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ABSTRACT
Renal fibrosis is the inevitable common end-point of all progressive chronic kidney diseases. The
underlying mechanisms of renal fibrosis are complex, and currently there is no effective therapy
against renal fibrosis. Renal microvascular rarefaction contributes to the progression of renal
fibrosis; however, an imbalance between proangiogenic and antiangiogenic factors leads to the
loss of renal microvasculature. Vascular endothelial growth factor (VEGF) is the most important
pro-angiogenic factor. Recent studies have unraveled the involvement of VEGF in the regulation
of renal microvascular rarefaction and fibrosis via various mechanisms; however, it is not clear
whether it has anti-fibrotic or pro-fibrotic effect. This paper reviews the available evidence per-
taining to the function of VEGF in the fibrotic process and explores the associated underlying
mechanisms. Our synthesis will help identify the future research priorities for developing special-
ized treatments for alleviating or preventing renal fibrosis.

Abbreviation: VEGF: vascular endothelial growth factor; CKD: chronic kidney disease; ESKD: end-
stage kidney disease; ER: endoplasmic reticulum; VEGFR: vascular endothelial growth factor
receptor; AKI: acute kidney injury; EMT: epithelial-to-mesenchymal transition; HIF: hypoxia-indu-
cible factor; a-SMA: a smooth muscle actin; UUO: unilateral ureteral obstruction; TGF-b: trans-
forming growth factor-b; PMT: pericyte-myofibroblast transition; NO: nitric oxide; NOS: nitric
oxide synthase; nNOS: neuronal nitric oxide synthase; iNOS: inducible nitric oxide synthase;
eNOS: endothelial nitric oxide synthase; sGC: soluble guanylate cyclase; PKG: soluble guanylate
cyclase dependent protein kinases; UP R: unfolded protein response
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1. Introduction

Chronic kidney disease (CKD) is a global public health
concern. Approximately 850 million people currently
suffer from different types of kidney diseases worldwide
[1]. A vast majority of patients with CKD progress
to end-stage kidney disease (ESKD) requiring renal
replacement therapy as a life-saving measure, which
imposes a great health and economic burden on the
affected individuals, families, and the society at large. In
2010, the estimated number of people who were on
renal replacement therapy worldwide was 2.5 million,
and this number is projected to nearly double by 2030,
reaching almost 5.4 million [2].

Renal fibrosis is the inevitable common end-point of
all progressive CKDs. Renal damage is closely related to
hypoxia and inflammation. Persistent insults cause an

imbalance of extracellular matrix homeostasis, and
cause sustained activation of fibroblast cells, leading to
extensive collagen deposition and scar formation, and
ultimately glomerulosclerosis and fibrosis [3]. More
recently, renal microvascular rarefaction, lymphangio-
genesis, and endoplasmic reticulum stress (ER stress)
have been implicated in the pathophysiology of renal
fibrosis. Currently, there is no effective cure for renal
fibrosis because the pathophysiologic mechanisms are
yet to be fully elucidated. Therefore, exploration of
measures that can help delay the progress of renal
fibrosis is a key research imperative.

Renal microvascular rarefaction can be defined as
loss of renal capillaries. Peritubular capillaries are an
integral part of the renal microvasculature. Branches of
glomerular efferent arterioles consist of a capillary
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network which supplies oxygen and nutrients to tissues
along the proximal and distal tubules [4]. Rarefaction of
peritubular capillaries is a characteristic feature of renal
fibrosis. A close link between capillary rarefaction and
fibrosis has been demonstrated in animal models of
diabetic nephropathy, chronic allograft nephropathy,
obstructive nephropathy, and anti-glomerular base-
ment membrane glomerulonephritis [5–8]. These find-
ings strongly suggest the involvement of peritubular
capillaries rarefaction in fibrosis progression. Exposure
of kidney tissue to pathogenic factors disturbs the
blood flow in peritubular capillaries, resulting in
decreased perfusion in the adjacent renal interstitial
region, which may lead to a loss of capillaries and renal
fibrosis. The consequent hypoxia promotes the infiltra-
tion of inflammatory cells and the deposition of extra-
cellular matrix, inducing renal fibrosis. The most
dominant mechanism of renal microvascular rarefaction
is believed to involve an imbalance between proangio-
genic and anti-angiogenic factors [9]; for example, upre-
gulation of antiangiogenic factors thrombospondin-1
and endothelin, and downregulation of angiogenic fac-
tors such as vascular endothelial growth factor (VEGF)
and angiogenin. Among these, VEGF is the most
important regulator of angiogenesis. The role of VEGF

in kidney diseases has attracted increasing attention
over the years, because in addition to regulation of
angiogenesis, it also plays a role in the progression of
renal fibrosis (Figures 1 and 2).

