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Stochastic Resonance (SR) and Coherence Resonance (CR) are non-linear phenomena,

in which an optimal amount of noise maximizes an objective function, such as the

sensitivity for weak signals in SR, or the coherence of stochastic oscillations in CR. Here,

we demonstrate a related phenomenon, which we call “Recurrence Resonance” (RR):

noise can also improve the information flux in recurrent neural networks. In particular,

we show for the case of three-neuron motifs with ternary connection strengths that the

mutual information between successive network states can be maximized by adding a

suitable amount of noise to the neuron inputs. This striking result suggests that noise in

the brain may not be a problem that needs to be suppressed, but indeed a resource that

is dynamically regulated in order to optimize information processing.

Keywords: stochastic resonance, coherence resonance, recurrent neural networks, entropy, mutual information,

motifs, noise

1. INTRODUCTION

Recurrent neural networks (RNN) with apparently random connections occur ubiquitously in the
brain (Middleton and Strick, 2000; Song et al., 2005). They can be viewed as complex non-linear
systems, capable of ongoing activity even in the absence of driving inputs, and they show rich
dynamics, including oscillatory, chaotic, and stationary fixed point behavior (Krauss et al., 2019).
Recently RNNs gain popularity in bio-inspired approaches of neural information processing, such
as reservoir computing (Schrauwen et al., 2007; Verstraeten et al., 2007; Lukoševičius and Jaeger,
2009). Due to the built-in feed-back loops that distinguishes RNNs from networks with a pure feed-
forward structure, input information that enters a RNN at some point in time can “circulate” within
the network for extended periods. Moreover, a typical RNN will not simply conserve the input
information in its original form, but transform it to new and possibly more useful representations
at each time step. This ability of RNNs to dynamically store and continuously re-code information,
as well as the possibility to combine the circulating information with new inputs, is essential for the
processing of sequential data (Skowronski and Harris, 2007).

From an engineering point of view, a system that stores information by continuous re-coding
has to meet two requirements: (1) The number of different codes that can be represented in the
system should be as large as possible, in order to enhance the probability that some of these
codes are actually useful for some read-out units and for further information processing. (2) The
transformations from one code to the next should be as reproducible as possible, since otherwise
information gets lost. Taken together, these two requirements are equivalent to maximizing the
mutual information (MI) between subsequent states of the system.

While the transitions between subsequent network states can be made perfectly reproducible in
an artificial network of deterministic neurons, it is unclear how this reproducibility is achieved in
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the brain, where neural computations are subject to a large degree
of internal and external noise (Faisal et al., 2008; Rolls and Deco,
2010).

We therefore investigate in this work how the MI between
subsequent network states depends on the level of noise added
to the inputs of each neuron. For this purpose, we use one of
the simplest examples of RNNs, namely the class of probabilistic
three-neuron motifs with ternary connection strengths (–1, 0,
1) (Krauss et al., 2019). Strikingly, we find that the MI is not
in general decreasing monotonically with the noise level, but
has for certain types of motifs a peak at some optimal level of
added noise.

This behavior resembles the phenomenon of Stochastic
Resonance (SR), in which adding noise to the input of a
sensor can enable this sensor to detect weak signals that would
otherwise remain below the detection threshold (Benzi et al.,
1981; Wiesenfeld and Moss, 1995; Gammaitoni et al., 1998; Moss
et al., 2004; Krauss et al., 2017). Another similar effect is the
so-called Coherence Resonance (CR), where the addition of a
certain amount of noise to an excitable system with oscillatory
response can enhance the degree of coherence in the system
output (Pikovsky and Kurths, 1997; Lee et al., 1998). While the
novel effect presented in this study shares with SR and CR the
resonance-like dependence of some objective-function on the
noise level, we consider here a free-running recurrent neural
network without input and output, and without any threshold.
For this reason, we will use the term “Recurrence Resonance”
(RR) for this new type of effect.

