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Abstract
In recent studies, small cell lung cancer (SCLC) treatment guidelines based on 
Veterans’ Administration Lung Study Group limited/extensive disease staging and 
resulted in broad and inseparable prognostic subgroups. Evidence suggests that the 
eight versions of tumor, node, and metastasis (TNM) staging can play an important 
role to address this issue. The aim of the present study was to improve the detec-
tion of prognostic subgroups from a real- word data (RWD) cohort of patients and 
analyze their patterns using a development pipeline with thoracic oncologists and 
machine learning methods. The method detected subgroups of patients inform-
ing unsupervised learning (partition around medoids) including the impact of 
covariates on prognosis (Cox regression and random survival forest). An analysis 
was carried out using patients with SCLC (n = 636) with stage IIIA– IVB according 
to TNM classification. The analysis yielded k = 7 compacted and well- separated 
clusters of patients. Performance status (Eastern Cooperative Oncology Group- 
Performance Status), lactate dehydrogenase, spreading of metastasis, cancer stage, 
and CRP were the baselines that characterized the subgroups. The selected cluster-
ing method outperformed standard clustering techniques, which were not capable 
of detecting meaningful subgroups. From the analysis of cluster treatment deci-
sions, we showed the potential of future RWD applications to understand disease, 
develop individualized therapies, and improve healthcare decision making.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Real- world data (RWD) has the potential to inform real- world evidence (RWE) 
and significantly impact clinical practice as well as clinical trial design.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can practice- based patient data be used to stratify patient groups to predict clini-
cal treatment pathways and prognosis? How can RWD challenges be addressed to 
achieve RWE of relevance to treatment decisions?
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INTRODUCTION

Stratification of patients to predict accurate prognostic 
outcomes and improve treatment selection is a crucial 
challenge in oncology.1 Increasing availability of real- 
world data (RWD) provides the opportunity to aid group-
ing based on prognostic indicators2 and fill the knowledge 
gap between randomized controlled trials (RCTs) and eve-
ryday clinical practice, as well as inform study design (e.g., 
emulation of control arms).3– 5

Small cell lung cancer (SCLC) is an ideal case for per-
forming risk stratification from clinical RWD. Prediction 
of clinical outcomes is challenging due to the rapid forma-
tion of multiple distant metastases and the lack of knowl-
edge regarding chemo- resistance mechanisms.6,7 In fact, 
advancements in treatment strategies have been limited 
over the past 30 years.8

Treatment selection has historically been based on the 
Veterans’ Administration Lung Study Group (VALSG) 
staging, which includes limited disease (LD), the tumor is 
confined to one hemithorax, which is usually treated with 
a combination of chemotherapy and thoracic radiotherapy 
(1.5 Gy fraction up to a total dose of 45 Gy) and extensive 
disease (ED), the tumor has spread in other parts of the 
body, where treatment is limited to palliative chemother-
apy.9 LD/ED staging is still widely used, nevertheless, this 
categorization is broad and unable to sufficiently differen-
tiate prognostic subgroups.10 This, even though consider-
ing that a substantial number of patients are in a far too 
poor general condition to tolerate any oncologic therapy at 
the time of diagnosis. In recent studies, it has been shown 
that the eighth version of the International Association 
for the Study of Lung Cancer (IALSC) tumor, nodes, and 
metastasis (TNM) staging was superior to VALSG staging 
for the assessment of patients’ prognosis.10,11

However, RWD poses a series of practical challenges, 
including data quality, sample size, defining role of vari-
ables in clinical processes, addressing missing values 
and potential biases, and interpretation of results.2,12– 14 

Furthermore, censoring of data should be handled in risk 
stratification tasks.15

Cox hazard ratios are widely used in oncology for the 
comparison of survival outcomes.15,16 However, these are 
not capable of providing global comparisons between 
survival outcomes.16 Moreover, these models rely on the 
assumption that any covariate effects on hazard are lin-
ear. This makes it difficult to make clinical inferences 
from retrospective studies. Machine learning applied to 
survival analysis has recently been proposed to overcome 
these limitations.17,18

The aim of this work was to explore clinical treatment 
patterns and outcomes relative to baseline patient char-
acteristics in patients with SCLC. Here, we proposed a 
novel approach that merges statistical analysis with ma-
chine learning techniques for survival analysis (Random 
Survival Forest [RSF]19), and informs unsupervised learn-
ing (Gower similarity20 with Partition Around Medoids 
[PAM]21) with the prognostic impact of covariates, thus 
detecting clinical meaningful subgroups.