2. VEGF function

VEGF is a family of secreted polypeptides, which
includes VEGF-A, -B, -C, -D and placental growth factor
in humans. The biological role of VEGF-B is yet to be
defined. VEGF-C and VEGF-D mainly regulate lymphan-
giogenesis, while placental growth factor is believed to
induce peripheral arteriogenesis. VEGF-A, also named
VEGF, participates in embryonal angiogenesis and is a
key mediator that promotes vasculogenesis, and angio-
genic remodeling [10]. VEGF is expressed as multiple
isoforms (VEGF121, VEGF165, VEGF189, and VEGF206)
showing different biological activities [11]. This paper
focuses on the function of VEGF (VEGF-A) in renal
microvascular rarefaction and fibrosis. In the normal
kidney, VEGF is constitutively localized to glomerular
podocytes and thick ascending limbs of Henle’s loop
with lower levels of expression in the proximal and dis-
tal tubules [12,13]. It exerts its specific effects on angio-
genesis, vasodilation, and vascular permeability via the

Figure 1. Pro-fibrotic effects of VEGF in chronic kidney disease. VEGF promotes the expression of VCAM-1, ICAM-1, and E-selectin
through activation of the NF-jB signaling pathway. Persistent ER stress can initiate CHOP and caspase-12 apoptosis signaling
pathway via three UPR branches: PERK-eIF2a-ATF4, IRE1, and ATF6 signaling pathways, eventually resulting in renal fibrosis. In
turn, PERK also stimulates VEGF/VEGFR system. VEGF synergizes with PTHrP, TGF-b, and EGF in activating ERK1/2, thus promoting
EMT that is related to renal fibrosis. (Abbreviations: VEGF, vascular endothelial growth factor; VCAM-1, vascular cell adhesion mol-
ecule-1; ICAM-1, intercellular adhesion molecule-1; ER, endoplasmic reticulum; UPR, unfolded protein response; VEGFR, vascular
endothelial growth factor receptor; PTHrP, parathyroid hormone-related protein; TGF-b, transforming growth factor-b; EGF, epider-
mal growth factor; EMT, epithelial-to-mesenchymal transition; ZO-1, zonula occludens-1; a-SMA, a smooth muscle actin).
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activation of the tyrosine kinase receptors: VEGF recep-
tor 1 (VEGFR-1) and VEGF receptor 2 (VEGFR-2). Firstly,
it is well known that VEGF plays a pivotal role in renal
microcirculation. Basile’s team reported that endothelial
mesenchymal transition may cause interstitial depos-
ition and vascular dropout after acute kidney injury
(AKI). VEGF-121 treatment was found to contribute to
the maintenance of the vascular integrity but it did not
enhance the number of endothelial cells; the likely rea-
son was that endothelial mesenchymal transition block-
ade by VEGF protected vascular rarefaction following
AKI [14]. Chade and colleagues demonstrated the vas-
culoprotective effect of VEGF in chronic renal ischemia.
In renovascular disease, microvascular loss of the sten-
otic kidney was driven by VEGF reduction. Intra-renal
administration of VEGF stimulated vascular proliferation
and maturation, promoted endothelial cell migration
and preserved microvascular density [15]. Secondly,
VEGF signaling was mainly mediated through VEGFR-2
located on glomerular endothelial cells. Reports have
also suggested that VEGF may exert its effects via auto-
crine mechanism [16], but Quaggin et al. discovered
that podocytes did not secrete VEGFR. A whole-body
knockout of VEGFR-2 caused severe vascular and glom-
erular injury, while podocyte-specific loss of VEGFR-2
did not impair glomerular development and function-
ing. This suggested that VEGF produced by podocytes

