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ABSTRACT The breeds of domestic dog, Canis lupus familiaris, display a range of coat types with variation
in color, texture, length, curl, and growth pattern. One trait of interest is that of partial or full hairlessness,
which is found in a small number of breeds. While the standard for some breeds, such as the Xoloitzcuintli,
requires sparse hair on their extremities, others are entirely bald, including the American Hairless Terrier.
We identified a small, rare family of Scottish Deerhounds in which coated parents produced a mixed litter of
coated and hairless offspring. To identify the underlying variant, we performed whole genome sequencing
of the dam and five offspring, comparing single nucleotide polymorphisms and small insertions/deletions
against an established catalog of 91 million canine variants. Of 325 homozygous alternative alleles found in
both hairless dogs, 56 displayed the expected pattern of segregation and only a single, high impact variant
within a coding region was observed: a single base pair insertion in exon two of SGK3 leading to a potential
frameshift, thus verifying recently published findings. In addition, we observed that gene expression levels
between coated and hairless dogs are similar, suggesting a mechanism other than non-sense mediated
decay is responsible for the phenotype.
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The domestic dog, Canis lupus familiaris, is divided into over
400 breeds which display enormous variation in morphologic phe-
notypes including body size, shape, tail length, leg length, etc. (Fogle
2000; American Kennel Club 2017). Within a particular breed,
individuals share a large amount of both genetic and phenotypic
homogeneity (Karlsson and Lindblad-Toh 2008; Parker et al. 2017a).
This reflects bottlenecks that were critical to breed formation, includ-
ing popular sires and the often limited numbers of individuals used

to initiate and propagate breeding programs (Lindblad-Toh et al.
2005; Boyko et al. 2010; Parker et al. 2004; Ostrander et al. 2017).
Ideally, such population structure should facilitate both linkage and
association studies, however extensive linkage disequilibrium has
made it difficult to move from associated or linked marker to caus-
ative mutation (Lindblad-Toh et al. 2005; Sutter et al. 2004). Whole
genome sequencing (WGS) of dogs with unique phenotypes and
comparison to a comprehensive catalog of variants circumvents
this issue.

Oneof themost strikingphenotypic features observed in dog is coat
variation. To date, genetic studies have identified genes contolling
multiple prominent coat features including curl (Salmela et al. 2019;
Cadieu et al. 2009), the presence of moustache and eyebrows, also
known as “furnishings” (Cadieu et al. 2009; Parker et al. 2010),
shedding (Hayward et al. 2016), density (Wiener et al. 2013), presence
or absence of an undercoat (Whitaker and Ostrander 2019), length
(Cadieu et al. 2009; Housley and Venta 2006; Dierks et al. 2013),
and, in a small number of breeds, hairlessness (O’Brien et al. 2005;
Drögemüller et al. 2008; Parker et al. 2017b). In some cases, the same
genes have proven to be important in understanding phenotypes
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observed in other species (Higgins et al. 2014; Menche et al. 2017;
Drögemüller et al. 2008).

A spontaneous canine model of alopecia was recently described
by Hytonen and Lohi (Hytönen and Lohi 2019) in a small family of
Scottish Deerhounds, a breed which typically displays a harsh and wiry
coat (American Kennel Club 2017). Simultaneously, we identified an
independent Scottish Deerhound family, also segregating the hairless
trait. In Deerhounds, the disorder mimics patterns observed in some
children with hair growth early in childhood. Dogs are born with fur
but regress to complete alopecia by two to three months of age, yet
remain otherwise healthy. We performed WGS on individuals from a
single family to identify the genetic variant(s) segregating with the trait.
The resulting sequence was compared to a recent catalog of 91 million
single nucleotide polymorphisms (SNPs) and insertion/deletions
(indels) identified from 144 modern breeds, together with a set
of wild canids and village dogs (Plassais et al. 2019). Our analysis
identified the same single, high-impact variant within the coding
sequence of the serum/glucocorticoid regulated kinase family mem-
ber 3 (SGK3) gene as highlighted by Hytonen and Lohi (Hytönen and
Lohi 2019). We have previously shown that a distinct mutation in the
same gene was responsible for hairlessness in the unrelated American
Hairless Terrier breed (AHT) (Parker et al. 2017b). Our findings
thus validate recently published findings and highlight further the
importance of SGK3 in controlling the canine hairless trait.