Thus far, these methods have not been applied to health-
care RWD of patients with SCLC. To the authors knowl-
edge, the present study is the first in which the combination 
of survival analysis and unsupervised machine learning re-
sulted in a comprehensive separation of SCLC prognostic 
groups. Furthermore, the pipeline was designed to address 
several RWD challenges by including clinical experts to un-
derstand the treatment process and interpret the results.

MATERIALS AND METHODS

Cohort description

Part of the present cohort was previously used to validate 
the eighth TNM system and explore clinical outcomes in 
SCLC.10,22 The cohort consisted of consecutive cases di-
agnosed and treated at Karolinska University Hospital 
between 2008 and 2016. All patients had previously been 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
There are a series of aspects to take into account when RWD are adopted in clini-
cal studies, to avoid biases and produce reliable results. Clinical experts play a 
key role regarding clinical inference and unfolding of treatment process insights 
contained within these datasets.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Meaningful risk stratification from RWD could improve knowledge of disease, 
design individualized treatment pathways, and advise the study design of future 
clinical trials. The study provides insights into the unique challenges of RWD and 
how these can be addressed.
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reclassified from the older VALSG classification system to 
the eighth edition of the TNM. The study was approved by 
the institutional review boards at Karolinska Institutet and 
at Stockholm County Council (2016/8- 31). The baselines 
included in the study were: TNM tumor (T8), nodes (N8), 
and metastasis (M8) cancer stage descriptors proposed 
by the IASLC with the relative stage (ST8), age, gender, 
Eastern Cooperative Oncology Group Performance Status 
(ECOG- PS), smoking status, positron emission tomog-
raphy/computed tomography scan and brain computed 
tomography scan. Furthermore, hematology and blood 
chemistry values before the initiation of first- line treat-
ment were obtained, this included CRP (mg/L), lactate 
dehydrogenase (LDH; μkat/L), albumin (g/L), sodium 
(Na; mmol/L), and hemoglobin (HB; g/L). LDH and CRP 
distributions were highly skewed, therefore, a log trans-
formation was applied to these variables.

Missing laboratory values in the retrospective dataset 
(35% of the patients were missing LDH, CRP, HB, Na, and 
albumin) were imputed using the missing random forest 
algorithm.23 This method showed better performances 
compared to other missing imputation techniques in pre-
vious studies (Supplementary Section  S2). Patients with 
stage IIIA– IVB (n  =  636) were included in the analysis 
(see Table S1). Patients that received radiotherapy or sur-
gery alone, as well as patients with ECOG- PS  =  4 were 
excluded (n = 30).

The conceptual treatment decision process was recon-
structed based on the data and clinical expert feedback 

(Figure  1). Contraindications for receiving treatment 
included advanced age, significant comorbidities, and 
ECOG- PS 3– 4. Moreover, some patients chose to decline 
or discontinue treatment due to the anticipated risk of side 
effects. Irradiation could be contraindicated for patients 
with LD with a large tumor burden or ECOG- PS 3– 4.

The recommended treatment combination for SCLC 
is four cycles of platinum doublet chemotherapy (cispla-
tin or carboplatin together with etoposide or irinotecan). 
Platinum re- challenge with etoposide or irinotecan is rec-
ommended for treating relapse of a tumor that initially 
was chemotherapy sensitive but shows disease progres-
sion (after 180 days from start or 90 days after the end of 
the treatment), whereas re- challenge with platinum and 
irinotecan, or non- platinum regimens (monotherapy with 
etoposide, irinotecan, or topotecan) are administrated 
during the second line for refractory relapse (progression 
of the tumor burden before 180 days from start or 90 days 
from the end of initial treatment).24

Patients achieving a major tumor shrinkage after pri-
mary therapy, and who are still in good general condition 
(according to ECOG- PS) might be offered prophylactic 
cranial irradiation (PCI) to reduce the risk of developing 
brain metastases.25,26

The following variables related to treatment decisions 
and survival outcomes were included (Table  1): death 
(Censor = No) or censoring (no information available at 
the end of the study, Censor = Yes), overall survival (OS; 
days from the start of the oncologic therapy until the 