In previous studies we argued that SR might be a major
processing principle of the auditory system (Krauss et al., 2016;
Gollnast et al., 2017) and the cerebral cortex (Krauss et al., 2018).
Based on the here presented new results, we speculate that the
brain may use noise more generally to optimize information
processing in its different types of recurrent neural networks.

2. METHODS

2.1. Probabilistic Three-Neuron Motifs
Our study is based on Boltzmann neurons (Hinton and
Sejnowski, 1983) without bias. The total input zi(t) of neuron
i at time step t is calculated as:

zi(t) =

N
∑

j=1

wij sj(t) (1)

where sj(t) ∈ {0, 1} is the binary state of neuron j at present time
t, wij is the connection weight from neuron j to neuron i, and N
is the total number of neurons in the network.

In Boltzmann neurons the binary state in the next time step,
si(t+1), is chosen randomly, with an on-state probability

pi
(

si(t+1)=1
)

= σ (zi(t)) (2)

that depends on the total input zi(t) according to a
logistic function:

σ (z) =
1

1 + e−z
. (3)

We restrict our investigation to network motifs of three
Boltzmann neurons, using discrete, ternary connection weights
wij ∈ {−1, 0, 1}, where self connections wii are permitted.

In the following, we denote the present global state (at time
t) of a three-neuron motif by the binary vector

Ex =
(

s1(t), s2(t), s3(t)
)

(4)

and its next global state (at time t+1) by

Ey =
(

s1(t+1), s2(t+1), s3(t+1)
)

(5)

The update Ex → Ey is performed simultaneously for all neurons.

2.2. Statistical Properties
From the 3× 3 weight matrixW = (wij) of a given three-neuron
motif, we first compute the global state transition probabilities

p(Ey|Ex) from each possible state Ex ∈ {0, 1}3 to each possible state
Ey ∈ {0, 1}3. The resulting 8 × 8 matrix can be interpreted as the
transition matrix of a Markov process. We also determine the
state probabilities p(Ex) for all possible 8 global network states
in the stationary equilibrium situation, which are the solutions of
the equation

p(Ex) =
∑

Es

p(Ey|Es) p(Es). (6)

Finally, we compute the state pair probabilities

p(Ex, Ey) = p(Ey|Ex) p(Ex), (7)

which completely describe the statistical (dynamical) properties
of the three-node motif.

In the case of undisturbed motifs (i.e., with zero noise
input), all statistical properties can be computed analytically. For
example, the transition probability from the global state Ex =
(0, 1, 0) to the new global state Ey = (0, 1, 1) would be given by

p( (0, 1, 1) | (0, 1, 0) ) =
[

1− σ (w11 ·0+ w12 ·1+ w13 ·0)
]

·
[

σ (w21 ·0+ w22 ·1+ w23 ·0)
]

·
[

σ (w31 ·0+ w32 ·1+ w33 ·0)
]

.(8)

With added noise, however, we have determined these quantities
numerically by analyzing long (106 time steps) simulated time
series of motif states, starting each run with the global state
Ex(t=0) = (0, 0, 0).

2.3. Information Theoretic Properties
Based on the above statistical properties of a given motif, we
obtain the state entropy

H(X) = −
∑

Ex∈{0,1}3

p(Ex) log2 p(Ex), (9)

where Ex runs through the eight possible states (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), . . . (1, 1, 1). The state entropy measures the
average amount of information circulating in the motif and is
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ranging from 0 to 3 bit in our case. Since this quantity does not
depend on the time step, we have H(X) = H(Y).

Furthermore, we obtain the mutual information (MI)
between successive states

I(X;Y) =
∑

Ex∈{0,1}3

∑

Ey∈{0,1}3

p(Ex, Ey) log2

(

p(Ex, Ey)

p(Ex) p(Ey)

)

, (10)

which can be interpreted as the “information flux” within
the network.

