while a single Ch cell innervates

up to 250 pyramidal cells (62). Each Ch cell can therefore

regulate the output of many pyramidal cells, and the loss of

a single Ch cell signifies the loss of inhibitory AIS-mediated

regulation of a great number of pyramidal cells belonging

to several cortical mini-columns. The loss of a few Ch cells

would critically impair pyramidal cell output and cerebral cortex

function (58).

Ch cells are present in most cortical areas and play an

important inhibitory and regulatory role in each of them.

However, they are not homogeneously distributed but they

differ in density by cortical area and cortical layer (63, 64).

PV+ Ch cells are less prominent in deeper layers and some

Ch cells co-express calbindin (CB) in human (65). These

differences suggests that there is a region specific anatomical

and functional organization. In human and other primates

there is a higher density of cartridges innervating the AIS

in association areas than in primary sensory areas (63, 66,

67). Only one study has systematically looked at the relative

abundance of Ch cells in different areas of the human cortex

and did so by mapping GAT1+ Ch cartridges (44). The lowest

density of GAT1+ cartridges was in primary and secondary

visual (BA17 and BA18) and somatosensory areas (BA3b and

BA1). In contrast, there was a moderate density in primary

motor cortex (BA4) and associative frontolateral areas (BA45

and 46), whereas other associative frontolateral cortex (BA9

and BA10), frontal orbital cortex (BA11, BA12, BA13, BA14,

and BA47), associative temporal cortex (BA20, BA21, BA22,

and BA38), and cingulate cortex (BA24 and BA32) displayed

the highest density of GAT1+ cartridges (44). Despite these

differences, the laminar distribution of GAT1+ cartridges was

similar in most cortical areas. The highest density was in layer

II, followed by layers III, V, VI, and IV. In most cortical

areas, the density of GAT1+ cartridges was correlated with the

neuronal density (44). PV+ Ch cell interneurons in the cerebral

cortex originate subcortically in two waves of proliferation

in the medial ganglionic eminence (MGE) during prenatal

development. A small pool of radial glial cells that at embryonic

day (E)10 are restricted to the caudal MGE generate a small

set of layer V-VI and II-III Ch cells. A second and bigger

wave at E12 gives rise to Ch cells across layers II-VI and

occupies the entire rostral caudal region of the MGE (68).

MGE-derived cells then migrate tangentially to the cortex in a

spatiotemporal and time sensitive manner, reaching the cortex

at E18-P0 (69–71). Once in their final cortical destination, they

mature into PV+ Ch cells. Perturbations during the periods of

proliferation, migration, and maturation, can result in cell death

or malfunction.

While Bsk cells are present in many subcortical regions of

the brain, Ch cells outside the cortex have only been identified

in the hippocampal formation and the amygdaloid complex.

The hippocampal formation is a brain structure involved in

the generation, organization, and storage of new memories. Ch

cells in the hippocampal formation are similar in morphology,

marker expression, and electrophysiological properties to those

in the neocortex. In the dentate gyrus (DG), PV+ cells are

mostly located within or adjacent to granular zone (GZ) and

are larger in size than the surrounding PV- granule cells (72).

Most of the PV+ neurons in CA1 and CA3 are in the strata

pyramidale and oriens, while a small number are present in

stratum lucidum and in stratum radiatum, and rarely in stratum

moleculare. In the DG, GAT1+ cartridges are located in the

GZ and in the polymorphic layer (72). In the CA, GAT1+

cartridges are located in stratum pyramidale of CA1 and CA3

and are sparse in the stratum oriens. In CA2 and CA4, cartridges

are only occasionally present (73–75). Ch cells in CA synapse

and inhibit the AIS of pyramidal cells regulating their final

output. Ch cells in the DG synapse on to the AIS of the

granular cells in the GZ, also regulating their final output (74).

The amygdaloid complex (amygdala) is involved in processing

emotional responses and affective states (76, 77). Ch cells in

the amygdala can be identify based on the morphology of

their axonal terminals. Ch cells in the amygdala are similar
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in morphology, marker expression, and electrophysiological

properties to those in the neocortex and hippocampal formation.

PV+ interneurons are restricted to the basolateral (BLA) nuclei,

with highest density of the cartridges in the lateral (75%),

whereas the basal nucleus contains only 20% (76, 78). PV+ Ch

cells synapse and inhibit the AIS of the pyramidal cells in the

BLA nuclei controlling their final output. Alterations in the PV+

Ch cell population in the cerebral cortex, hippocampal complex,

and amygdaloid complex may be a potential characteristic of the

ASD brain.