F I G U R E  1  Treatment decision process for the cohort. CT, chemotherapy; CT + RT, chemotherapy and radiotherapy; ECOG, Eastern 
Cooperative Oncology Group; IP, platinum with irinotecan, monotherapy: etoposide, irinotecan or topotecan without platinum; LDH, 
lactate dehydrogenase; PCI, prophylactic cranial irradiation, PE, platinum with etoposide; PET, positron emission tomography; RT, 
radiotherapy; RWD, real- world data; SCLC, small cell lung cancer; TNM, tumor, node, metastasis. Others: treatment strategies where PE 
was not administrated at the first- line treatment.
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occurrence of the event censoring/death), first- line ther-
apy and PCI yes/no. In the studied cohort, only 53 patients 
received the third- line therapy, and very few subjects re-
ceived a fourth- line treatment (n  =  6). For this reason, 
only the administrated agents of the first two chemother-
apy cycles were considered in Table 1.

Prognostic clustering pipeline

Figure 2 details the modeling workflow. The cohort was 
clustered into groups of mutually exclusive patients using 
the clinical characteristics in Figure 1, then clinical and 
treatment patterns were analyzed (Table 1). The method 
used in this study was as follows:

1. Covariate selection: a multivariate Cox proportional 
hazards regression was performed with clinical base-
lines described in Figure  1. Covariates having statis-
tically significant hazard ratios according to Wald's 
test (p < 0.05) were selected.

2. Covariate importance: RSF was performed on the 
 selected covariates. Feature importance was computed 
for all baselines with the permutation method.

3. Prognostic distance: weighted Gower similarity was 
computed with the selected covariates. The weight of 
each covariate in the distance computation was the 
 feature importance obtained in the previous step.

4. Unsupervised machine learning: subgroups of patients 
were detected with the defined prognostic distance as 
input of the Partition Around Medoids (PAM) algo-
rithm analysis of detected subgroups: detected groups 
of patients by PAM were analyzed with thoracic oncol-
ogists. Patterns of selected clinical baselines and treat-
ment decisions were explored (Table 1).

Theoretical description of models in the pipeline is 
 reported in Supplementary Sections S4– S6.

Clinical impact of SCLC covariates on prognosis have 
previously been studied with Cox regression.8,27– 29 In fact, 
the previous work with this cohort explored hazard ratios 
of patients with LD/ED receiving chemotherapy.22 RSF 
was adopted in this work to compute feature importance 
of covariates that provided statistical significant hazard 
ratios. RSF is an extension of Random Forest suited for 
time- to- event analysis.19 RSF was chosen for its capability 
of generalization and consistency of performance,30 and 
its previous applications on SCLC radiological features 
and genetic data.31,32

Feature importance was computed according to the 
method presented by Fisher et al.33 This was done to in-
crease the interpretability of the machine learning model, 
and allow quantification of global information on the 
impact of covariates on prognosis. Given a covariate, its 
feature importance was computed by generating random 
permutations, computing the performance of the model. 

T A B L E  1  Treatment decision and follow- up outcomes

No treatment 
(N = 89)

CT + RT  
No PCI  
(N = 12)

CT + RT  
PCI  
(N = 72)

CT  
No PCI  
(N = 389)

CT  
PCI  
(N = 74)

OS (days)

Mean (SD) 37.9 (46.3) 592 (667) 1280 (829) 224 (194) 830 (587)

Median [min, max] 24.0 [1.00, 266] 363 [69.0, 2470] 1080 [232, 3500] 201 [4.00, 1360] 618 [321, 3730]

Censor

No 89 (100%) 10 (83.3%) 44 (61.1%) 389 (100%) 68 (91.9%)

Yes 0 (0%) 2 (16.7%) 28 (38.9%) 0 (0%) 6 (8.1%)

Treatment

No treatment 89 (100%)

PE 6 (50.0%) 41 (56.9%) 298 (76.6%) 26 (35.1%)

PE- IP 3 (25.0%) 7 (9.7%) 29 (7.5%) 27 (36.5%)

PE- monotherapy 0 (0%) 1 (1.4%) 15 (3.9%) 4 (5.4%)

PE- PE 2 (16.7%) 20 (27.8%) 27 (6.9%) 15 (20.3%)

Others 1 (8.3%) 3 (4.2%) 20 (5.1%) 2 (2.7%)

Abbreviations: Censor, death (no) or censorship (yes) after OS days; CT, chemotherapy; CT + RT, chemotherapy and radiotherapy; OS, overall survival; PCI, 
prophylactic cranial irradiation; PE, no other lines were administrated after the first cycles PE; PE- PE, rechallenge with the same therapy; PE- IP, re- challenge 
with platinum and irinotecan; PE- monotherapy, re- challenge with monotherapy. Other treatment strategies where PE was not administrated at first- line were 
labeled as others.
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Therefore, covariates with higher feature importance cor-
respond to a higher impact on predicted prognosis. The se-
quential application of Cox and RSF allowed the selection 
of covariates with prognostic significance based on their 
levels (hazard ratios), and compare the relative impact be-
tween them (feature importance).

