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Background. Breast cancer (BC) is the most common malignant tumor in women. The immunophenotype of tumor
microenvironment (TME) has shown great therapeutic potential in tumor. Method. The transcriptome was obtained from
TCGA and GEO data. Immune infiltration was analyzed by single-sample gene set enrichment (ssGSEA). The immune feature
was constructed by Cox regression analysis. In addition, the coexpression of differential expression genes (DEGs) was identified.
Through enrichment analysis, the function and pathway of module genes were identified. The somatic mutations related to
immune characteristics were analyzed by Maftools. By using the consistency clustering algorithm, the molecular subtypes were
constructed, and the overall survival time (OS) was predicted. Results. Immune landscape can be divided into low immune
infiltration and high immune infiltration. Cox regression analysis identified seven immune cells as protective factors of BC. In
the coexpression modules for DEGs of high and low immune infiltration, module 1 was related to T cells and high immune
infiltration. In particular, the area under the curve (AUC) value of hub gene SASH3 was the highest, and the correlation with T
cells was stronger in the high immune infiltration. Enrichment analysis found that oxidative stress, T cell aggregation, and
apoptosis were observed in high immune infiltration. In addition, TP53 was identified as the most important somatic gene
mutation related to immune characteristics. Importantly, we also constructed seven immune cell-based breast cancer subtypes to
predict OS. Conclusion. We evaluated the immune landscape of BC and constructed the gene characteristics related to the
immune landscape. The potential of T cells and SASH3 in immunotherapy of BC was revealed, which may guide the
development of new clinical treatment strategies.

1. Introduction

Breast cancer is a disease in which breast cells grow out of
control and eventually form tumors [1]. Breast cancer is
one of the most common cancer types in the world with high
mortality and malignancy [2]. In 2012, about 522000 women
died from breast cancer worldwide [3]. The survival rate after
diagnosis varies greatly among breast cancer patients, even
those closely matched with tumor characteristics [4]. At pres-
ent, it is generally believed that the tumor microenvironment
(TME) affects the occurrence and development of tumors
[5]. Therefore, it is necessary to extract the prognostic factors
from the tumor microenvironment, especially the immune
microenvironment.

TME immunophenotype plays an important role in pre-
dicting clinical efficacy and therapeutic effect [6]. At present,

it is generally believed that the presence of immune microen-
vironment can inhibit tumor growth and prevent tumor
metastasis [7]. The weak immunogenicity and strong immu-
nosuppressive environment of breast cancer limit immuno-
therapy for adaptive immune system, such as checkpoint
inhibitor [8]. The infiltrative immune components of breast
tumors have been used as biomarkers for prognosis and pre-
diction of chemotherapy and radiotherapy [9, 10].

In breast cancer, high immune infiltration is associated
with better clinical efficacy [11]. Especially the degree and
type of T cell infiltration affect the prognosis of breast cancer.
Some studies in many human cancers have shown that the
presence of T cell infiltration is often related to good progno-
sis [12, 13]. In addition, high immune infiltration was associ-
ated with increased response to neoadjuvant and adjuvant
chemotherapy [14].
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In this study, we used single-sample gene set enrichment
(ssGSEA) to analyze the high and low immune cell infiltra-
tion in breast cancer. The differentially expressed genes
between high and low immune infiltration were analyzed,
and the molecular mechanism of different immune infiltra-
tion was revealed.

2. Materials and Methods

2.1. Data Source and Standardization.We collected the orig-
inal microarray data of breast cancer tissue from The Cancer
Genome Atlas (TCGA) and gene expression omnibus
(GEO), as well as the relevant clinicopathological data.
Among them, TCGA contains 1027 tumor samples,
GSE42568 contains 104 breast cancer samples, GSE37751
contains 61 breast cancer samples, and GSE7390 contains
198 breast cancer samples. All data acquisition and analysis
are completed with R (3.2.2). Normalization was performed
to correct for sample-related differences using R package of
EDASeq and quantile normalized using preprocessCore.

2.2. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
The marker gene set for immune cell types was obtained
from Bindea et al. [15]. The infiltration levels of immune cells
were quantified by ssGSEA using gsva package [16]. Tumors
with different patterns of immune cell infiltration were clas-
sified by unsupervised clustering.