MATERIAL AND METHODS
The pedigree analyzed here was composed of the sire, dam and
14 offspring. Six individuals underwent WGS: three offspring with
normal coats, two hairless offspring; and the dam (Figure 1). All
procedures were reviewed and approved by the National Human
Genome Research Institute (NHGRI) Animal Care and Use Commit-
tee at the National Institutes of Health.Whole blood samples from the
six dogs were collected into acid citrate dextrose (ACD) anticoagulant
tubes. DNA extraction was performed using cell lysis followed by
phenol chloroform extraction using previously published protocols
(Bell et al. 1982).

Whole genome sequencing and variant calling
WGS from one dam and five offspring was carried out at the NIH
Intramural Sequencing Center using the Illumina TruSeq DNA
PCR-Free Protocol (Cat.# FC-121-3001) on an Illumina Novaseq6000
platform. Sequence data from the six pedigree dogs is available on
SRA (BioProject PRJNA576632). Dual-indexed adapters were utilized
to minimize barcode switching. Paired-end data were aligned to
the CanFam3.1 reference genome (http://genome.ucsc.edu/cgi-bin/
hgGateway?db=canFam3) using the BWA 0.7.17 MEM algorithm
(Li and Durbin 2009), sorted with SAMtools (Li et al. 2009), and
screened for putative duplicate reads with PicardTools 2.9.2 (https://
github.com/broadinstitute/picard). Sequences were locally realigned
based on documented and novel insertions-deletions (Axelsson et al.
2013) using GATK 4.0.8.1 (DePristo et al. 2011), and training sets of
dbSNP and Illumina Canine HD chip positions were used for base
quality recalibration. HaplotypeCaller was used in gVCF mode (Poplin
et al. 2017)to call SNVs for each individual dog, and then jointly across
all dogs. The vcf file was compared to the published variant file
of 91 million canine SNPs and small indels (Plassais et al. 2019)
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA448733) using
vcftools 0.1.15 –gzdiff –diff-site to retrieve all novel variants.
Variants were annotated using SNPeff (Cingolani et al. 2012) with
the CanFam3.1.86 ensemble gene list. All variants with moder-
ate to high impact predictions were retained for further analysis.

These were then filtered for the following inheritance pattern:
heterozygous in the dam, homozygous alternate in the two hairless
pups, heterozygous or homozygous reference in the three coated
pups.

RNA extraction and quantitative PCR
Hair was not available for nucleic acid isolation so we utilized blood
as a proxy, as has been done in mice (Zetoune et al., 2008). It also
expresses SGK3 and is readily available. A total of 2.5 ml of peripheral
blood was collected into PaxGene Blood RNA tubes (BD Bioscience)
for RNA isolation from five coated and two hairless dogs. RNA was
isolated from blood using the PaxGene Blood RNA kit following
manufacturer’s recommendations. Complementary DNA (cDNA)
was generated using SuperScript II (ThermoFisher) using standard
protocols, with 1mg of total RNA input. Quantitative PCR (qPCR)
was performed using the PowerSYBR Green PCRMaster Mix (Applied
Biosystems) on the CFX384 Real-Time System (Bio-Rad). Normalized
SGK3 expression was obtained by subtracting housekeeping gene
(GAPDH, HPTR1, RPS19) threshold cycle values from those of
SGK3. Statistical testing was not carried out due to limited sample
availability. Two pairs of qPCR primers were created to ensure re-
producibility of the SGK3 gene:

SGK3 set 1: 59-GGGACACCAGAGTACCTTGC and 59-
GGGAGGCAATCCATACAGCA

SGK3 set 2: 59-CCTAATGTGGCAGGACCAGA and 59-
GCCTCCAGTACACTGGCATT

In addition, three independent control primer pairs were used as a
reference set:

GAPDH: 59-CCTCATGACCACCGTCCA and 59-AAGCAG-
GGATGATGTTCTGG;

HPTR1: 59-TTTGCTGACCTGCTGGATTAT and 59-CCTT-
TCCAGTTAAAGTTGAGAGAT;

and RPS19: 59-TCACTGGTGAGAACCCCCT and 59-CCTG-
ATTCACACGGCGTAG

Figure 1 Hairless Scottish Deerhound phenotype and pedigree.
(A) Typical coated and hairless Scottish Deerhounds. (B) Pedigree
analyzed for this study included sire and dam, both of whom have
normal coats, and five offspring, three of whom had normal coats
(open symbols) with two that were hairless (filled symbols). Coated
deerhound image courtesy of Mary Bloom, copyright AKC. Hairless
deerhound image provided by Marjan Hemminga.
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Data availability
The authors affirm that all datanecessary for confirming the conclusions
of the article are present within the article, figures, and tables. Data has
been loaded to SRA (BioProject PRJNA576632). VCF files for the
722 control WGS are available at: (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA448733). Supplemental material available at figshare:
https://doi.org/10.25387/g3.10301855.