Maximizing the MI requires (1) that the amount of
information circulating in the recurrent network is large, and (2)
that information is transmitted with only small loss from one
time step to the next. This becomes apparent in the equation

I(X;Y) = H(Y)−H(Y|X)

= H(X)−H(Y|X), (11)

where the “stochastic information loss” H(Y|X) measures the
variety of output states that can follow after a given input state.
In a purely deterministic system, one would have H(Y|X) = 0.
However, due to the probabilistic Boltzmann neurons and the
resulting stochastic nature of the state-to-state transitions, we
expect H(Y|X) > 0. Equation (11) thus states that the MI is
the state entropy minus the stochastic information loss. Both
quantities on the right side of this equation can be affected, to
different degrees, by the presence of noise.

2.4. Added Noise
To simulate the effect of external noise on the information flux,
continuous random values ηj(t) are added to the internal states
of the neurons j=1. . .3 in every time step:

zj(t) → zj(t)+ ηj(t). (12)

All ηj(t) are drawn, independently, from a Gaussian distribution
with zero mean and a prescribed standard deviation, here called
the noise level. The randomly distorted input states then enter
Equation (3) as before.

3. RESULTS

As we have demonstrated in a previous publication (Krauss et al.,
2019), there are 3,411 topologically distinct three-neuron motifs
with ternary connection strengths and possible self-connections
(also called “autapses”; Van Der Loos and Glaser, 1972 ; Bacci
et al., 2003; Bekkers, 2009; Yilmaz et al., 2016a,b), ten of which
are shown in Figure 1. In the present work, we have investigated
these motifs exhaustively with respect to their response to noise.

3.1. Noise Response of Specific Motifs
We first single out six representative motifs, two of which show
a pronounced effect of Recurrence Resonance. For each of the
six motifs (rows of Figure 2), we investigate the statistical and
information theoretical properties as functions of the noise level.
In particular, we compute the state probabilities p(Ex) (left column
of Figure 2). Furthermore, we compute the state entropy H(X)

(middle column), and the mutual information (MI) of successive
states I(X;Y) (right column). All three quantities are averaged
over 106 time steps for each motif and each noise level. At the
beginning of each run, all three neurons i were set to the state
si(t = 0) = 0.

3.1.1. Motif S1

We first consider, as a reference, the totally unconnected motif
S1 (Figures 2A1–A3). We obtain the expected results: all global
states are equally probable with p(Ex) = 1

8 ∀Ex, and the state
entropy is maximal with H(X) = 3 bit. However, successive
states in this motif are statistically independent and thus have no
information in common, so that I(X;Y) = 0 bit. Furthermore,
all quantities are also independent from the noise level, since
the system is completely random from the beginning. Due to
this noise-independence, motif S1 can of course not exhibit the
Recurrence Resonance effect.

3.1.2. Motif S2

We next consider the motif S2 (Figures 2B1–B3), which has
three excitatory connections. Without added noise, we find that
certain network states, in particular states (1, 0, 1) and (1, 1, 1),
are more probable than others, leading to a sub-optimal state
entropy of H(X) ≈ 2.8 bit. Due to the presence of connections
between the neurons, the next motif state is now to some extent
predictable from the former one, so that I(X;Y) ≈ 0.1 bit.
As the noise level is increased, all state probabilities start to
asymptotically approach the uniform value of 1

8 . Consequently,
we find a monotonous increase of the state entropy toward
the maximum value of 3 bit, which in principle should favor
the information flux in the motif and thus should help to
increase the MI between successive states. However, the added
noise also increases the stochastic information loss H(Y|X) (not
shown in the figure), which has a detrimental effect on the
information flux. In this case of motif S2, H(Y|X) is growing
faster with the noise level than H(X). Since I(X;Y) = H(X) −
H(Y|X), this leads to a monotonous decrease of the MI from
initially 0.1 bit without noise to almost zero at very large
noise levels.