predominantly bound to VEGFR-2 via the paracrine
pathway, thus ensuring the normal function of the
glomerular filtration barrier [17,18]. VEGF expression in
renal tubular cells was found to be essential for main-
taining peritubular capillaries. Mice with selective dele-
tion of VEGF-A in renal tubules exhibited a small but
histologically normal kidney, followed by an obvious
decrease in peritubular capillaries density [13]. As
reported, VEGF produced by podocytes may collaborate
with platelet-derived growth factor to recruit mesangial
cells [19]. VEGF secretion from podocytes was
decreased, which resulted in the absence of the endo-
thelial cells and mesangial cells and the destruction of
glomerular structure soon after birth; subsequently,
these mice died of severe renal failure at the age of
3weeks. This research indicated that VEGF also has a
protective effect on mesangial survival [20]. In addition,
there are several studies of VEGF in the context of dia-
betic nephropathy. VEGF exhibited different expression
levels in animal models and humans. Reduced VEGF
levels were observed in kidney biopsy specimens from
diabetic patients, which were shown to be associated
with the loss of podocytes [21]. However, VEGF expres-
sion was increased in early diabetic nephropathy in ani-
mal models [22]. This discrepancy may be attributable
to different stages of the disease. Renal pathological
changes were often observed in the early stage of

Figure 2. Anti-fibrotic effects of VEGF in chronic kidney disease. VEGF can inhibit the expression of Smad3 and miR192, thereby
suppressing TGF-b-induced EMT and improving renal fibrosis. VEGF stimulates NO production by PI3K/AKT and ERK pathways. NO
activates sGC to synthesize cGMP, which subsequently activates PKG. PKG inhibits RhoA/ROCK pathway, thus reducing fibrosis.
VEGF induces a phenotypic shift of macrophages from M0 to M2, ameliorates fibrosis and vascular rarefaction. Inhibition of
VEGFR-2 can block PMT, leading to improve microvascular rarefaction and fibrosis. VEGF can also suppress the expression of
inflammatory mediators. (Abbreviations: VEGF: vascular endothelial growth factor; TGF-b: transforming growth factor-b; EMT: epi-
thelial-to-mesenchymal transition; NO: nitric oxide; sGC: soluble guanylate cyclase; PKG: cGMP dependent protein kinases; VEGFR:
vascular endothelial growth factor receptor; PMT: pericyte-myofibroblast transition; PDGF: platelet-derived growth factor).
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diabetic nephropathy animal model, but most patients
who underwent renal biopsy were in an advanced
stage due to the insidious nature of the disease. A gen-
etics-based study revealed that reduced VEGF expres-
sion in podocytes aggravated high-glucose-mediated
kidney impairment through accelerated endothelial cell
apoptosis, thereby resulting in massive albuminuria and
glomerulosclerosis [23]. The balance of VEGF is import-
ant, and both down- or over-expression can lead to dif-
ferent types of renal diseases [17].

VEGF expression showed a strong correlation with
renal fibrosis and the loss of glomerular and peritubular
capillaries during progression of CKD. In particular,
reduced VEGF in the outer medulla and medullary rays
of the aging kidney was found to be linked to rarefac-
tion of peritubular capillaries, but VEGF was increased
in focal areas of the cortex, which was considered as a
compensatory response to cortical hypoperfusion [24].
In a study, supplementation of VEGF in the remnant
kidney model alleviated vascular injury and fibrosis [25].
In another study, Gremlin (a family of bone morpho-
genetic protein antagonists) was found to promote
renal tubulointerstitial fibrosis by upregulating epithe-
lial-to-mesenchymal transition (EMT), and VEGFR-2 was
implicated in this process [26]. Hence, it is not clear
whether the presence of VEGF is beneficial in the con-
text of renal fibrosis. In this review article, we summar-
ize the role of VEGF in kidney diseases, with the
objective to offer new insights into the potential thera-
peutic strategies for CKD patients.

3. Role of VEGF in renal fibrosis

3.1. VEGF and hypoxia

Hypoxia is one of the main mechanisms leading to renal
fibrosis, usually secondary to renal microvascular rarefac-
tion. Hypoxia-inducible factor (HIF) is the master transcrip-
tion factor for cellular adaptation to hypoxia, consisting of
two isoforms HIF-1a and HIF-2a [27]. Exposure of renal tis-
sue to hypoxia induces activation of HIF for self-repair.
Angiogenesis is a key step in the repair process. Studies
have shown that hypoxia activates HIF-VEGF signaling
and thereby mediates renal angiogenesis [28]. Hypoxia
promotes the expression of VEGF through HIF-1a [29],
while hyperoxia inhibits it [30].