The pairwise distance between patients was com-
puted with Gower distance to handle the different for-
mats of potential covariates (continuous, binary, and 
categorical variables). Gower distance was previously 
explored to analyze treatment selection in an RWD co-
hort with patients with non- small cell lung cancer.34 
The RSF feature importance was assigned as covariate 
contribution in the distance processed by the unsuper-
vised algorithm.

PAM is a partitioning clustering method similar to the 
k- means algorithm that also works with non- Euclidean 
distances, such as the Gower distance.

Instead of computing centroids, the algorithm assigns 
a cluster center based on one of the observations (the pa-
tient for whom the sum of all distances to the other pa-
tients in the cluster is minimal). These central patients of 
the cluster are called medoids.21 Applications of unsuper-
vised learning to SCLC have mostly adopted hierarchical 
clustering.35– 37 However, in recent studies with generic 
cohorts of patients with lung cancer, partition- based al-
gorithms showed better performance as compared to 

hierarchical clustering.38 The same cohort was grouped 
using PAM and hierarchical clustering to consider the 
seventh version of TNM staging, age, and histology of 
the cancer.39 Clustering of patient subgroups was per-
formed using PAM because of its robustness to noise and 
outliers.40

The optimal number of clusters k was chosen accord-
ing to within sum of squares, average silhouette, and 
Dunn coefficient.40

We compared our method with traditional PAM and 
hierarchical clustering (no feature importance step), and 
hierarchical clustering with feature importance weights.

Univariate survival analysis was performed to assess 
the prognostic difference within the detected groups (haz-
ard ratios and Kaplan Meier curves). Clinical character-
istics were explored along with treatment patterns and 
associated medoids. Kruskal- Wallis test was performed to 
estimate statistical difference of OS.

Treatment decision bias was tested by running the 
analysis a second time, including PCI and first- line ther-
apy in step 1 with the baselines in Figure 1.

RESULTS

The optimal configuration found was with k  =  7 clus-
ters (Figures 3 and S1). In Tables 2 and S2, the common 

F I G U R E  2  Data analysis and model development framework. The aim was to compute a pairwise similarity measure with the most 
relevant clinical baselines according to their prognosis (steps 1, 2, and 3), group patients with similar characteristics (step 4), and finally, 
study treatment patterns (Figure 1) of detected groups with thoracic oncologists (step 5). CT, chemotherapy; IP, platinum with irinotecan; 
PE, platinum with etoposide; RT, radiotherapy; SCLC, small cell lung cancer.
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clinical features of the clusters are summarized along with 
treatment decisions and associated medoid characteris-
tics. According to the Kruskal- Wallis test, OS distribution 
among clusters was statistically significant (p < 2.2e−16).

According to feature importance, LDH and ECOG- PS 
were the most relevant for the prediction of OS (Figure 3b).

ECOG- PS was important in defining the patient sub-
groups. Figure  3c shows how the clusters were separated 
according to ECOG- PS M8- ST8 variables, LDH distribution, 
and the comparison with VALSG staging. Interestingly, 49 
patients among the total 78 with stage IVA were associated 
to the clusters with patients having stage III rather than IVB.

Figure 4 shows the timeline of first- line treatment to il-
lustrate competitive decisions in the clusters. CT and CT+ 
radiotherapy (RT) were competitive treatment decisions 
for cluster2 and cluster7 as well as CT and no treatment for 
cluster3 and cluster4. CT+ RT was the predominant treat-
ment received by patients in cluster7 (n  =  50), whereas 
most of the patients that did not receive treatment were in 
cluster3 (n = 43). The remaining clusters mainly included 
patients receiving CT.

Survival profiles were examined using univariate Cox re-
gression (Figure 3d) and Kaplan Meier curves (Figure S3). 
Cluster7 and cluster2 showed the best prognosis, whereas 

cluster4 and cluster3 had the worst prognosis. Cluster1, 
cluster5 (patients treated with CT having ECOG- PS 0– 1 
and stage IVB) and cluster6 (patients treated with CT, hav-
ing ECOG- PS 2 and stage III- IVA) had similar prognosis.