3.1.3. Motif S3

The motif S3 (Figures 2C1–C3) Has already six excitatory
connections. The state probabilities and the state entropy show
a behavior that is qualitatively similar to motif S2. Quantitatively,
however, the state entropy without added noise is now with
H(X) ≈ 2 even less optimal than in motif S2: The system is
pinned most of the time in only a few dominating states. As
the noise level is gradually increased, the system is freed from
these dominating states, and the state entropy H(X) is now
growing faster than the stochastic information lossH(Y|X). Since
I(X;Y) = H(X) − H(Y|X) in a recurrent network, the MI
is now initially increasing with the noise level, then reaches a
maximum at a noise level of about 1 (= standard deviation of
Gaussian distribution), and eventually falls to zero for even larger
noise levels.
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FIGURE 1 | Examples of three-neuron motifs with ternary connections. Gray circles depict neurons, red arrows are excitatory connections (wij = 1), and blue arrows

are inhibitory connections (wij = −1).

3.1.4. Motif S4

The motif S4 (Figures 2D1–D3) Has the largest possible number
of nine excitatory connections. Here, we find an even more
pronounced maximum of the MI as a function of the noise level.

3.1.5. Motif S5

So far, all considered motifs contained only excitatory
connections. We next investigate motif S5 (Figures 2E1–E3),
which has three excitatory but also four inhibitory connections.
We find that the presence of inhibition counteracts the effect
of Recurrence Resonance. Indeed, the behavior of motif S5
resembles that of motif S2.

3.1.6. Motif S6

Finally, in motif S6, which has the largest possible number of nine
inhibitory connections (Figures 2F1–F3), the total state entropy
without added noise is lower than in motif S5, but nevertheless
we find no Recurrence Resonance effect.

3.2. Strength of Recurrence Resonance
Among all Ternary Three-Node Motifs
The representative examples above suggest that only a subset
of the three-node motifs with ternary connection strength show
a pronounced Recurrence Resonance effect, in particular those
with many excitatory and few inhibitory connections. In order to
test this hypothesis, we have investigated the noise response of all
3,411 motifs individually, by calculating the mutual information
of successive states MI = I(X;Y) as a function of the noise level
σnoise. We then compared how strong the Recurrence Resonance
effect was pronounced in each of the motifs. The strength 1MI
was quantified by the relative change of the MI between the zero
noise level σnoise=0 and the noise level σnoise=σopt where the MI
is maximal, that is

1MI =
MI(σnoise=σopt)−MI(σnoise=0)

MI(σnoise=0)
. (13)

Note that the completely unconnected motif (S1 in Figure 1) had
to be taken out of this evaluation, because in this special case
MI(σnoise=0) = 0.

After computing 1MI for all remaining 3410 motifs, we have
plotted the results in a rank-ordered way (Figure 3A). We find
that 1MI ≈ 0 for almost all motifs. Only very few motifs
show a significant Recurrence Resonance effect, and the ten top
ranking motifs are depicted in Figure 3B, together with their
respective 1MI values. The strongest effect is indeed found in
the motif that has nine excitatory connections. Interestingly,
among the ten top ranking motifs, only the last one has a single
inhibitory connection.

3.3. Correlation of Recurrence Resonance
With Structural Motif Properties
Taken together, the above investigations suggest that the
Recurrence Resonance effect occurs preferentially in motifs
with many excitatory and few inhibitory connections. To test
this hypothesis, and to identify possible other structural motif
parameters that might play a role in this context, we have
again investigated the set of 3,411 motifs and computed the
Spearman’s correlation coefficient r between 1MI and various
other parameters. It turns out that the correlation of 1MI with
any of these individual parameters is relatively weak, but in some
cases highly significant:

As expected, there is a significant positive correlation (r =
0.08, p = 8.5 · 10−6) between 1MI and the total number of
excitatory connections in a motif. By contrast, the correlation
with the total number of inhibitory connections is negative (r =
−0.11, p = 2.3 · 10−11). Consistently with these observations,
there is a positive correlation (r = 0.11, p = 5.7 · 10−10) with
the sum

∑

i,j wi,j of all nine weights in a motif. This quantity

is similar to a previously defined network weight statistics
parameter called “balance” which has been identified to have the
largest impact on the dynamical behavior of recurrent neural
networks (Krauss et al., 2019).
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FIGURE 2 | Statistical and information theoretical properties of representative motifs S1 to S6 (A–F), as functions of the noise level. State probabilities p(Ex) are shown

in the left column (A1–F1). State entropy H(X ) is shown in the middle column (A2–F2). Mutual information (MI) of successive states I(X;Y ) is shown in the right column

(A3–F3). All three quantities are averaged over 106 time steps for each motif and each noise level.