HIF was shown to upregulate VEGF expression and
consequently inhibit hypoxia-mediated myocardial injury
[31]. Of note, although hypoxia response and VEGF sig-
naling pathways were activated in chronic renal fibrosis,
the expression of VEGF was attenuated [5,32]. Hypoxia-
induced VEGF production appears to require multiple
regulatory factors; possibly, the positive regulators of

VEGF (insulin-like growth factor and epidermal growth
factor) were significantly downregulated in stable and
progressive renal disease, causing reduction of VEGF
[32]. In the study by Lindenmeyer et al., renal tubular
epithelium atrophy and capillary repair defect induced
lower VEGF expression in diabetic nephropathy [5]. In
particular, some studies suggest that VEGF exerts pro-
inflammatory effect, in addition to its pro-angiogenic
effect; thus the levels of VEGF reduced presumably at
the expense of hypoxia in the setting of severe inflam-
mation hit on the kidney [33].

3.2. VEGF and EMT

EMT, whereby renal tubular epithelial cells attain mes-
enchymal phenotype via a specific transforming pro-
gram, is a key process in renal fibrosis and it is the
essential source of myofibroblasts in kidneys. In this
process, some epithelial markers are down-regulated
such as E-cadherin and zonula occludens-1, and the
mesenchymal markers, such as N-cadherin, a smooth
muscle actin (a-SMA) and vimentin, are increased.
Lately, many studies have identified the role of VEGF
and EMT in renal fibrosis, but they showed different
perspectives, and often contradictory results. In a study,
administration of VEGF to unilateral ureteral obstruction
(UUO) model mice led to a significant decrease in
connective tissue growth factor and transforming
growth factor-b (TGF-b) levels and significant increase
in E-cadherin level on days 3 and 7. Thus VEGF was
found to alleviate UUO-induced fibrosis by suppressing
EMT in early renal disease [34]. The inhibitory effect of
VEGF on EMT may be explained by the inhibitory effect
of VEGF on the expression and phosphorylation of
Smad3, which suppresses TGF-b-induced EMT and
improves renal fibrosis. Moreover, VEGF can also inhibit
EMT via miR192 [35]. However, other studies suggest
that VEGF may contribute to fibrosis via promoting the
EMT process. PI3K/AKT pathway had been reported to
regulate EMT of tubular epithelial cells and fibrosis [36].
A study in models of allergic airway disease demon-
strated that inhibition of VEGF reduced TGF-b levels by
suppressing activation of PI3K/AKT, thus preventing air-
way epithelium fibrosis [37]. Treatment of diabetic ret-
inopathy mice with calcium dobesilate (an effective
drug for diabetic microangiopathy) led to attenuation
of glomerular hypertrophy and tubulointerstitial fibro-
sis. The protective effect of calcium dobesilate in dia-
betic nephropathy was shown to be mediated through
downregulating the expression of VEGF and VEGFR-2
and suppressing downstream signaling PIK3/AKT/mTOR
[38]. Therefore, VEGF may induce EMT via the PI3K/AKT
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pathway. Bone morphogenetic protein-7 belongs to the
TGF-b superfamily and it can reverse EMT and exhibit a
renal anti-fibrotic effect [39]. Gremlin is a bone morpho-
genetic protein antagonist. In a study by Marquez-
Exposito et al., binding of gremlin to VEGFR-2 was
found to decrease E-cadherin expression and increase
a-SMA and vimentin. In addition, treatment with
VEGFR-2 inhibitor prominently reduced collagen depos-
ition and ameliorated renal fibrosis in UUO [26]. In fetal
RPE cells, gremlin-1 was shown to promote SNAI1 (a
key transcription factor for initiating EMT) and TGF-b
expression, increase Smad2 phosphorylation, and
induce the EMT process [40]; however, the mechanisms
in tubular cells is yet to be elucidated. In a study on
nasopharyngeal carcinoma, VEGF was found to induce
EMT via VEGFR-2 and ERK1/2 activation, which contrib-
uted to invasion and metastasis of cancer cells [41].
VEGF induced the loss of zonula occludens-1 and upre-
gulation of a-SMA in tubuloepithelial cells, indicating
that it could facilitate EMT. It was perhaps relevant that
VEGF synergized with parathyroid hormone-related pro-
tein, TGF-b, and epidermal growth factor in activating
ERK1/2 [42]. Due to these conflicting findings, further
studies are required to elucidate the mechanism by
which VEGF regulates EMT during renal fibrosis.