Treating patients with CT alone resulted in worse 
prognosis in cluster2 and cluster7 compared to CT+ RT. 
As expected, treating with CT resulted in better progno-
sis compared to patients that did not receive treatment in 
cluster3 and cluster4. Age between different treatment de-
cision arms inside these clusters did not statistically differ.

A majority of patients received only one line of plat-
inum with etoposide (PE). Subgroups of patients that 
received re- challenge with platinum (PE- PE and PE- 
platinum with irinotecan) were found in cluster1, cluster2, 
cluster5, and cluster7 (Tables S3, S4). However, inference 
about second- line treatment was not possible because of 
small sample sizes. In fact, there were no relevant patterns 
for PE- monotherapy, and the few patients receiving third 
line (3L) or fourth line (4L) treatment.

Patients that received PCI showed a better prognosis 
within their clusters. Comparison of survival profiles be-
tween the clusters led to similar results of previous LD/ED 
comparative studies (better OS for patients receiving PCI in 
cluster7 and cluster2 compared to cluster1 and cluster5).41

F I G U R E  3  Prognostic clustering 
results. (a) Cox hazard ratios of selected 
covariates. (b) Feature importance 
distribution on 100 iterations of RSF 
(100 trees). (c) ECOG- PS- M8- ST8 cluster 
separation, LDH, and CRP distribution, 
and comparison with VALSG staging. 
(d) Univariate cluster's Cox hazard ratio. 
ECOG- PS, Eastern Cooperative Oncology 
Group- Performance Status; LDH, lactate 
dehydrogenase; RSF, Random Survival 
Forest; SCLC, small cell lung cancer; 
VALSG, Veterans’ Administration Lung 
Study Group.
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The approach outperformed standard hierarchical 
clustering, and PAM without feature importance weights 
in terms of clustering performance and novel detected 
groups (Figure S2).

DISCUSSION

In this paper, we showed the potential of using risk strati-
fication based on RWD healthcare data collected over an 
extended time period. To the best of our knowledge, this 
is the first study of SCLC healthcare data using a survival 
machine learning model to detect subgroups with unsu-
pervised learning informed by the prognostic impact of 
covariates.

The devised model development pipeline provided 
methodological solutions to address some of the high-
lighted challenges of using RWD.2,12– 14 The solution 
proposed to address RWD challenges and aspects that re-
quired further investigations are summarized in Table 3.

Figure 1 highlights the importance of contextualizing 
the clinical processes behind the data.14 This allowed to 
avoid a strategy to reduce the risk stratification that was 
biased by treatment decisions (such as including PCI as 
an input covariate).

Continued discussions and iterative modeling with 
thoracic oncologists were instrumental to ensure that 
patients were clustered based on relevant baseline infor-
mation, and to avoid potential biases or redundancy of co-
variates and treatment decisions.1,42

T A B L E  2  Cluster patterns and medoids

Cluster Clinical features Treatment patterns Medoid

Cluster1
(n = 140)

ECOG- PS: 1
TNM: M1C- IVB (132)
LDH = 0.778 [0.699, 0.845]
CRP = 1.114 [0.778, 1.48]

Treatment: CT (124)
PCI (21)
2 L: PE- IP (19), PE- PE (12)
3 L (13)

TNM: T4N3M1C- IVB treatment: CT
PE
OS = 156 days

Cluster2
(n = 91)

ECOG- PS:1
TNM: M0- III (68) from which IIIA (18), 

IIIB (22) and IIIC (28), and IVA (23)
LDH = 0.602 [0.477, 0.602] CRP = 1.146 

[0.778, 1.362]

Treatment: CT (61) and CT + RT (27)
PCI (47)
2 L: PE- PE (15), PE- IP (12)
3 L (13) and 4 L (2)

TNM: T4N3M0- IIIC treatment: CT + RT
PCI
PE- PE
OS = 723 days

Cluster3
(n = 97)

ECOG- PS: 3
TNM: M1C- IVB (78)
LDH = 0.903 [0.699, 1.041] CRP = 1.491 

[0.845, 1.826]

Treatment: CT (54) and
No treatment (43)

TNM: T4N2M1C- IVB treatment: CT
PE
OS = 17 days

Cluster4
(n = 87)