2.3. Differentially Expressed Genes. Differentially expressed
genes (DEGs) in high and low immune infiltration were per-
formed by Limma package [17, 18] in GEO datasets and
DESeq 2 package [19] in TCGA. Set threshold P < 0:05.

2.4. Weighted Correlation Network Analysis (WGCNA). The
WGCNA package [20] was used to construct the coexpres-
sion network. The soft threshold power of β is calculated by
scale-free topological criterion; then, a weighted adjacency
matrix is generated. In addition, the correlation between
these modules and immune cells was studied with the Pear-
son correlation.
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Figure 1: Breast cancer immune cell microenvironment. (a) Classification of high and low immune cell infiltration in breast cancer samples.
(b) The difference level of 24 kinds of immune cells in breast cancer with high and low immune cell infiltration. (c) Correlation between
immune cells in high or low immune cell infiltration samples. (d) Cox regression analysis of potential prognostic factors of breast cancer.
(e) Nomogram of immune cells predicting survival time of breast cancer.
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2.5. Enrichment Analysis and Gene Set Enrichment Analysis
(GSEA). Enrichment analysis of module genes for Gene
Ontology (GO) and The Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway using clusterProfiler package
[21]. P < 0:05 was the threshold used for the significant
terms.

GSEA analysis was used to detect whether the genes with
high and low immune infiltration contained significant
KEGG pathway.

2.6. Somatic Mutation Analysis. The somatic mutation of
breast cancer with different immune infiltration in TCGA
was calculated by Maftools, using ggplot2 package [22, 23]
to draw the distribution map of mutation.

2.7. Immunophenotyping. Consensus clustering based on
seven immune cells was carried out using the Consensu-

sClusterPlus package. After that, we used the survival pack-
age to conduct Kaplan Meier survival analysis in each cluster.

3. Results

3.1. Immune Microenvironment in Breast Cancer. We calcu-
lated the infiltration of immune cells of breast cancer samples
by ssGSEA into high immune cell infiltration and low
immune cell infiltration (Figure 1(a)). There was a significant
difference between the high and low immune infiltration
groups (Figure 1(b)). In particular, T cells, B cells, DC, and
cytotoxic cells had the same direction of difference among
the four datasets. The correlation between cytotoxic cells
and T cells was the highest in high or low cell infiltration
samples (Figure 1(c)). Cox proportional hazards model
showed that 7 immune cells were protective factors for sur-
vival (B cells, Cytotoxic cells, Eosinophils, iDC, PDC, T cells,
and T helper cells) (Figure 1(d)). We constructed a nomo-
gram of immune cells that affect the survival of breast cancer
patients, which suggested that T-cell-mediated immune
response may prolong the survival time of breast cancer
patients (Figure 1(e)).

3.2. Differentially Expressed Genes in High and Low Immune
Scores. To identify the DEGs in breast cancer between high
and low immune groups, we screened four groups of differ-
entially expressed genes (DEGs) (Figure 2(a)). The coexpres-
sion analysis was carried out by obtaining the intersection
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Table 1: Hub genes of modules.

Colour Hub genes Module

Blue LINC00504 m5

Brown AFF4 m4

Green ZEB2 m3

Red IFIT3 m2

Turquoise SASH3 m1

Yellow NME3 m6

8 BioMed Research International



59

80

61

43

23

54

7

66

30

77

42

0

20

40

60

80

C
ou

nt

Aging
Anatomical structure homeostasis
Autophagy
Cellular response to interferon−alpha
Gland development
Male sex differentiation
Positive regulation of neurogenesis

Regulation of interleukin−13 secretion
Regulation of neurotransmitter levels
Response to interleukin−1
Response to oxidative stress
T cell aggregation
Wnt signaling pathway

