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Abstract

Purpose

Mesangial cells play an important role in regulating glomerular filtration by altering their cellu-

lar tone. We report the presence of a sodium glucose cotransporter (SGLT) in rat mesangial

cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2.

Methods

The SGLT2 expression in rat mesangial cells was assessed by Western blotting and

reverse transcription-polymerase chain reaction (RT-PCR). Changes in the mesangial cell

surface area at different glucose concentrations and the effects of extracellular Na+ and

Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX) inhibitors on cellular size were deter-

mined. The cellular sizes and the contractile response were examined during a 6-day incu-

bation with high glucose with or without phlorizin, an SGLT inhibitor.

Results

Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the

predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The

cell surface area changed according to the extracellular glucose concentration. The glu-

cose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+

and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased

for 2 days and increased afterwards; these cells did not contract in response to angiotensin

II, and the SGLT inhibitor restored the abolished contraction.

Conclusions

These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physi-

ological glucose sensor and regulates cellular contractility in rat mesangial cells.
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Introduction
Since the Na+/glucose cotransport hypothesis was first proposed, many investigators have
examined sodium glucose cotransporters (SGLTs) in the intestine, kidney, brain, and thyroid
gland [1]. In 1987, Hediger et al. reported the cloning of SGLT1 [2], and Wright et al. later
cloned additional SGLTs. They reported that the SGLT gene family (the SLC5 family) is a large
group of proteins with 12 human family members. The SLC5 family encodes 60- to 80-kDa
proteins containing 580–718 amino acids [1]. SGLT1 and SGLT2 are the most widely studied
glucose cotransporters.

We previously reported the expression of SGLT and facilitated glucose transporter 1
(GLUT1) in rat mesangial cells and bovine retinal pericytes [3–6]. Prior to these reports, SGLT
was believed to only localize to intestinal and renal tubular epithelial cells. Epithelial cells in the
intestine and the renal late proximal tubules (S3 segment) express SGLT1, whereas cells in the
renal proximal tubules in the S1 and S2 segments express SGLT2 [7]. These isoforms differ
with respect to their affinity for glucose, their transport capacity for glucose, and the ratio of
concomitant Na+ and glucose transport [7–9]. Rat mesangial cells and retinal pericytes had
almost the same glucose Km values, which were high enough to suggest the expression of
SGLT2 [3, 4]. Galactose transport also differs between SGLT1 and SGLT2. SGLT1 transports
galactose but SGLT2 does not [8]. SGLT in bovine retinal pericytes does not transport D-galac-
tose, suggesting that the SGLT in bovine retinal pericytes is SGLT2 [6]. Currently, which iso-
form of SGLT is present in rat mesangial cells is unclear. New anti-diabetic SGLT2 inhibitors
blocking glucose reabsorption via SGLT2 in proximal tubular epithelial cells have become
available to treat diabetic patients [10]. However, SGLT2 inhibitors may affect all cells that
express SGLT2 rather than only renal proximal tubular epithelial cells. It is therefore important
to identify the isoform of SGLT in mesangial cells [3].

In early diabetic nephropathy, glomerular hyperfiltration is important, which is primarily
explained using the glomerular hemodynamic hypothesis [11] or tubuloglomerular feedback
[12]. These mechanisms are based on the balance between glomerular afferent and efferent arte-
riolar tone in the glomerulus [13]. However, mesangial cells also play important roles in the
maintenance and regulation of glomerular microcirculation [14]. In microcirculation, mesangial
cells and retinal pericytes regulate the capillary surface area by changing their contractility,
which regulates microvascular blood flow and transluminal filtration [15–18]. Mesangial cells
are known to lose contractility under high glucose conditions [19, 20], which is hypothesized as
one of the causes of glomerular hyperfiltration [21]. In the early stages of retinopathy, dilatation
of retinal vessels is observed following retinal pericyte swelling and loss [22–24].