Parvalbumin+ chandelier cells in
ASD

To investigate whether there are changes in the number

or proportion of interneuron subpopulations in the prefrontal

cortex in ASD, our group collected data using a straightforward

approach to classify interneurons based on their expression of

the calcium-sequestering proteins PV, CB, and calretinin (CR).

Previous studies have used this method to comprehensively

identify interneuron subpopulations in the cortex ofmammalian

species, and to identify interneuron subpopulations in human

cortical tissue obtained from patients with certain conditions,

like ASD (79, 80). We quantified PV+ cells in 10 ASD and

10 CT sex-and age-matched subjects and found that there is

a decrease in the ratio of PV+ cells vs. the total number of

interneurons, but no change in the ratio of CB+ cells or CR+

cells vs. the total number of interneurons in ASD compared

to control cases (Figure 1) (81). Using an exclusion method, in

which almost all Ch cells express PV but not the perineural net

protein carbohydrate N-acetylgalactosamine, while human Bsk

cells express both PV and N-acetylgalactosamine, we found a

decrease in the number of PV+ in ASD that is attributable to

a decrease in the number of Ch cells (82). Using a different

cohort of subjects, we also found a decreased number of GAT1+

cartridges in the prefrontal cortex in ASD that was similar to

the decreased number of PV+ cells in ASD, corroborating our

previous data (60). In addition, we reported a decreased amount

of GABAARα2 in the pyramidal cell AIS (83) - target of Ch

cells synapses – and a reduced Ch bouton size, likely indicating

a decreased synapsis strength – in the prefrontal cortex in

ASD and concluded that Ch cells play an important role in

the cortical circuitry dysfunction in ASD. Accordingly, the

Barba’s group examined PV+ and CB+ neurons in postmortem

BA9 tissue from subjects with ASD (n = 2 ASD, 30 and

44 years, and n = 2 controls), and found a decrease in the

ratio of PV to CB inhibitory neurons (84). We are not aware

of any other data on Ch cells in ASD. We concluded that

PV+ Ch cell number is decreased in the prefrontal cortex

in ASD.

Parvalbumin and parvalbumin+ cell
alterations in other neuropsychiatric
disorders

As in the case of ASD, changes in the morphology and/or

function of PV+ interneurons have also been reported in

schizophrenia, epilepsy, bipolar disorder, and depression (58,

85–89). During development subjects with schizophrenia exhibit

elevated mRNA levels for the transcription factors MafB and

Lhx6, expressed in PV+ cell progenitor cells that migrate from

the MGE into the developing cortex (90–92). Activation of

the Il-6/NOX2 pathway in a mouse model of schizophrenia

elevates oxidate stress, perturbs the normal development and

maturation of PV+ cortical interneurons, and contributes to

the emergence of schizophrenia like behavioral deficits (93).

PV+ interneurons in schizophrenic patients present with lower

mRNA levels of PV and GAD67 (94–97). GAD67 protein levels

have also been shown to be reduced in schizophrenia (98).

However, GAD67 protein levels were not altered in the axon

cartridges of PV chandelier cells. GAD67 mRNA levels were

only reduced in Bsk cells suggesting that GAD67 changes may

be cell specific and differentially affected in schizophrenia (98).

In addition to mRNA levels, the levels of PV protein are lower

in PV+ Bsk boutons and the density of PV+ Ch cell cartridges

is decreased in the prefrontal cortex in schizophrenia (89).

While a few studies have previously reported deficits in PV

neuron density in the dorsolateral prefrontal cortex, it may

be possible that lower PV immunoreactivity levels may have

rendered these PV+ neurons below the detection threshold

(99–101). In addition, Ch cell GABA transmission is altered in

schizophrenia at both the pre and post synaptic level. At the

presynaptic level there is a reduction of GAT1 immunoreactivity

in the axon terminals of Ch cells within the PFC (85, 89).

Despite this GAT1 reduction, the levels of vGAT bouton protein

were unaltered in schizophrenia (102). These results, combined

with the GAD67 alterations highlighted above underlies the

importance of assessing multiple markers in a cell specific

manner to better understand the extent of GABAergic signaling

changes at the presynaptic level.