Important BP in module genes 

m1

m2

m3

m4

m5

m6

A
gi

ng

A
na

to
m

ic
al

 st
ru

ct
ur

e h
om

eo
st

as
is

Au
to

ph
ag

y

C
ell

ul
ar

 re
sp

on
se

 to
 in

te
rfe

ro
n−

al
ph

a

G
la

nd
 d

ev
elo

pm
en

t

M
al

e s
ex

 d
iff

er
en

tia
tio

n

Po
sit

iv
e r

eg
ul

at
io

n 
of

 n
eu

ro
ge

ne
sis

Re
gu

lat
io

n 
of

 in
te

rle
uk

in
−1

3 
se

cr
et

io
n

Re
gu

lat
io

n 
of

 n
eu

ro
tr

an
sm

itt
er

 le
ve

ls

Re
sp

on
se

 to
 in

te
rle

uk
in

−1

Re
sp

on
se

 to
 o

xi
da

tiv
e s

tre
ss

T 
ce

ll 
ag

gr
eg

at
io

n

W
nt

 si
gn

al
in

g 
pa

th
w

ay

Description

M
od

ul
e

Count
10

20

30

40

–log10(FDR)

6

8

10

12

(a)

Figure 3: Continued.

9BioMed Research International



23 24

14
17

37

7 6

56

42

30

0

20

40

Co
un

t

Important KEGG in module genes 

m1

m2

m3

m4

m5

m6

A
po

pt
os

is

cA
M

P 
sig

na
lin

g 
pa

th
w

ay

Ce
ll 

cy
cl

e

Ce
nt

ra
l c

ar
bo

n 
m

et
ab

ol
ism

 in
 ca

nc
er

En
do

cy
to

sis

Er
bB

 si
gn

al
in

g 
pa

th
w

ay

JA
K−

ST
A

T 
sig

na
lin

g 
pa

th
w

ay

M
A

PK
 si

gn
al

in
g 

pa
th

w
ay

PI
3K

−A
kt

 si
gn

al
in

g 
pa

th
w

ay

Ra
s s

ig
na

lin
g 

pa
th

w
ay

M
od

ul
e

Apoptosis
cAMP signaling pathway
Cell cycle
Central carbon metabolism in cancer
Endocytosis

ErbB signaling pathway
JAK−STAT signaling pathway
MAPK signaling pathway
PI3K−Akt signaling pathway
Ras signaling pathway

Description

Count
10
20

30

40

–log10(FDR)

6

8

10

12

(b)

Figure 3: Continued.

10 BioMed Research International



gene with the same expression direction of DEGs in TCGA
(Figure 2(b)). The soft power threshold β = 5was determined
by the “SFT $power estimate” function (Figure 2(c)). We
detected six modules and the hub gene of each module
(Figures 2(d) and 2(e), Table 1). In addition, the correlation
between each module and immune cell was calculated
(Figure 2(f)). MEturquoise (module 1) had the strongest pos-
itive correlation with cytotoxic cells, T cells, B cells, DC, high
immune infiltration, and negative correlation with Eosino-
phils. MEBlue (module 5) had the strongest positive correla-
tion with Eosinophils and had the strongest negative
correlation with cytotoxic cells, T cells, B cells, DC, and high
immune infiltration. It was worth noting that the AUC value
of hub gene SASH3 in module 1 was the highest, which may
affect the immune cell infiltration of breast cancer
(Figure 2(g)). In addition, the correlation between SASH3
and T cell in breast cancer with high immune infiltration
was also higher than that in breast cancer with low immune
infiltration (Figure 2(h)).

3.3. Go Function and KEGG Pathway of Module Genes. Next,
in the result of enrichment analysis for module genes, we
obtained 3998 biological processes (BP), 411 cell components
(CC), and 721 molecular functions (MF). High immune
infiltration-related module genes were mainly related to oxi-

dative stress, T cell aggregation, and low immune infiltration-
related module genes were mainly related to Wnt signaling
pathway (Figure 3(a)). Interestingly, there were a large num-
ber of the same terms in the enrichment results of module 1
and module 5, including interleukin-13 secretion, anatomical
structure homeostasis, and regulation of neurotransmitter
levels. In addition, the module genes enriched 159 KEGG
pathways. High immune infiltration-related module genes
are mainly related to PI3K Akt signaling pathway, Ras signal-
ing pathway, apoptosis, and low immune infiltration-related
module genes are mainly related to cell cycle, MAPK signal-
ing pathway, and cAMP signaling pathway (Figure 3(b)).
GSEA results showed that the KEGG pathways related to
butanoate metabolism, vitamin digestion, and absorption
(Figure 3(c)). These pathways were also verified by
GSE42568 and GSE7390.