ECOG- PS: 2
TNM: M1C- IVB (84)
LDH = 0.845 [0.699, 1]
CRP = 1.23 [0.778, 1.658]

Treatment: CT (69) and
No treatment (18)

TNM: T4N2M1C- IVB treatment: CT
PE
OS = 190 days

Cluster5
(n = 85)

ECOG- PS: 0
TNM: M1C- IVB (78)
LDH = 0.778 [0.699, 0.845]
CRP =1.114 [0.845, 1.38]

Treatment: CT (n = 82)
PCI (11)
2 L: PE- IP (18), PE- PE (9)
3 L (10) and 4 L (1)

TNM: T4N2M1C- IVB treatment: CT 
PE- PE

OS = 302 days

Cluster6
(n = 46)

ECOG- PS: 2 (39) and 3 (7)
TNM: M0- III (29) from which IIIA (8), 

IIIB (11) and IIIC (10), and IVA (17)
LDH = 0.602[0.477, 0.699]
CRP = 1.455[1, 1.774]

Treatment: CT (34) TNM: T4N3M0- IIIC treatment: CT
PE
OS = 503 days

Cluster7
(n = 90)

ECOG- PS: 0
TNM: M0- III (80) from which IIIA (27), 

IIIB (30), and IIIC (23)
LDH = 0.602 [0.477, 0.602]
CRP = 1.29 [1.079, 1.488]

Treatment: CT + RT (51) and CT (39)
PCI (57)
2 L: PE- PE (20) and PE- IP (11)
3 L (14) and 4 L (3)

TNM: T4N2M0- IIIB treatment: CT
PE
OS = 1033 days

Note: For continuous variables, median [interquartile range] is reported. (2 L): second treatment line agent received. (3 L) and (4 L): number of patients that 
received further treatment lines after second.
Abbreviations: CT, chemotherapy; ECOG- PS, Eastern Cooperative Oncology Group- Performance Status; LDH, lactate dehydrogenase; OS, overall survival; PCI, 
prophylactic cranial irradiation; PE- IP, platinum with irinotecan; RT, radiotherapy; TNM, tumor, node, metastasis.



2444 |   MARZANO et al.

Previous studies grouped, a priori, the patients with LD- 
CT+RT and ED- chemotherapy according to VALSG.22,28,43 
In contrast, the approach presented here stratified the 
cohort a posteriori providing insights on staging patterns 
and competitive treatment decisions, thus extending the 
traditional pipeline of retrospective studies beyond the 
Cox Proportional Hazard model.

The covariates that characterize the clusters in Table 2 
were consistent with findings of previous studies.10,27

This cohort is the most comprehensive re- staging of the 
eighth TNM version performed on patients with nonsurgi-
cal SCLC.10 Moreover, the conclusions from the previous 
study on this cohort showed that the patient character-
istics corresponded with historical data.22 Hence, this 
cohort provided the opportunity for a robust external vali-
dation of earlier work.

Feature importance33 allowed the estimation of global 
covariate effects, avoiding correlation bias or sample size 
effects on hazard ratios (e.g., the irrelevant effect of brain 
CT in Figure 3b).

The results support the importance of the prognostic 
impact of LDH and ECOG- PS.28,29,44,45 Interestingly, LDH 
provided a higher feature importance score.

Using a combined survival analysis and unsuper-
vised machine learning approach led to a comprehensive 

separation of SCLC prognostic groups (Figure  3c and 
Table 2). The approach outperformed traditional unsuper-
vised techniques. The cluster analysis pointed out interest-
ing considerations regarding the new stage categories IIIC, 
IVA, and IVB of the eighth version of TNM and how these 
are grouped.46

Figure  4 highlights the possibility to use longitudinal 
RWD to extract treatment arms of specific patient clusters 
to emulate clinical trials.5 We found interesting competitive 
processes inside the clusters (CT+RT/CT and CT/no treat-
ment). There were no relevant differences in treatment de-
cisions over the considered years within the clusters. This 
allowed us to exclude the possibility of confounded analysis 
by differences in treatment modalities thought at the time.

Another interesting result was the similar survival pro-
files of CT therapy between patients with stage IVB and 
good ECOG- PS, and patients with stage III– IVA and worse 
ECOG- PS (cluster1, cluster5, and cluster6).