RESULTS

Hairless Scottish Deerhound phenotype
The American Kennel Club (AKC) breed standard for the Scottish
Deerhound describes the coat as “harsh and wiry about three or
four inches long,” as seen in Figure 1A (American Kennel Club 2017).
Hairless Deerhounds are extremely rare, yet we identified a family
with a mix of coated and hairless offspring (Figure 1B). Both sire and
damwere coated. At birth, puppies displayed either a normal, full coat
or a sparse and receding coat, with the latter giving the appearance of
balding dogs. In those who initially had hair but went bald, the coat
progressively thinned early in life and was completely gone by five
weeks (Figure 1A). Beyond the coat, no other obvious phenotypes
were observed and the dogs experience no unusual health issues.

Candidate mutation analysis
As both parents were coated and the offspring had a mix of
phenotypes, a Mendelian recessive pattern of inheritance was
predicted. This is reminiscent of the hairless variety of the AHT,
an AKC-recognized breed whose 2004 standard calls for a completely
hairless body, which is also autosomal recessive (American Kennel
Club 2017). We demonstrated previously that hairlessness in the
AHT was due to a recessive mutation in the SGK3 gene: a dele-
tion of four bases within exon four at chr29:16366702-16366705
(p.Val96GlyfsTer50). We had hypothesized that the mutation alters
the reading frame of the protein, creating a new protein sequence for
50 amino acids and a premature stop at amino acid 157 which short-
ens the protein by 2/3. We therefore initially genotyped the mother
and five Deerhound offspring for the same mutation, but observed
that all dogs contained the wild type sequence at this position. This
suggested to us that a unique genomic variant is responsible for
hairlessness in the Scottish Deerhound.

WGS and variant filtering
To identify potential causative variants, we performed WGS of the
dam and five offspring. We then applied a series of filters to reduce
the number of likely causative variants (Figure 2). First, we subtracted
all variants found within a recently published canine WGS catalog that
included one Scottish Deerhound (Plassais et al. 2019), identifying
36,008 SNPs and indels that were private to this family. After removal
of poor-quality variants due to low sequencing depth (,20 reads),
missing genotypes for one hairless dog or greater than two pedigree
dogs, a total of 29,318 variants remained. Filtering for the expec-
tation of homozygosity of the alternate, non-reference allele in the
hairless offspring left 325 variants. As we predict a Mendelian re-
cessive pattern of inheritance, both parents should carry the variant
allele; 325 variants were reduced to 133 by selection of variants that
were heterozygous in the dam. Finally, this number was reduced to
56 by excluding variants that were homozygous alternate (homozygous
for the rare allele) in the coated offspring (Supplemental Material,
Table 1). Only a single variant of the remaining 56 was within an exon
of a gene and is predicted to be of high-impact by SNPeff (Cingolani
et al. 2012). This variant is a one base pair insertion in exon

2 of SGK3 (c.137_138insT) which is predicted to cause a frameshift
p.(Glu47GlyfsTer3), leading to an early termination of the protein,
thus producing only 10% of its predicted 490 amino acids.

Gene expression
This SGK3 variant leads to a frameshift in the coding sequence and was
predicted by Hytonen and Lohi (Hytönen and Lohi 2019) to lead to
nonsense mediated decay. The lack of health issues in hairless Scottish
Deerhounds, as opposed to observations in loss-of-function mouse
models, suggests that perhaps SGK3 is still expressed in hairless dogs.
We therefore assayed gene expression levels in both coated and hairless
Deerhounds. RNA was isolated from peripheral blood collected from
five coated and two hairless Deerhounds to determine if SGK3 tran-
script levels were reduced in hairless dogs as compared to their coated
counterparts. Quantitative PCR suggests little variation between the
two, although statistical analysis is not possible due to limited numbers
of hairless samples available (Figure 3). The absolute cycle number for
detection by qPCR does not indicate complete loss of expression, as
might be expected with nonsense mediated decay. These data suggest
that alternative mechanisms may lead to hairlessness in these Scottish
Deerhounds but more data are needed for future investigation.