3.4. Mutation Characteristics and Immunophenotype
Classification. Furthermore, we observed the distribution of
somatic mutations in samples with high or low immune cell
infiltration. We found the top 20 mutations related to
immune environment; TP53 was the dominant gene
(Figure 4(a)). The difference of cytotoxic cells, Eosinophils,
iDC, T cells, and T helper cells were verified by other three
datasets in the survival time of more than 5 years and less
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(c) Breast cancer was classified into two groups according to seven immune cells. (d) Survival difference between the two types of breast
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than 5 years (Figure 4(b)). Then, based on the 7 immune cell
types, the TCGA queues were classified into two groups
(Figure 4(c)). There was a significant difference in OS
between the two groups (Figure 4(d)).

4. Discussion

In this study, the immune clusters described depend on the
abundance of immune infiltration and were independent of
other prognostic factors. We also analyzed the coexpression
of DEGs in different immune clusters and screened the key
genes related to important immune cells. In addition, we pro-
vided a new immune-related subtype in breast cancer. In
view of the current clinical development of immunomodula-
tory therapy, this is of interest.

First, we observed the clustering of immune cells in
TCGA, GSE37751, GSE42568, and GSE7390. Most of the
immune cells were highly expressed in the samples with high
immune infiltration. In particular, the results showed that T
cells were the protective factor for OS of breast cancer. After
identification, the increased of T cell density was related to
the improvement of survival rate for breast cancer patients.
T cells played an effective role in trying to eliminate tumors
[24]. Overall, the infiltration of CD8+ T cells was related to
the improvement of clinical prognosis [25]. CD8+ T cell infil-
tration was associated with good prognosis of ER- and ER
+/HER 2+ tumors [8]. The decrease of HER 2 T cell immune
level was considered as a prognostic indicator of the
increased risk of treatment failure in patients with invasive
breast cancer [26].

There were 6 coexpression modules for the DEGs
between high and low immune cell infiltration, each module
may represent different mechanism of action. Module 1 had
the highest positive correlation with T cells and high immune
infiltration. The correlation between the T cells and the hub
gene SASH3 of module 1 was also higher in the high immune
infiltration group than in the low immune infiltration group.
It was suggested that SASH3 may affect the immune micro-
environment of breast cancer patients. Some studies had
shown that SASH3 was a potential prognostic factor for
breast cancer patients [27]. As a Lymphocyte specific
immune recruitment gene (LYM) gene, SASH3 was related
to lymphocytic infiltrating tumor and had good prognosis
of breast cancer [28, 29].

In addition, biological function analysis found that mod-
ule 1 genes were mainly related to oxidative stress, T cell
aggregation, and other biological processes. Oxidative stress
played an important role in tumor therapy. Cytotoxic ther-
apy increased oxidative damage, which may kill tumor cells
[30]. High oxidative stress created a challenging microenvi-
ronment for breast cancer metastasis [31]. However, the
genes of module 5, which was negatively correlated with high
immune infiltration, were mainly involved in Wnt signaling
pathway. It had been proved that the atypical activation of
Wnt signaling pathway promoted the occurrence and devel-
opment of tumor, including cell proliferation, migration,
invasion, angiogenesis, and resistance to chemotherapy
[32]. Wnt pathway activation enhanced the radiation resis-
tance of mouse breast and human breast cancer cell progen-

itors. It may regulate the number of stem cells and
progenitors, making Wnt pathway produced drug resistance
in the current anticancer treatment [33]. In the KEGG path-
way related to module 1, promoting apoptosis was an impor-
tant means in the treatment and prevention of breast cancer
[34]. The increased MAPK activity associated with module 5
increased the proliferation and migration of breast cancer
cells [35]. GSEA results showed that butanoate metabolism
was highly enriched in high immune infiltration. The change
of butanoate metabolism in breast cancer patients receiving
chemotherapy [36]. Changes in metabolic pathways may
affect the fate of immune cells to regulate immunity [37].
Our results suggested that the metabolic pathway may regu-
late the prognosis of breast cancer through immune
infiltration.