Myofibroblasts are the major secretors of collagen,
driving progressive fibrosis. Besides EMT, other sources
of myofibroblasts include fibroblasts, pericytes, and
bone marrow-derived cells [43]. Especially pericytes, a
field of intense research, are identified as precursors for
myofibroblasts. Pericytes, which are inserted into capil-
lary endothelium, can help maintain vascular integrity.
In pathological conditions, pericytes may detach from
the endothelial cells and differentiate into myofibro-
blasts, resulting in microvascular rarefaction and kidney
damage, a process known as pericyte-myofibroblast
transition (PMT) [44]. Thus, PMT are also one of the
major sources of myofibroblasts. In a study by Lin et al.,
in UUO rats, blocking VEGFR-2 signaling by circulating
soluble receptor ectodomains not only attenuated PMT,
but also induced marked peritubular capillaries rarefac-
tion and fibrosis [45]. Surprisingly, the authors found
that the secretion of VEGF164-mediated angiogenesis
was reduced in UUO, but that of VEGF120/188 (which
induces abnormal angiogenesis) was increased. It can
be assumed that VEGF participates in PMT through
transformation into different subtypes.

3.3. VEGF and NO

Nitric oxide (NO) is a soluble gas produced by endothe-
lial cells, which has widespread effects in human body.

Within endothelial cells, NO is synthesized by nitric
oxide synthase (NOS) using L-arginine, oxygen, and
NADPH. There are three common isoforms of NOS:
neuronal nitric oxide synthase (nNOS), inducible nitric
oxide synthase (iNOS), and endothelial nitric oxide syn-
thase (eNOS) [46]. NO causes vasodilation, regulates
vascular blood flow and pressure, and plays a signifi-
cant role in angiogenesis. In addition, NO also contrib-
utes to the inhibition of platelet aggregation and
adhesion, leukocyte activation and infiltration of inflam-
matory mediators, thereby playing an important role in
immune defense [47]. As outlined previously, VEGF is
also a potent pro-angiogenic factor. NO and VEGF are
closely related. In one study, NO blockade was found to
reduce VEGF expression in the tubules; this suggested
that VEGF-induced angiogenesis may require complete
NO system [48]. About the cross-regulation between
the two, NO was suggested as a downstream effector
of VEGF; for example, Shashar et al. reported that VEGF
activated VEGFR in human umbilical vein endothelial
cells, which promoted the production of NO [49].
However, according to Bussolati et al., VEGF binds to
VEGFR-1 and facilitates NO synthesis; moreover, NO
may negatively modulate VEGFR-2-induced endothelial
proliferation [50]. NO was also found to regulate VEGF
via autocrine or paracrine mechanisms in vascular
smooth muscle cells, macrophages, keratinocytes, and
tumor cells. In some studies, NO was found to promote
VEGF generation via positive feedback mechanism [51].
Overall, the mechanism by which NO modulates VEGF
is not clear. In the kidney, VEGF was shown to stimulate
eNOS phosphorylation by IRS-1/PI3K/AKT and ERK path-
ways, thereby inducing NO production [52].