While each single neuron in our model motifs can have
mixed connections of both signs, according to Dale’s principle,
the outgoing connections of biological neurons are either purely
excitatory or purely inhibitory (Dale and Gaddum, 1930; Eccles
et al., 1954; Strata and Harvey, 1999). Therefore, we have tested
if 1MI is affected by the number of neurons in a motif that
are “synaptically specialized” in that way. We find however no

significant correlation of 1MI with the number of neurons that
are specialized on the output side (r = 0.03, p = 0.05).

Surprisingly, the strongest of all investigated correlations
is found between 1MI and the number of motif neurons
that are specialized on the input side, i.e., they receive either
only excitatory or only inhibitory connections (r = 0.12,
p = 1.5 · 10−11).
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FIGURE 3 | Rank order of motifs with respect to the Recurrence Resonance effect. (A) Relative change 1MI of the mutual information I(X;Y ) between the optimum

noise level and zero noise, as a function of the motif rank. (B) The top ten motifs that show the strongest Recurrence Resonance effect, as well as their 1MI values.

Finally, we have also investigated how the number of self-
connections (autapses) in a motif affects 1MI, but found no
significant correlation (r = 0.01, p = 0.05).

4. DISCUSSION

We have investigated in this work how noise affects the
“information flux” in recurrent neural networks (RNNs). To
facilitate an exhaustive study, we focused strictly on a very simple
class of RNNs, namely the 3,411 possible three-node motifs with
ternary connection strength. In general, motifs (i.e., frequently
recurring wiring patterns) can be viewed as the basic building
blocks of various types of networks in nature. In particular, neural
motifs can serve useful functions, such as the acceleration and
delay of response in long- and short-term memory (Li, 2008).

In our present motif model, we have accounted for the
possibility of self-connections from one neuron to itself. Such
self-connections, also called autapses (Van Der Loos and Glaser,
1972 ), are excluded from some theoretical studies, but are
actually quite common in the nervous system [e.g., 80 percent
of all layer 5 pyramidal neurons in rat neocortex build autaptic
connections (Lübke et al., 1996)]. Moreover, it has been shown
that autapses provide a previously unknown and powerful form
of inhibitory synaptic feedback in a particular class of cortical
interneurons (Bacci et al., 2003). Autapses also contribute to a
positive-feedback loop that maintains persistent electrical activity
in neurons (Bekkers, 2009). Even more relevant to the present
study, it has been demonstrated that (electrical and chemical)
autapses affect the temporal coherence or firing regularity
of single stochastic Hodgkin-Huxley neurons and scale-free
neuronal networks (Yilmaz et al., 2016b). Interestingly, this study
has found that multiple coherence resonance can be induced by
a proper choice of the autaptic time delay. Finally, for a specific
range of the coupling strength, autapses can significantly improve
the propagation of spiking activity from pacemaker neurons
(Yilmaz et al., 2016a).

In the present study, we have investigated how certain
probabilistic and information-theoretic properties f of motifs
depend on the level σnoise of added noise, and a vast amount

of similar f (σnoise)-studies have been conducted in the fields of
Stochastic Resoance (SR) and Coherence Resonance (CR).

The phenomenon of SR is typically discussed in the context
of signal detectors, or sensors, with a threshold that transmit
physical signals from the environment into an information
processing system (Benzi et al., 1981; Wiesenfeld andMoss, 1995;
Gammaitoni et al., 1998; Moss et al., 2004; Krauss et al., 2016,
2017, 2018). Virtually all sensors have a detection threshold, that
is, a minimum required signal intensity below which detection is
normally not possible. However, when noise is added to the signal
before entering the sensor, even very weak sub-threshold signals
can be enhanced above the threshold. From a theoretical point of
view, the ideal way to quantify this effect is by computing the MI
between the signal input and the sensor output, as this quantity
measures the true information transmission across the sensor. If
a plot of the MI as a function of the noise level shows a peak, this
is considered as the hallmark of SR.