A large number of predicted immunogen mutations may
help to identify patients who may benefit from checkpoint
blocking and related immunotherapy [38]. The highest
mutation frequency of TP53 was found between high and
low immune infiltration, which was also confirmed by other
studies [39]. It is tempting that, in breast cancer, TP53 muta-
tions associate with perturbations that increase the likelihood
to develop an antitumor immune response. We obtained the
phenotypic characteristics of the immune clusters by the con-
sistent clustering. The significant difference in survival
between the two phenotype samples indicates that our classi-
fication criteria may be further studied. There were some lim-
itations in this study. First of all, this study was based on a
public database, so the robustness of immune cell and gene
characteristics should be further verified in large prospective
clinical trials. Second, experimental studies were needed to
further elucidate the biological role of T cells and SASH3
markers.

5. Conclusion

In this study, TCGA was used as the main analysis data, and
GSE37751, GSE42568, and GSE7390 were used to identify
the immune microenvironment and characteristic genes with
high or low immune cell infiltration. We found that T cell
was a protective factor for the prognosis of breast cancer.
Coexpression analysis identified the module genes related
to immune cell infiltration. As a positive correlation module
with high immune infiltration, SASH3 had a high correlation
with T cells and better AUC value. The characteristic genes of
high and low immune cell infiltration participate in different
biological functions and signal pathways to affect the devel-
opment of breast cancer. There were significant differences
in overall survival between the two phenotypes based on 7
protective immune cell clusters. This is of great significance
to further improve our understanding of how to manipulate
immune TME.

Data Availability

We collected the original microarray data of breast cancer tis-
sue from The Cancer Genome Atlas (TCGA) and gene
expression omnibus (GSE42568, GSE37751and GSE7390.),
as well as the relevant clinicopathological data.

14 BioMed Research International



Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Huiling Wang and Shuo You contributed equally to this
work.

References

[1] H. Ontario, “Gene expression profiling tests for early-stage
invasive breast Cancer: a health technology assessment,”
Ontario Health Technology Assessment Series, vol. 20, no. 10,
pp. 1–234, 2020.

[2] Y. C. Shao, X. C. Nie, G. Q. Song, Y. Wei, P. Xia, and X. Y. Xu,
“Prognostic value of DKK2 from the Dickkopf family in
human breast cancer,” International Journal of Oncology,
vol. 53, no. 6, pp. 2555–2565, 2018.

[3] J. Ferlay, I. Soerjomataram, R. Dikshit et al., “Cancer incidence
andmortality worldwide: sources, methods andmajor patterns
in GLOBOCAN 2012,” International Journal of Cancer,
vol. 136, no. 5, pp. E359–E386, 2015.

[4] M. Escala-Garcia, NBCS Collaborators, Q. Guo et al.,
“Genome-wide association study of germline variants and
breast cancer-specific mortality,” British Journal of Cancer,
vol. 120, no. 6, pp. 647–657, 2019.

[5] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the
next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[6] A. S. Dias, C. R. Almeida, L. A. Helguero, and I. F. Duarte,
“Metabolic crosstalk in the breast cancer microenvironment,”
European Journal of Cancer, vol. 121, pp. 154–171, 2019.

[7] W. H. Fridman, F. Pagès, C. Sautès-Fridman, and J. Galon,
“The immune contexture in human tumours: impact on clini-
cal outcome,” Nature Reviews Cancer, vol. 12, no. 4, pp. 298–
306, 2012.

[8] A. M. K. Law, E. Lim, C. J. Ormandy, and D. Gallego-Ortega,
“The innate and adaptive infiltrating immune systems as tar-
gets for breast cancer immunotherapy,” Endocrine-Related
Cancer, vol. 24, no. 4, pp. R123–R144, 2017.

[9] B. Ruffell, A. Au, H. S. Rugo, L. J. Esserman, E. S. Hwang, and
L. M. Coussens, “Leukocyte composition of human breast can-
cer,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 109, no. 8, pp. 2796–2801, 2012.