Recent studies have demonstrated the potential
involvement of NO in the process of renal interstitial fibro-
sis. At the molecular level, NO activates soluble guanylate
cyclase (sGC) to synthesize cGMP, which subsequently acti-
vates cGMP dependent protein kinases (PKG). PKG inhibits
RhoA/ROCK pathway which is associated with renal fibrosis
[53]. NO was shown to prevent endothelin activation and
to alleviate collagen deposition and renal fibrosis [54]. In a
diabetic nephropathic rat model, treatment with NO
down-regulated the expressions of TGF-b and fibronectin,
and restored Wnt5a expression and b-catenins; these find-
ings suggest that NO may delay interstitial fibrosis in
patients with diabetic nephropathy [55]. Similarly, in aristo-
lochic acid nephropathy [56] and UUO rat [57] models, L-
arg (an NO donor) supplementation increased VEGF con-
centration and alleviated renal inflammatory response and
fibrosis. Conversely, administration of NOS inhibitor (asym-
metric dimethylarginine, N-nitro-l-arginine methyl ester)
caused capillary damage and accelerated renal interstitial
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fibrosis [57,58]. These results appear to suggest that VEGF
works in concert with NO to prevent renal fibrosis.
However, opposite results were reported in a rat model of
chronic cyclosporine nephrotoxicity, where VEGF pro-
moted cyclosporin-mediated renal fibrosis [59]. VEGF and
VEGF receptors have been shown to be upregulated in
chronic cyclosporine nephrotoxicity rats [60], but NO was
found to retard the progression of renal fibrosis via block-
ing TGF-b and degrading extracellular matrix [61].
Interestingly, VEGF expression was downregulated in the
cyclosporine nephrotoxicity model after administration of
L-arg, which indicated that VEGF may also have an inde-
pendent role in cyclosporine-induced fibrosis [62].
Reduced NO bioavailability by high glucose was found to
reduce VEGF overexpression in diabetic nephropathy.
Increased VEGF initiated the growth and proliferation of
endothelial cells and mesangial cells, ultimately resulting in
the extracellular matrix accumulation, ultrafiltration, and
albuminuria [63]. Other studies have also demonstrated
the critical involvement of VEGF and NO in inducing tissue
fibrosis in other organs such as heart and lungs. VEGF and
NO were demonstrated to be key profibrotic mediators in
bleomycin-induced pulmonary fibrosis [64]. However,
Chelo et al. reported the cardioprotective effects of NO
and VEGF [65]. The current evidence suggests a complex
interaction between NO and VEGF, and that these may
play different roles in different tissues.

3.4. VEGF and inflammatory response

Inflammatory response plays a central role in the occur-
rence and progression of renal fibrosis. Multiple inflam-
matory cells (such as T cells, macrophages, neutrophils)
and inflammatory factors (interleukin-6, interleukin-8,
monocyte chemotactic protein-1) are involved in
inflammation, and VEGF is related to both fibrosis and
inflammation.

VEGF is chemotactic for macrophages, and at the
same time macrophages stimulate the proliferation of
myofibroblasts during the fibrosis process. Increased
levels of VEGF and macrophages are found in chronic
kidney graft rejection, and we hypothesize that VEGF is
associated with inflammation and the process of renal
fibrosis [66]. Available evidence suggests that VEGF acts
as both a proinflammatory cytokine and an anti-inflam-
matory myokine. In a study, human umbilical cord
mesenchymal stem cells were shown to secrete anti-
inflammatory factors including VEGF via paracrine
mechanism to inhibit inflammation and fibrosis [67]. In
a study by Jason et al., a construct of VEGF and elastin-
like polypeptide was shown to induce a phenotypic
shift of macrophages from M0 to M2 (an angiogenic

phenotype), ameliorate interstitial fibrosis and vascular
rarefaction, eventually slowing the progression of renal
vascular disease to CKD [68]. VEGF was shown to
attenuate inflammation-mediated leukocyte–endothe-
lial interactions through its downstream mediator NO
[69]. Blockade of VEGF induced an increase in P-selectin
expression and leukocyte rolling [70]. These findings
point toward an anti-inflammatory role for VEGF. On
the other hand, VEGF was found to exacerbate fibrotic
deposition by facilitation of extravasation of macro-
phages to the area of injury [71]. During inflammation,
VEGF was found to stimulate the expression of vascular
cell adhesion molecule-1, intercellular adhesion mol-
ecule-1, and E-selectin through activation of the NF-jB
signaling pathway [72]. VEGF inhibitors were found to
downregulate the levels of glomerular macrophages
and TNF-a [73].

During progression of CKD, microvascular rarefaction
is frequently accompanied by lymphangiogenesis. The
role of lymphangiogenesis in renal fibrosis is also being
explored in recent years. Chronic inflammation triggers
the proliferation of lymphatic vessels and VEGF is the
best characterized factor that regulates lymphangio-
genesis. Lymphangiogenesis has been demonstrated to
play a protective role in cardiac disease [74]; however,
whether lymphangiogenesis exacerbates or retards the
progression of kidney disease is not clear. In a study,
mice were administered recombinant human VEGF-C
after UUO, and the proliferation of lymphatic vessels
was observed; after 14 days, there was significant reduc-
tion in the expressions of various inflammatory factors
and cells (including TFG-b and macrophages) along
with suppression of renal interstitial fibrosis [75]. This
study suggested that VEGF-C-induced lymphangiogene-
sis may potentially have a beneficial effect on renal
outcomes. In particular, SAR131675 (a selective VEGFR-
3-tyrosine kinase inhibitor) was found to inhibit cell
apoptosis, oxidative stress, and inflammatory cell infil-
tration by inhibition of lymphangiogenesis, resulting in
decreased fibrosis in diabetic mice [76]. Similar results
were obtained in UUO mice. VEGF-C blockade reduced
lymphatic vessel growth, but improved renal injury and
fibrosis [77]. These two studies suggest that VEGF-C
may promote the proliferation of lymphatic vessels and
development of renal fibrosis. There is insufficient evi-
dence of the beneficial effect of lymphangiogenesis in
the context of kidney diseases.