Various substances have been reported to induce contraction of mesangial cells, including
angiotensin II, endothelin and serotonin [25–27]. Calcium entry is required for cellular con-
traction and is achieved primarily via a voltage-sensitive Ca2+ channel [28, 29]. However, the
Na+/Ca2+ exchanger (NCX) also plays a role in Ca2+ entry and cellular contraction, and its
presence has been reported in cardiomyocytes and smooth muscle cells [30, 31]. Mesangial
cells have also reported to contain NCX [32, 33]. NCX has two modes of calcium-to-sodium
exchange, namely Ca2+ exit and Ca2+ entry modes, depending on the Na+ and Ca2+ concentra-
tion gradients, with a Na+ to Ca2+ exchange ratio of almost 3:1 [34]. We have reported that cul-
tured bovine retinal pericytes change their cellular contractility according to the extracellular
glucose concentration via SGLT2 and NCX [6]. The Km value of SGLT in mesangial cells
appears to be sufficiently high to act as a sensor for blood glucose levels. Based on these find-
ings, we speculate that SGLT may have a major influence on the contractility of mesangial
cells, as well as bovine retinal pericytes, via NCX in response to changes in the extracellular glu-
cose concentration [6].

SGLT2 in Rat Mesangial Cells
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The present study aimed to determine the following: whether SGLT2 is expressed in cul-
tured rat mesangial cells by examining the SGLT2 protein and mRNA expression using West-
ern blotting and RT-PCR; the role of SGLT2 in regulating contractility during exposure to
different glucose concentrations in rat mesangial cells; and the extent of cellular swelling and
loss of contractile response to angiotensin II under a long-term high glucose condition.

Methods

Animal Care and Cell Preparation
Mesangial cells were isolated from the kidneys of four-week-old Sprague-Dawley rats accord-
ing to a previously reported differential sieving procedure [34]. Cells were cultured on plastic
plates (NUNC Brand Products, Denmark) in a 1:1 mixture of Dulbecco's modified Eagle’s
medium (DMEM) and Ham's F-12 (both from Sigma-Aldrich, St. Louis, MO) containing 10%
fetal bovine serum (FBS) (GIBCO BRL, Grand Island, NY), 10% Nu-serum (Collaborative
Research, Bedford, MA), penicillin (100 U/ml), and streptomycin (100 μg/ml) (Sigma-
Aldrich). Rat mesangial cells at passages 3–8 were used for the following experiments after
reaching greater than 90% confluence because the SGLT expression in rat mesangial cells has
been reported to disappear after the 12th passage [3]. Renal proximal tubular epithelial cells
from the same rats were prepared as previously described [35]. The study protocol was
approved by the Animal Ethics Review Committee of the FUKUOKA SGLT2 Study Group
(FSGLTSG-2010-14). All animal care and procedures were performed in accordance with the
Guidelines of the Japanese Government Animal Protection and Management Law and the Jap-
anese Government Notification on Feeding and Safekeeping of Animals.

SGLT2Western Blotting
A sequence of amino acids from rat SGLT2 (GMSKSGSGSPPP) that is absent from rat SGLT1
[36, 37] was synthesized. IgG antibodies against rat SGLT2 were obtained by immunizing a
Kb1:JW rabbit with the synthesized peptide antigen. To performWestern blotting for SGLT2,
membrane proteins were extracted as previously reported [35]. Briefly, rat mesangial cells and
renal proximal tubular epithelial cells were sonicated in a buffer containing 0.25 M sucrose, 5
mM sodium diatrizoate, 100 mM phenylmethylsulfonyl fluoride, and 10 mMNaHCO3 (pH
7.0). After centrifugation at 1,200 x g for 10 min, the supernatant was centrifuged again at
9,000 x g for 1 hr. The supernatant was then centrifuged at 190,000 x g for 1 hr. The pellet was
resuspended in the same buffer, applied to a discontinuous sucrose gradient buffer (25%, 30%,
and 35%), and then centrifuged at 150,000 x g for 16 hr. The membrane fraction in 25% sucrose
was collected and centrifuged at 190,000 x g for 1 hr after 10-fold dilution with buffer. The pel-
let was then collected for Western blotting. Protein extracts (50 μg) from mesangial cells and a
positive control membrane protein from renal proximal tubular epithelial cells were separated
on 10% acrylamide gels overlaid with 3.5% stacking gels by sodium dodecyl sulfate polyacryl-
amide gel electrophoresis and then transferred to nitrocellulose membranes. The membranes
were incubated with a rabbit IgG antibody against SGLT2 (1:1,000 dilution) followed by perox-
idase-linked protein A (Amersham). Immunoreactive bands were visualized using ECL
reagents (Amersham) and X-Omatic AR film (Eastman-Kodak, Rochester, NY).

Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
Total RNA was prepared from rat mesangial cells and renal proximal tubular epithelial cells
using Isogen (Wako Junyaku, Osaka, Japan). The following SGLT2 PCR primers were
synthesized based on the reported DNA sequence of SGLT2: forward primer sequence (5'
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CCTGCTGCGTGACCCTGTGA 3') and reverse primer sequence (5' AGAGTGTGCTGCTG
CTGTTA 3') [36–38]. RT-PCR was performed using 1 ng of total RNA from rat mesangial
cells, smooth muscle cells, or renal proximal tubular epithelial cells, an Oligo(dT) 15 primer
(Promega, Madison, WI), 0.5 μM of each primer, and Ready-To-Go RT-PCR Beads (Amer-
sham Pharmacia Biotech Inc., NJ). Reverse transcription to cDNA was performed at 42°C for
30 min. The following PCR amplification program was used on a thermal cycler (model 9600,
Perkin Elmer-Cetus, Foster City, CA): 35 cycles of 30 sec at 95°C, 30 sec at 55°C, and 1 min at
72°C.

Cellular Contraction Experiment
Changes in the tonus of mesangial cells were examined through surface area measurements, as
previously reported [6]. Changes in the cell surface area after incubation with conditioned
media for 60 min at 37°C were recorded every 20 min using a light microscope equipped with a
digital camera (Nikon, Tokyo, Japan). Serial changes in the cell surface area were measured
using NIH Image (written by Wayne Rasband, National Institutes of Health, Bethesda, MD).
The cells were incubated in 20 mM Tris/HEPES (pH 7.4) buffer containing 5 mM KCl, 2.5 mM
MgSO4 and 1 mM CaCl2 with different concentrations of glucose (2.5, 5, 10 and 20 mM) in the
presence (145 mMNaCl) or absence (145 mM choline-Cl) of sodium after three washes using
the same buffer. To determine the effect of extracellular calcium ions, cells were incubated in
20 mM Tris/HEPES (pH 7.4) buffer containing 5 mM KCl, 2.5 mMMgSO4 and 2 mM EGTA
without CaCl2. The cells were also incubated with an SGLT inhibitor, 10-7M phlorizin (Sigma),
inhibitors of the Na+/Ca2+ exchanger, 5 x 10-5 M 2’,4’-dichlorobenzamil-HCl or 5 x 10-5 M
benzamil-HCl (Molecular Probes, Eugene, OR), and a voltage-sensitive calcium channel inhib-
itor. In addition, 10-7 M nicardipine (Sigma) was also added to 20 mM Tris/HEPES buffer (pH
7.4) containing 1 mM CaCl2, 5 mM KCl and 2.5 mMMgSO4 with 5 mM or 30 mM glucose in
the presence of sodium. We also tested the effects of non-metabolizable sugars, 25 mM α-
methyl-glucoside (AMG) and 25 mM 2-deoxy-glucose (2DOG), and angiotensin II (Bachem,
Bubendorf, Switzerland) on the contraction of mesangial cells.

Effect of a Long-term High Glucose Condition on Cellular Size and
Contractile Response in the Presence and Absence of Phlorizin
Mesangial cells were incubated with 5 mM and 20 mM glucose with or without phlorizin for 6
days. The cellular size was measured as in our previous report [5]. Briefly, confluent rat mesan-
gial cells were incubated in DMEM containing 5% FBS and 5% Nu-serum with either 5 or 20
mM glucose with and without 10-7 M phlorizin on 6-well plates (Nunc) for 6 days. The media
were changed every day to maintain the glucose concentration in the media. After the cells
were washed three times with PBS, they were treated with PBS containing trypsin (Sigma) for 2
min to separate them to single cells. Next, the cells were incubated for 30 min at 37°C in the
Tris/HEPES buffer (pH 7.4) with 5 mM glucose and an osmolarity of 280 mOsm in an atmo-
sphere of 95% air and 5% CO2. The diameters of all single cells under these conditions were
measured using light-microscopy photographs.