[10] S. Loi, N. Sirtaine, F. Piette et al., “Prognostic and predictive
value of tumor-infiltrating lymphocytes in a phase III random-
ized adjuvant breast cancer trial in node-positive breast cancer
comparing the addition of docetaxel to doxorubicin with
doxorubicin-based chemotherapy: BIG 02-98,” Journal of
Clinical Oncology, vol. 31, no. 7, pp. 860–867, 2013.

[11] X. Tekpli, OSBREAC, T. Lien et al., “An independent poor-
prognosis subtype of breast cancer defined by a distinct tumor
immune microenvironment,” Nature Communications,
vol. 10, no. 1, article 5499, 2019.

[12] L. Penter, K. Dietze, J. Ritter et al., “Localization-associated
immune phenotypes of clonally expanded tumor-infiltrating
T cells and distribution of their target antigens in rectal can-
cer,” Oncoimmunology, vol. 8, no. 6, article e1586409, 2019.

[13] R. D. Bense, C. Sotiriou, M. J. Piccart-Gebhart et al., “Rele-
vance of tumor-infiltrating immune cell composition and
functionality for disease outcome in breast cancer,” Journal

of the National Cancer Institute, vol. 109, no. 1, article
djw192, 2016.

[14] G. Pruneri, A. Vingiani, and C. Denkert, “Tumor infiltrating
lymphocytes in early breast cancer,” Breast, vol. 37, pp. 207–
214, 2018.

[15] G. Bindea, B. Mlecnik, M. Tosolini et al., “Spatiotemporal
dynamics of intratumoral immune cells reveal the immune
landscape in human cancer,” Immunity, vol. 39, no. 4,
pp. 782–795, 2013.

[16] S. Hanzelmann, R. Castelo, and J. Guinney, “GSVA: gene set
variation analysis for microarray and RNA-seq data,” BMC
Bioinformatics, vol. 14, no. 1, p. 7, 2013.

[17] M. E. Ritchie, B. Phipson, D. Wu et al., “limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[18] C. Gu, X. Shi, Z. Huang et al., “A comprehensive study of con-
struction and analysis of competitive endogenous RNA net-
works in lung adenocarcinoma,” Biochimica et Biophysica
Acta (BBA) - Proteins and Proteomics, vol. 1868, no. 8, article
140444, 2020.

[19] S. Anders and W. Huber, “Differential expression analysis for
sequence count data,” Genome Biology, vol. 11, no. 10,
p. R106, 2010.

[20] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[21] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[22] A. Toumazi, E. Comets, C. Alberti et al., “dfpk: an R-package
for Bayesian dose-finding designs using pharmacokinetics
(PK) for phase I clinical trials,” Computer Methods and Pro-
grams in Biomedicine, vol. 157, pp. 163–177, 2018.

[23] X. Shi, T. Huang, J. Wang et al., “Next-generation sequencing
identifies novel genes with rare variants in total anomalous
pulmonary venous connection,” eBioMedicine, vol. 38,
pp. 217–227, 2018.

[24] F. S. Varn, D. W. Mullins, H. Arias-Pulido, S. Fiering, and
C. Cheng, “Adaptive immunity programmes in breast cancer,”
Immunology, vol. 150, no. 1, pp. 25–34, 2017.

[25] J. Roelands, P. Kuppen, L. Vermeulen et al., “Immunogenomic
classification of colorectal cancer and therapeutic implica-
tions,” International Journal of Molecular Sciences, vol. 18,
no. 10, article 2229, 2017.

[26] J. Datta, M. Fracol, M. T. McMillan et al., “Association of
depressed anti-HER2 T-helper type 1 response with recur-
rence in patients with completely treated HER2-positive breast
cancer: role for immune monitoring,” JAMA Oncology, vol. 2,
no. 2, pp. 242–246, 2016.

[27] H. Ren, D. Hu, Y. Mao, and X. Su, “Identification of genes with
prognostic value in the breast cancer microenvironment using
bioinformatics analysis,”Medical Science Monitor, vol. 26, arti-
cle e920212, 2020.