At the post synaptic level, there is an increase of GABAARα2

at the AIS of pyramidal neurons (88). Moreover, the density of

ankyrin G, an adaptor molecule responsible for the recruitment

and stabilization of sodium channels at the AIS, is also decreased

by 19% in brains with schizophrenia (103, 104). Knockdown

of L1CAM in mice, a neural adhesion molecule that is linked

to schizophrenia, results in a decrease of pyramidal AIS

innervation by Ch cells (105, 106). In line with these findings,

transcriptional levels of Erbb4, a known susceptibility gene for

schizophrenia that is primarily expressed in PV+ neurons and

highly active during early neurodevelopment, is decreased in Ch

cells in the prefrontal cortex (107–113). Mice that lack Erbb4 in
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fast-spiking interneurons, have synaptic defects, while Erbb4 -/-

mice are characterized by impaired behavior and GABA release

(114, 115). Genetic recovery of the gene in ErbB4 -/- mice at

the adult stage ameliorates these deficits demonstrating the role

of ErbB4 mediated signaling in establishing and maintaining

optimal Ch cell function (107). Activation of the Il-6/NOX2

pathway in a mouse model of schizophrenia elevates oxidate

stress, perturbs the normal development and maturation of

PV+ cortical interneurons, and contributes to the emergence

of schizophrenia like behavioral deficits (93). Together these

findings demonstrate that the synaptic integrity of Ch cell

pyramidal connection is compromised in schizophrenia.

Half of the cases of ASD also present with epilepsy and

the cortex in brains with epilepsy also present significant

reductions in mRNA levels of PV. Post-mortem studies in brains

of patients with temporal lobe and cryptogenic frontal lobe

epilepsy present patches of decreased PV+ immunoreactivity

in the neocortex (116), and the human epileptic peritumoral

neocortex has a loss of inhibitory synapses on the soma

and AIS of pyramidal neurons (117). A more recent human

study showed that there was an increased density of PV+

Bsk cell boutons in the dentate gyrus, while the density

of PV+ Ch cell boutons increased significantly in subjects

with hippocampal sclerosis, a common pathology encountered

in mesial temporal love epilepsy (118). Interestingly, bouton

densities were not different between epileptic subjects without

hippocampal sclerosis and matched controls. In monkeys

with cortical focal epilepsy there is a reduction of Ch cell

axons at the epileptic foci (119). Moreover, presentation of

anxiety like behaviors, coupled with decrease in density of

PV+ interneurons, GAD65 containing synaptic terminals and

increases in GABAAR β3 subunit are all phenotypic traits

observed across multiple pilocarpine-models of temporal lobe

epilepsy (120, 121). Accordingly, pharmaco-genetic activation

of hippocampal PV interneurons alleviates the severity of

seizure onset in chronic epilepsy models (97). These findings

suggest that synaptic connectivity is affected in individuals

with epilepsy and may contribute to dysregulated inhibitory

signaling. Individuals with bipolar disorder also present reduced

PV messenger levels in the prefrontal cortex and hippocampus

(122, 123), and reduced PV+ interneuron density in the

prefrontal and entorhinal cortex, and parasubiculum (124,

125). There is also a decrease in GABA receptor levels in

the PFC. The density of neurons containing messenger for

GAD65 and GAD67 in the hippocampus is decreased by

45%, and the expression of GAD67 protein is reduced 50%

in the prefrontal cortex and cerebellum in bipolar disorder

brains (126, 127). Brains from people with depression also

present a reduction in PV+ immunostaining in layer VI

of the dorsolateral prefrontal cortex (128, 129), and animal

models of depression present with chronic stress-induced

depressive-like behavior and reduced density of hippocampal

PV+ interneurons (99). In addition, ketamine’s antidepressant

properties are mediated in part through downregulation of

NRG1-ErbB4 singling in PV+ interneurons in the rat brain

(130). It is well established that stress is a risk factor that

exacerbates the development of these disorders, likely in

part through the perturbation of normal PV+ interneurons

development and function (98–100). Animal models exposed

to early stress during development have increased anxiety like

behavior coupled with a decrease in PV+ interneuron density

(98, 101, 118). Administration of a neurokinin-1 receptor

(NK1R) antagonist prior to chronic stress exposure completely

prevent the stress-induced reduction of the number of PV

interneurons in mice (131). And rearing behavior in an enriched

environment augment the number of PV+ interneurons in

the basolateral amygdala and decrease anxiety like behavior in

young male rats (132). These findings demonstrate that PV

function is also impaired in neuropsychiatric disorders like

temporal lobe epilepsy, depression and bipolar disorder, at both

pre and post synaptic levels.

Overall, there is evidence that parvalbumin and PV+

interneurons in the cortex have a role in ASD, but also

in other psychiatric, neurodevelopmental, and mood

disorders, including epilepsy, schizophrenia, bipolar disorder,

and depression.
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