Statistical Analysis
The data are presented as the mean ± SD. Differences between groups were examined for statis-
tical significance using one-way analysis of variance (ANOVA), with the Bonferroni multiple
comparisons post hoc test. A p value less than 0.05 denoted statistical significance.

SGLT2 in Rat Mesangial Cells
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Results
To identify the SGLT isoforms in rat mesangial cells, Western blotting for SGLT2 was per-
formed. A Western blot analysis yielded a 73-kDa band that reacted with the rabbit anti-
SGLT2 IgG antibody (Fig 1a). The antibody reacted with a membrane protein in rat mesangial
cells and in renal proximal tubular epithelial cells. The SGLT2 antibody did not react with the
membrane proteins of rat smooth muscle cells, which do not perform sodium-dependent glu-
cose uptake (data not shown). A band of the predicted 422-bp size was detected among the
RT-PCR products from the total mRNA from rat mesangial cells and renal proximal tubular
epithelial cells, consistent with SGLT2 mRNA expression in rat mesangial cells (Fig 1b).

Serial changes in the surface area of rat mesangial cells exposed to different glucose concen-
trations are shown in Fig 2. The cell surface area did not change at 5 mM glucose. Higher glu-
cose concentrations in the buffer were associated with a reduction in the surface area in a
concentration-dependent manner, and 20 min of these conditions significantly decreased the
area compared with those of cells in 5 mM glucose. Conversely, the cell surface area increased
in a glucose concentration of 2.5 mM, and the increase was significant after 20 min. However,
an osmolality equivalent to 20 mM glucose, created by adding 15 mMmannitol to 5 mM glu-
cose, had no effect on the cellular size.

The effect of high glucose concentrations on the cell surface area was observed only in the
presence of both extracellular Na+ and Ca2+ (Fig 3). No reduction in surface area was observed
in the absence of either extracellular Na+ or Ca2+, even under high glucose conditions.

The effect of non-metabolizable sugars on the cell surface area was tested, including AMG,
which enters the cell via SGLT2, and 2DOG, which enters through a facilitated glucose trans-
porter (Fig 4). The cell surface area decreased only in the presence of AMG, whereas the area
did not change in the presence of 2DOG or mannitol.

Fig 5 shows the inhibitory effect of phlorizin, an inhibitor of SGLT, and 2’,4’-dichlorobenza-
mil-HCl and benzamil-HCl, inhibitors of NCX, on cellular contraction. These inhibitors abol-
ished the high glucose-induced cellular contraction.

However, nicardipine, a calcium channel blocker, had no effect on high glucose-induced cel-
lular contraction but did increase the surface area in 5 mM glucose and inhibited angiotensin
II-induced cellular contraction (Fig 6).

In the experiment with the long-term high glucose condition, the cellular size significantly
decreased in 20 mM glucose without phlorizin after the first day, increased to the same size
under 5 mM glucose after the second day, and increased significantly after the 4th and 6th
days. However, there were no significant differences in the cellular sizes among the 5 mM glu-
cose, 5 mM and 20 mM glucose with phlorizin conditions (Fig 7).

The rat mesangial cells that were incubated for 6 days with 20 mM glucose did not contract
in response to angiotensin II; however, the cells that were incubated with 10- M phlorizin in
addition to 20 mM glucose did contract in response to angiotensin (Fig 8).