DISCUSSION
Thedomestic dog continues to be a resource for identifying variants and
genes controlling a wide spectrum of morphologic features, including
phenotypes related tohair, suchas length, texture, curl, shedding, growth
patterns, etc. Total hairlessness, or alopecia universalis, is a topic of
interest for dog fanciers and breeders as it is typically among the most
visible and, outside of a small number of selected breeds, least desirable
traits. Only two genes have been associated with hairlessness in dogs.
The first, FOXI3, is responsible for hairlessness in the Chinese Crested,
Xoloitzcuintli, and Peruvian IncaOrchid dog (Drögemüller et al. 2008).
The second, SGK3, was originally described by us as responsible for the
recessive hairless phenotype in the AHT (Parker et al. 2017b). SGK3 is a
relative of the Akt gene and is essential for the development and main-
tenance of the hair follicle. Hair follicles in mice who lack Sgk3 fail to
mature normally, e.g., fur proliferation is reduced and apoptosis is in-
creased, leading to early regression of hair follicles (Alonso et al. 2005).
Importantly, loss-of-function mouse models also display a range of
other symptoms including decreased bone density, kidney stones
(Bhandaru et al. 2011), behavioral abnormalities (Lang et al. 2006),
and decreased intestinal glucose transport leading to delayed growth
(Sandu et al. 2005). In contrast, neither the Deerhounds studied here
nor the AHT are known to have additional gross phenotypes beyond

Figure 2 Filtering paradigm to isolate novel hairless variants. WGS
data from the hairless Scottish Deerhound pedigree was compared to
a recently published comprehensive catalog of 91 million SNPs and
indels to identify 36,008 variants that were unique to the pedigree.
Filtering based on Mendelian inheritance patterns, revealed 56 candi-
date variants. Only a single variant was predicted to be both within the
coding region and to create a high-impact functional change.
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coat aberration. Our expression analysis suggests at least partial reten-
tion of gene levels in a peripheral cell type as a proxy for intrinsic gene
regulation.

While this study was ongoing, an analysis of eight normal and
two hairless Scottish Deerhounds utilized homozygosity mapping
to identify two probable variants within regions of shared allelic
homozygosity on chromosome 29 (Hytönen and Lohi 2019), the
most likely of which was the same insertion and subsequent frame-
shift in SGK3 described here. We are thus able validate these results in
a fully independent data set.

While theabove isa likely explanation for thehairlessnessphenotype,
a second hypothesis is suggested by consideration of alternative tran-
scripts. In our original analysis of the AHT we hypothesized that as a
result of the four base pair deletion the entire STKc_SGK3 catalytic
domain is lost. However, examination of the transcripts in both the
AHT and hairless Deerhound transcripts reveals a second hypothesis
of exon skipping and/or the use of a second starting methionine to
produce a nearly complete protein. The predicted alternative proteins
would losemost of thePXdomain but retain the catalytic domain. The
PX domain is required for localization of SGK3 to the endosome
where activating phosphorylation occurs (Xu et al. 2001; Tessier and
Woodgett 2006). If correct, this would explain why the hairless Scottish
Deerhounds and AHT are otherwise healthy, with no deleterious
phenotypes. Indeed, a protein with a functioning but inactive catalytic
domain may retain reduced ability to function in other, non-hair
follicle related pathways, resulting in a mild phenotype in dogs rather
than the knock-out phenotype observed in mice, although we were
unable to test this hypothesis.

As canine whole genome data continue to expand, it is likely that
sequencing a limited number of individuals will be sufficient to identify
putative causative variants. The current dataset is sufficiently large that

even if wehad only sequenced the twohairless dogs,wewould have been
able to filter our dataset to just four high-impact coding variants.
Sequencing of large numbers of dogs from amaximal number of breeds,
as proposedby the internationalDog10Kproject (Ostrander et al.2019),
will permit identification of single associated variants across phenot-
pyes with the same minimal sequencing. It will also permit more rapid
identification of causative variants within regulatory regions, as is
expected for many diseases. The domestic dog, therefore, continues
to build its reputation as a resource for understanding the genetics
of traits important to human health.
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