3.5. VEGF and ER stress

Endoplasmic reticulum (ER) is an important organelle in
eukaryotic cells involved in the synthesis, folding, and

886 C. MIAO ET AL.



modification of secretory proteins. In various patho-
logical conditions, there is accumulation of unfolded
proteins in the ER, which induces ER stress [78].
Unfolded protein response (UPR) is recognized as an
adaptive response to degrade the unfolded proteins
accumulated in the ER and promote tissue regeneration
through three branches: PERK-eIF2a-ATF4, IRE1-XBP1,
and ATF6 signaling pathways [79]. In general, ER main-
tains protein homeostasis by UPR, but in the setting of
prolonged and severe ER stress, UPR activates the
apoptotic pathway to eliminate dysfunctional cells and
tissues [80]. Some studies have demonstrated the
mechanism by which ER stress participates in various
renal fibrosis processes, such as AKI, CKD, and AKI to
CKD transition. Studies suggest that ER stress may play
different roles in AKI and CKD [81]. On one hand, transi-
ent ER stress was found to trigger adaptive UPR to pro-
tect kidney in AKI. On the other hand, upon exposure
to persistent ER stress, UPR was found to initiate apop-
totic pathways, inducing cell apoptosis and fibrosis in
CKD. CHOP (downstream of the PERK and ATF6 path-
way) and caspase-12 (downstream of IRE1a) are well
recognized as robust signals of apoptosis. UUO was
shown to activate persistent ER stress, which triggered
the CHOP and caspase-12 apoptosis signaling pathway,
eventually resulting in renal fibrosis [82]. Knockdown of
RTN1A expression in the UUO model inhibited cell
apoptosis, and alleviated ER stress and renal fibrosis
[83]. This showed that RTN1A enhanced tubular cell
apoptosis via interacting with PERK-CHOP signaling.

Nicolas assessed the expression of VEGF in a rat model
of acute ischemic stress after activation of UPR and ER stress
[84], which unraveled the role of VEGF in UPR/ER stress.
VEGF activated three UPR signaling pathways, but mainly
stimulated PERK and ATF6 to promote cell survival and
angiogenesis [85]. In turn, PERK also stimulated VEGF/VEGFR
system [81]. UPR stimulated the expression of VEGF by
ATF4 branch in human umbilical vein endothelial cells [86].
VEGF antagonism showed an important protective function
in neurons by suppressing ER stress-mediated caspase12
[87]. A previous study on human retinal pigment epithelium
showed that bevacizumab (an anti-VEGF drug) may block
ER stress and reduce CHOP expression [88]. In summary, ER
stress has been shown to be associated with renal fibrosis,
and VEGF and ER stress interact with each other. Therefore,
we speculate that VEGF plays an important role during renal
fibrosis viamodulating ER stress signals.

4. VEGF-targeted therapy

VEGF is the most potent angiogenic signaling factor in
the body. VEGF-targeted therapy has been commonly