Discussion
We identified the SGLT isoform in rat mesangial cells by demonstrating sodium-dependent
and phlorizin-sensitive glucose uptake [3]. The reported Km and Vmax values of rat mesangial
cells were high enough to attribute the SGLT activity in rat mesangial cells to SGLT2. In this
study, the IgG antibody developed in our laboratory against SGLT2 yielded a band correspond-
ing to a membrane protein from rat mesangial cells with the predicted molecular weight of 73
kDa, which is identical to the size detected in renal proximal tubular epithelial cells.

Although we repeated the experiments to get a clear single band of SGLT2 in membrane
proteins from rat mesangial cells and proximal epithelial cells, the protein bands below 73 kDa
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were reproducible, and could not be attributed to technical problems. The additional bands are
most likely derived from degraded products of membrane proteins produced during many
times of ultracentrifugation. Technical differences in getting samples could have resulted in the
more pronounced protein bands below 73 kDa in proximal renal tubular cells than in mesan-
gial cells, i.e., samples from rat mesangial cells were obtained from the single layer cultured
cells, while renal proximal tubular cells were directly collected by the sieving method. An
RT-PCR analysis of SGLT2 in rat mesangial cells also yielded a band of the predicted size, 422
bp, which is identical to the size detected in rat renal proximal tubular epithelial cells. SGLT2 is
localized in renal proximal tubular epithelial cells, and this study shows for the first time that
SGLT2 is also expressed in rat mesangial cells. SGLT1 was reported to be absent in rat mesan-
gial cells, as assessed by RT-PCR [39].

The properties of SGLT2 and SGLT1, including the Km values for D-glucose and Na+

among the human, rabbit, and rat isoforms, have been reported [8]. We reported that the Km
value for the D-glucose transporter in rat mesangial cells and bovine retinal pericytes were 1.93
mM [3] and 2.8 mM [4], respectively. Moreover, we reported that bovine retinal endothelial
cells, other than retinal pericytes and mesangial cells, do not perform sodium-dependent glu-
cose uptake [4]. The properties and kinetics of the glucose transporter in rat mesangial cells
were identical to those of SGLT2. These observations led us to conclude that SGLT2 is
expressed in rat mesangial cells.

The cell surface area is reported to correlate with cellular contraction [40]. Our study
revealed a glucose concentration-dependent change in mesangial cell surface area, as we
reported in bovine retinal pericytes [4]. Moreover, AMG, which enters cells primarily through
SGLT [41], induced cellular contraction. In contrast, 2DOG, which enters cells via facilitated
glucose transporters [42], could not induce cellular contraction. Therefore, the entry of Na+

and glucose through SGLT2 is apparently important for the regulation of glucose-dependent

Fig 1. Western blot (a) and RT-PCR (b) of sodium glucose cotransporter 2. The IgG antibody reacted
with membrane proteins of the appropriate predicted molecular weight (73 kDa) from both mesangial cells
(left) and renal proximal tubular epithelial cells (right). RT-PCR products for SGLT2 from the total RNA from
both mesangial cells (A: left) and renal proximal tubular epithelial cells (B: right) revealed a single band of the
appropriate predicted size (422 bp).

doi:10.1371/journal.pone.0151585.g001
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cellular tone, which indicates that in ran mesangial cells, SGLT2 acts as a glucose sensor that
regulates the cellular tone.

The absence of either Na+ or Ca2+ abolished glucose-induced cellular contraction. Inhibi-
tion of SGLT2 by phlorizin and NCX by benzamil-HCl and 2’,4’-dichlorobenzamil-HCl also
abolished glucose-induced cellular contraction. Nicardipine, a calcium channel blocker, inhib-
ited angiotensin II-induced cellular contraction, which indicates that the cultured mesangial
cells we used have a voltage-dependent calcium channel. However, nicardipine had no effect
on glucose-induced cellular contraction. Calcium channel blockers are reported to inhibit
NCX; however, the inhibitory effect of these blockers on NCX is reported to be very weak [43].
Glucose-dependent cellular contractility appears to be independent of calcium channels. These
observations suggest that the simultaneous entry of sodium with glucose into the cells is essen-
tial for glucose-dependent cellular tone and that this regulation depends on both SGLT2 and
NCX through the exchange of the intracellular Na+ that has entered through SGLT2 with a
Ca2+ via NCX. Our data indicate that the cellular contractility of mesangial cells depends on
calcium entry through both voltage-sensitive calcium channels and NCX, as shown in Fig 9.