The phenomenon of CR was first demonstrated with an
excitable FitzHugh-Nagumo system under external noisy driving
(Pikovsky and Kurths, 1997), where it was found that the
coherence of the noise-induced oscillations become maximal
for a certain noise level. A related effect was later found
in the non-linear response of the Hodgkin-Huxley neuron
model (Lee et al., 1998).

Researchers have not only investigated the effect of noise
on individual neurons, but also on small neuron motifs. A
particularly well-studied example is the feed-forward-loop motif,
in which neuron 1 drives neuron 2, and neurons 1 and 2 both
drive neuron 3. A first study demonstrated that these motifs
can exhibit both SR and CR, but that the coupling strength
serves as a control parameter for the stochastic dynamics (Guo
and Li, 2009). Further work has investigated the effects of time
delay on the SR in feed-forward-loop motifs and it was found,
among other interesting results, that the correlation between
the periodic subthreshold signal’s frequency and the dynamical
response of the network motifs is resonantly dependent on the
intensity of additive spatiotemporal noise (Liu et al., 2014).
Finally, researchers studied how SR in feed-forward-loop motifs
is affected by astrocytes, which are active partners of neuronal
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signal processing in the brain. They found that, in the presence
of astrocytes, the performance of the motifs on weak signal
transmission in both noisy and noise-free environments can be
significantly improved (Liu and Li, 2013).

In the present work, we have studied how noise affects the flux
of information in motifs of three probabilistic neurons, mutually
connected with links of ternary weights. In order to quantify
the ongoing information flux in a motif, we used I(X;Y), the
MI between successive states. In addition, we considered the
state entropy H(X), which measures the average information
content circulating in the network, regardless of whether this
information is random or temporally correlated. Finally, we
considered the stochastic information loss H(Y|X), which is
due to the probabilistic nature of the neurons and due to the
added noise.

As was to be expected, added noise increases the state entropy
H(X) by broadening the distribution of system states within the
available state space. At the same time, the noise makes state-
to-state transitions more random compared to the undisturbed
system, and thus also increases the stochastic information
loss H(Y|X). However, since a large information flux requires
simultaneously a large state entropy and a small stochastic
information loss, the effect of noise depends on the relative rates
of increase of H(X) and H(Y|X).

If an undisturbed neural network is already operating in a
dynamically rich regime, where all possible system states are
visited with approximately the same probability, H(X) cannot
be substantially increased by adding noise. On the other hand,
the added noise can lead to a rapid increase of the stochastic
information loss H(Y|X), in particular if the undisturbed system
is behaving in a relatively deterministic way. As a consequence,
such neural networks will show a monotonous decrease of
I(X;Y) with the noise level. Indeed, we have observed this
type of behavior in weakly connected motifs and in motifs with
predominantly inhibitory connections.

A qualitatively different behavior is found in neural networks
which are originally “trapped” in a restricted region of state space.
In this case, adding just a relatively small amount of noise can
quickly “free” the system from its dynamical trap, leading to
a rapid increase of the state entropy H(X). If H(X) is initially
growing faster with the noise level than H(Y|X), this will lead
to a maximum of I(X;Y) for some non-zero noise intensity. We

have found this type of behavior particularly in motifs with many
excitatory connections, and it is interesting to note that such
motifs are over-represented in the connectivity scheme of layer
5 pyramidal neurons in the rat cortex.

Thus, our study shows that noise can have either a detrimental
or a beneficial effect on the information flux in recurrent neural
networks, and adding noise can be particularly useful in systems
that operate within a dynamically sub-optimal regime. Whether
this Recurrence Resonance effect is also present in larger neural
networks and with different types of neurons remains to be
shown in future studies. Nevertheless, we speculate that the brain
could use bursts of noise to free neural network dynamics from
being permanently trapped in “attractor states.”
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