applied against tumors and ocular diseases. In the field
of clinical oncology, bevacizumab, the first approved
anti-angiogenesis agent by FDA, is an anti-VEGF mono-
clonal antibody. Currently, it is widely used in the treat-
ment of ovarian cancer and colorectal cancer, but in
the practical application, scientists found that it may
cause thrombotic microangiopathy, triggering nephro-
toxicity [89,90]. Furthermore, intravitreal injection of
VEGF inhibitors was found to induce deterioration in
renal function and uncontrolled hypertension [91]. In
general, drugs targeting the VEGF block its downstream
signaling pathway, leading to kidney injury. Patients
present with hypertension, proteinuria, renal impair-
ment, and electrolyte disorders, among which, hyper-
tension and proteinuria are the most frequent. The
exact pathological mechanisms underlying proteinuria
is yet to be unraveled, but there have been several
hypotheses. Firstly, as discussed, podocyte-derived
VEGF is critical for the functional integrity of the glom-
erular filtration barrier. Genetic knockout of VEGF, or
pharmacological blockade induces the loss of endothe-
lial fenestrations in glomerular capillaries leading to
proteinuria [92], and the reason is related to nephrin
expression downregulation, which is an important cyto-
skeletal protein of glomerular slit diaphragm [93].
Secondly, VEGF inhibitors induce the disruption of
autophagy and podocyte loss via antagonizing PI3K/
AKT/mTOR pathway [94]. Some hypertensive patients
receiving VEGF-targeted therapy were also accompa-
nied by proteinuria. However, it was unknown whether
hypertension was the main trigger of proteinuria or
whether both of these represented toxic effects of
VEGF inhibitors. Occurrence of hypertension was pro-
posed to be related to NO. VEGF inhibitors block vaso-
dilator (NO) production and increased vascular
resistance; NO can inhibit sodium reabsorption in renal
tubule. As a result, reduction of NO can also cause fluid
accumulation, leading to hypertension [95]. After VEGF-
targeted therapies, the endothelin serum levels were
upregulated. This might be linked to hypertension
because endothelin can trigger the constriction of ves-
sels [96]. Interestingly, VEGF inhibitors were found to
activate NADPH-oxidase to produce superoxide [97],
further decreasing NO expression, and superoxide has a
detrimental effect on the glomerulus.

Bioengineering fusion technique is an emerging
therapy in medicine. ELP-VEGF construct was found to
improve renal function, ameliorate capillary rarefaction
and fibrosis in a porcine model of renal artery stenosis
[68]. Supplementation of VEGF had a potent effect in
alleviating microvascular damage in thrombotic micro-
angiopathy [98], post-cyclosporine-mediated
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nephropathy [99], and remnant kidney [25].
Surprisingly, exogenous administration of VEGF relieved
partial tubulointerstitial damage in the remnant kidney
model, but glomerulosclerosis was not remarkably
affected [25]. Supplementation of VEGF following ische-
mic injury effectively protected renal microvascular
structure and prevented its progression to CKD, but the
protective effect was lost at a later stage [100]. In con-
clusion, VEGF appears to have renoprotective effects.
Nevertheless, some studies have yielded contradictory
evidence. Exacerbation of microvascular rarefaction and
renal injury was observed after VEGF supplementation
in neonatal UUO [101]. Overexpression of VEGF caused
nodular glomerulosclerosis in eNOS null mice and type
1 diabetes [102,103]. Thus, it is a distinct possibility that
VEGF may be beneficial at a particular concentration. At
early stages of diabetic nephropathy, VEGF activity was
elevated, and administration of VEGF inhibitor was
found to block disease progression [104]. However,
VEGF is responsible for maintenance of vascular homeo-
stasis, and excessive inhibition may produce nonfunc-
tional or leaky vessels, further aggravating
inflammation and fibrosis [105]. The available evidence
suggests complex nature of VEGF function. It exerts dif-
ferent effects in different diseases and/or at different
concentrations. Thus, further in-depth studies are
required to address these issues.

5. Conclusion

VEGF plays a role in renal microcirculation and fibrosis
through the regulation of EMT, NO metabolism, inflam-
mation, and ER stress. It represents a critical target for
the treatment of renal fibrosis. Based on the available
evidence, it is debatable whether VEGF exacerbates or
inhibits the process of renal fibrosis. Excessive blockade
or promotion of the level of VEGF may be advanta-
geous or disadvantageous. This implies that the effect
of VEGF is possibly dependent on the type of disease
models, the specific area or cell type within the kidney,
disease stage, timing of VEGF administration, and even
its concentration. Additionally, HIF responds to ische-
mia/hypoxia by driving activation of VEGF. Roxadustat,
an HIF stabilizer, can improve renal tubular injury and
reduce the release of inflammatory cells, suggesting
that it inhibits inflammation by inducing VEGF-driven
angiogenesis. This indicates that upstream regulatory
signals affect VEGF functions [106

]. Therefore, more rigorous large-scale clinical studies
are required for better characterization of the role of
VEGF in renal fibrosis.
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