Fig 2. Serial changes in the cell surface area at different glucose concentrations.▲: 2.5 mM glucose, �:
5 mM glucose, □: 5 mM glucose + mannitol,●: 10 mM glucose,&: 20 mM glucose. n = 6 in each condition.
Data are the mean ± SD. Changes in surface area were measured every 20 min. *: p<0.05 vs 5 mM glucose
for the same period, **: p<0.01 vs 5 mM glucose for the same period.

doi:10.1371/journal.pone.0151585.g002
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Fig 3. Effects of extracellular sodium and calcium on cellular contraction. Cell surface area was
determined after a 60 min incubation in the presence (NaCl) and absence (choline-Cl) of sodium and calcium.
n = 6 in each condition. Data are the mean ± SD. *: p<0.001 vs 5 mM glucose.

doi:10.1371/journal.pone.0151585.g003

Fig 4. Effects of non-metabolizable sugars on cellular contraction. Cell surface area was determined
after exposure for 60 min to conditioned media. AMG: 15 mM α-methyl-glucoside, mannitol: 15 mMmannitol,
2DOG: 15 mM 2-deoxy-glucose. n = 6 in each condition. Data are the mean ± SD. *: p<0.005 vs 5 mM
glucose.

doi:10.1371/journal.pone.0151585.g004

SGLT2 in Rat Mesangial Cells
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A reduction in the size of cultured mesangial cells after exposure to short-term high glucose
concentrations has often been reported [44, 45]. Hurst et al. [44] reported a consistent decrease
in mesangial cell size, and Derylo et al. [45] also reported cell contraction after exposure to
high glucose levels for 60 min. The physiological relevance of the glucose-dependent cellular

Fig 5. Inhibitory effect of the sodium-coupled glucose transporter and the Na+/Ca2+ exchanger on
glucose-induced cellular contraction. Cell surface area was determined after 60 min of exposure to
conditioned media. n = 6 in each condition. Data are the mean ± SD. *: p<0.001 vs 5 mM glucose.

doi:10.1371/journal.pone.0151585.g005

Fig 6. Effects of a calcium channel blocker on glucose-induced cellular contraction. Cell surface area
was determined after 60 min of exposure to conditioned media with either 5 mM glucose, 20 mM glucose or
10-7 M angiotensin II in the presence (□) or absence (&) of nicardipine. n = 6 in each condition. Data are the
mean ± SD. *: p<0.05 vs 5 mM glucose. #: p<0.001 vs 20 mM glucose with and without nicardipine.

doi:10.1371/journal.pone.0151585.g006

SGLT2 in Rat Mesangial Cells
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contractility of mesangial cells is currently unknown. However, acute elevation of blood glu-
cose in healthy volunteers is associated with maintenance of a constant glomerular filtration
ratio (GFR) despite an increase in renal blood flow [46]. A novel function of SGLT2 in regulat-
ing the contractility of mesangial cells may contribute to the maintenance of a constant GFR
under different glucose conditions because the contraction of mesangial cells can regulate glo-
merular blood flow and filtration [15, 16].

The high glucose-induced cellular contraction was observed for up to 36 hr, and the cellular
contraction disappeared after 2 days of the incubation with 20 mM glucose. The cellular size
then increased afterwards. This phenomenon seems to mimic the cellular swelling observed in
pericytes that swell in the early stage of diabetic retinopathy [22–24]. We reported pericyte
swelling 7 days after their placement in a high glucose condition [5]. We hypothesize that the
cellular swelling was caused by the intracellular accumulation of Na+ through the SGLT2 of
bovine retinal pericytes. The pericyte swelling with decreased cellular proliferation was attenu-
ated by incubation with phlorizin [5]. The use of phlorizin blocked glucose entry through
SGLT2 in rat mesangial cells and bovine retinal pericytes; thus, another mechanism of cellular
swelling is the normalization of intracellular glucose metabolism, such as reversal of the effects