[28] C. P. Miller, J. D. Thorpe, A. N. Kortum et al., “JAK2 expres-
sion is associated with tumor-infiltrating lymphocytes and
improved breast cancer outcomes: implications for evaluating
JAK2 inhibitors,” Cancer Immunology Research, vol. 2, no. 4,
pp. 301–306, 2014.

[29] X. Zhang, J. Gong, J. Lu et al., “Long noncoding RNA
LINC00337 accelerates the non-small-cell lung cancer

15BioMed Research International



progression through inhibiting TIMP2 by recruiting
DNMT1,” American Journal of Translational Research,
vol. 11, no. 9, pp. 6075–6083, 2019.

[30] J. D. Lee, Q. Cai, X. O. Shu, and S. J. Nechuta, “The role of bio-
markers of oxidative stress in breast cancer risk and prognosis:
a systematic review of the epidemiologic literature,” Journal of
Women's Health (2002), vol. 26, no. 5, pp. 467–482, 2017.

[31] A. van Weverwijk, N. Koundouros, M. Iravani et al., “Meta-
bolic adaptability in metastatic breast cancer by AKR1B10-
dependent balancing of glycolysis and fatty acid oxidation,”
Nature Communications, vol. 10, no. 1, p. 2698, 2019.

[32] L. Ren, H. Chen, J. Song et al., “MiR-454-3p-mediated Wnt/β-
catenin signaling antagonists suppression promotes breast
cancer metastasis,” Theranostics, vol. 9, no. 2, pp. 449–465,
2019.

[33] R. Lamb, M. P. Ablett, K. Spence, G. Landberg, A. H. Sims, and
R. B. Clarke, “Wnt pathway activity in breast cancer sub-types
and stem-like cells,” PLoS One, vol. 8, no. 7, article e67811,
2013.

[34] V. C. Jordan, “The new biology of estrogen-induced apoptosis
applied to treat and prevent breast cancer,” Endocrine-Related
Cancer, vol. 22, no. 1, pp. R1–31, 2015.

[35] Y. Feng, M. Spezia, S. Huang et al., “Breast cancer development
and progression: risk factors, cancer stem cells, signaling path-
ways, genomics, and molecular pathogenesis,” Genes & Dis-
eases, vol. 5, no. 2, pp. 77–106, 2018.

[36] T. S. Madssen, I. Thune, V. G. Flote et al., “Metabolite and
lipoprotein responses and prediction of weight gain during
breast cancer treatment,” British Journal of Cancer, vol. 119,
no. 9, pp. 1144–1154, 2018.

[37] G. Andrejeva and J. C. Rathmell, “Similarities and distinctions
of cancer and immune metabolism in inflammation and
tumors,” Cell Metabolism, vol. 26, no. 1, pp. 49–70, 2017.

[38] S. D. Brown, R. L. Warren, E. A. Gibb et al., “Neo-antigens pre-
dicted by tumor genome meta-analysis correlate with
increased patient survival,” Genome Research, vol. 24, no. 5,
pp. 743–750, 2014.

[39] W. Hendrickx, I. Simeone, S. Anjum et al., “Identification of
genetic determinants of breast cancer immune phenotypes by
integrative genome-scale analysis,” Oncoimmunology, vol. 6,
no. 2, article e1253654, 2017.

16 BioMed Research International


	Recognition of Immune Microenvironment Landscape and Immune-Related Prognostic Genes in Breast Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Source and Standardization
	2.2. Single-Sample Gene Set Enrichment Analysis (ssGSEA)
	2.3. Differentially Expressed Genes
	2.4. Weighted Correlation Network Analysis (WGCNA)
	2.5. Enrichment Analysis and Gene Set Enrichment Analysis (GSEA)
	2.5. Enrichment Analysis and Gene Set Enrichment Analysis (GSEA)
	2.6. Somatic Mutation Analysis
	2.7. Immunophenotyping

	3. Results
	3.1. Immune Microenvironment in Breast Cancer
	3.2. Differentially Expressed Genes in High and Low Immune Scores
	3.3. Go Function and KEGG Pathway of Module Genes
	3.4. Mutation Characteristics and Immunophenotype Classification

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