The analysis highlights the role of RWD to inform and 
shape future clinical trials.2,5 Several of the findings were 
supported by previous RCTs in similar patient cohorts 
(e.g., higher OS for LD receiving CT+RT vs. CT alone).41,47 
On the other hand, the current work emphasized new pa-
tient subgroups and treatment outcomes in the different 
clusters (e.g., CT/no treatment in cluster3 and cluster4, 

F I G U R E  4  Treatment decisions in 
the cohort stratified by detected clusters 
across the years of diagnosis (2008– 2016). 
CT, chemotherapy; RT, radiotherapy.
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and the similar OS for patients in cluster1, cluster5, and 
cluster6).

This work also highlighted some limitations in the ap-
proach of generating RWE from RWD. Clinical inference 
should be made carefully due to the lack of further infor-
mation regarding the patients, longitudinal measures, and 
treatment decisions (e.g., comorbidities, dosing, reason 
for cessation of treatment, and side effects).

Another limitation of the data is the unbalanced pres-
ence of patients with stage IVB disease that makes it chal-
lenging to apply the model to other patient cohorts with 
limited sample sizes (e.g., stage IVA). Indeed, more than 
80% of SCLC diagnosed stage was IVB.6 However, the ap-
proach was capable of handling the unbalanced stages 
avoiding the scenario with all detected subgroups being 
represented only by IVB stage.

One way of overcoming this limitation is to notably in-
crease the sample size and include longitudinal variables 
at clinically relevant decision points.

Future studies will focus on the collection of data 
records of patients diagnosed after 2016, with the in-
clusion of longitudinal variables. We envision that this 
will strengthen inference and allow the study of time- 
dependent effects.

Treatment guidelines are international, and with 
regard to SCLC, small differences exist between major 
Western countries. Therefore, the inclusion of data from 
other centers would constitute an important opportunity 
to assess the robustness and validity of the approach. 
Despite the relevant results achieved with the presented 
approach, different strategies should be explored with 
changes to the methodologies detailed in the pipeline 

T A B L E  3  Proposed solutions to address RWD challenges and future research to overcome remaining challenges

RWD challenges Examples from the SCLC case Implemented solutions
Identified solutions for future 
studies

Data quality Retrospective clinical data
Re- staging performed during 

2008– 2016 –  lack of longitudinal 
information regarding treatment 
decision

Data pre- processing
Multiple missing imputation

Collection of longitudinal 
information

Include more recent patients’ data

Sample size effects Most of patients have advanced 
stage and multiple distant 
metastasis (M1C- IVB)

Synergy of survival analysis and 
unsupervised learning

Separated patients in a 
meaningful way (otherwise 
main stage for all clusters 
would have been IVB)

Include more patients and 
increase sample size of limited 
subgroups (e.g., IVA stage)

Reconstruction of 
processes behind 
the acquired data

Censored data
Correlation between covariates and 

treatment decision

Clinical experts in the loop: 
conceptualization of the 
treatment process

Survival analysis to handle 
censoring

Enrichment of the process 
description through longitudinal 
variables

Multistate models

Missing values Laboratory values difficult to 
retrieve or not collected because 
of patient condition

Missing imputation with 
missForest algorithm

Lack of ground truth regarding 
the imputed values. Further 
research required

Biases and 
confounders

Baselines and treatment decision 
covariates

Nonlinear effects
Lack of longitudinal information

Separation of baselines, a 
posteriori study of treatment 
decisions

Explainable machine learning 
(feature importance)

Study of time- dependent effects
Study with cohorts from other 

centers

Interpretation of 
results

Cautious clinical inference 
regarding the results

Clinical interpretation of 
survival and cluster analysis

Explainable machine learning 
(feature importance)

Comparison with traditional 
unsupervised learning

Study of time- dependent effects
Local explainable machine 

learning
Sensitivity analysis comparing 

different strategies (covariate 
selection, survival and 
unsupervised algorithms, other 
cohorts and case studies)

Abbreviations: RWD, real- world data; SCLC, small cell lung cancer.
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(such as covariate selection, survival machine learning, 
and distance definitions48– 50). With regard to this, sen-
sitivity analysis will be explored comparing different 
strategies and methods.

Proper choice of methods can be the key for advanc-
ing methodologies aimed to extract relevant clinical infor-
mation from RWD for risk stratification.1,2,12,14 This will 
provide an opportunity to improve our understanding of 
disease, inform clinical study design, and develop individ-
ualized therapies2,3,13
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