Fig 7. Time-resolvedmeasurements of the cellular size of rat mesangial cells incubated with various
conditions for up to 6 days. □: 5 mM glucose,&: 5 mM glucose with 10-7 M phlorizin, �: 20 mM glucose,●:
20 mM glucose with 10-7 M phlorizin. Determination of cellular size was repeated in different rat mesangial
cell preparations, measuring more than 100 cells in each condition. The data are the mean ± SD. *: p<0.01 vs
5 mM glucose.

doi:10.1371/journal.pone.0151585.g007
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Fig 8. The contractile response to angiotensin II in rat mesangial cells incubated with 5 mM and 20
mM glucose with or without phlorizin for 6 days. n = 6 in each condition. The data are the mean ± SD. *:
p<0.01 vs 5 mM glucose.

doi:10.1371/journal.pone.0151585.g008

Fig 9. Schematic representation of the effect of SGLT2 onmesangial cells.Glucose enters the cells
through both a facilitative glucose transporter (GLUT1) and a sodium-coupled glucose transporter 2 (SGLT2).
Na+ entry through SGLT2 according to extracellular glucose concentrations brings about Ca2+ influx through
the sodium-calcium exchanger (NCX), which induces cellular contraction.

doi:10.1371/journal.pone.0151585.g009
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of sorbitol and di-acyl-glycerol-protein kinase C, which are reported to suppress Na-K ATPase.
We reported that phlorizin attenuated the high glucose-induced changes in the intracellular
glucose, sorbitol and fructose levels [5].

Conversely, decreased contraction of mesangial cells has been reported following exposure
to long-term high glucose conditions [19, 20]; this decrease is thought to be one of the underly-
ing mechanisms for the hyperfiltration in diabetic nephropathy. We reported that the contrac-
tile response to angiotensin II decreases in cells after 5 days of exposure to 20 mM glucose [47].
In this study, the contractile response to angiotensin II in rat mesangial cells was abolished
after 6 days incubation with 20 mM glucose. Interestingly, this abolished contractile response
was normalized by SGLT2 inhibition with 10-7 M phlorizin.

We reported that mesangial cells and pericytes possess facilitated glucose transporter 1
(GLUT1) and SGLT, through which glucose enters at a ratio of almost 1:1 [3]. By inhibiting
glucose entry through SGLT2 using phlorizin, we demonstrated that the normalization of
excess glucose uptake under high glucose conditions by phlorizin attenuated the overproduc-
tion of type IV collagen, which decreased the cellular growth in bovine retinal pericytes [4, 5].
Moreover, we demonstrated glucose-dependent cellular contraction via SGLT2 in this study.
The use of SGLT2 inhibitors as anti-diabetic agents that inhibit glucose and Na+ entry through
SGLT2 in mesangial cells may inhibit excess glucose entry under high glucose conditions; thus,
these inhibitors may also normalize cellular swelling and abnormal intracellular glucose metab-
olism, such as the changes in the polyol pathway and PKC activation under high glucose condi-
tions in mesangial cells and pericytes, independently of the extracellular glucose concentration.

Recently, SGLT2 inhibitors have been used as potent oral hypoglycemic agents [10]. SGLT2
inhibitors were reported to ameliorate diabetic nephropathy, such as by attenuating urinary
albumin excretion [48]. Terami et al. reported improved hyperglycemia in response to dapagli-
flozin, which ameliorated diabetic nephropathy symptoms, such as albuminuria and the accu-
mulation of type IV collagen, independently of glycemic control [49]. This study showed that
rat mesangial cells express SGLT2, and we have previously reported identical sugar uptake
properties in bovine retinal pericytes and rat mesangial cells; thus, SGLT2 inhibitors may have
favorable direct effects on diabetic nephropathy and diabetic retinopathy.

Conclusion
SGLT2 is present, senses glucose concentrations, and regulates contractile responses of rat
mesangial cells via SGLT2 and NCX. These function of SGLT2 may have physiological and
pathological relevance in rat mesangial cells.
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