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Abstract: Soldiers are often required to carry heavy loads that can exceed 45 kg. The physiological
costs and biomechanical responses to these loads, whilst varying with the contexts in which they
are carried, have led to soldier injuries. These injuries can range from musculoskeletal injuries (e.g.,
joint/ligamentous injuries and stress fractures) to neurological injuries (e.g., paresthesias), and impact
on both the soldier and the army in which they serve. Following treatment to facilitate initial recovery
from injuries, soldiers must be progressively reconditioned for load carriage. Optimal conditioning
and reconditioning practices include load carriage sessions with a frequency of one session every
10–14 days in conjunction with a program of both resistance and aerobic training. Speed of march
and grade and type of terrain covered are factors that can be adjusted to manipulate load carriage
intensity, limiting the need to adjust load weight alone. Factors external to the load carriage program,
such as other military duties, can also impart physical loading and must be considered as part of any
load carriage conditioning/reconditioning program.

Keywords: military; exposure; occupational injury; pack march; reconditioning; return to work;
injury risk management

1. Introduction

From the deserts in Africa [1] and Iraq [2] to the jungles of Vietnam [3]; from the
marshes of the Falklands [4] to the urban sprawl of Somalia [5]; and from traversing the
flat lands of rice paddies in Vietnam [6] and poppy fields in Afghanistan [7] to the hilly
Kokoda Track of Papua New Guinea [8], Toktong pass of Korea [9] and Shah-i-Kot Valley
of Afghanistan [10], soldiers have been required to fight battles for survival while wearing
and carrying heavy occupational loads. These loads are composed of equipment and
stores designed to ensure protection (e.g., body armour), lethality (e.g., weapon systems
and ammunition), and sustainment (e.g., food and water) and are worn on the head (e.g.,
ballistic helmet), torso (e.g., body armour, load bearing vests, chest rigs, patrol pack), thigh
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(e.g., side arm or stores in thigh pockets) and feet (e.g., boots) as well as being carried in
the hands (e.g., primary weapon systems). Whilst these items are important for soldier
survival, the loads also impart risks due to factors which include fatigue and the increased
energy cost associated with prolonged load carriage [11,12]. The loads carried by the
soldier may reduce their physiological capability, mobility, attention to task, marksmanship
and grenade throw ability [13–19]. Furthermore, load carriage tasks have been associated
with soldier injuries and a history of load carriage injuries increases the risk of future
load carriage injuries [20,21]. Hence, preventing load carriage injuries and optimising
the physical rehabilitation of injured soldiers to reduce future injury risks and enhance
physical, cognitive and technical performance is of importance.

The purpose of this article is to review the physiological and biomechanical responses
to load carriage and how these relate to injuries, injury prevention, and rehabilitation
after injury.

2. The Weight of the Soldier’s Load

It must be acknowledged that the requirement to carry load is not unique to sol-
diers. Law enforcement personnel are required to carry daily occupational loads that
can range from approximately 10 kg for a general duties officer [22] up to approximately
20–25 kg [23,24] and even 40 kg [25] for a specialist tactical response officer. Likewise, fire-
fighters are often required to generally carry loads of over 20 kg while wearing firefighting
personal protective clothing [26]. Nevertheless, although these loads are notable, they are
typically lighter than those carried by soldiers as soldiers are often in situations where
they do not have the relatively close support networks that are commonly available to
other tactical groups such as law enforcement and firefighting personnel. As such, soldiers
must carry more equipment and stores. While the soldier’s load may vary depending
on their Corps (e.g., infantry, armoured, and artillery [27]), roles within a given unit (e.g.,
rifleman, grenadier, and section commander [28]) and tasks (e.g., patrolling on foot or
in a vehicle, and sentry duty [27]), the loads carried by US [21,28–30], Australian [27],
British [31], Spanish [18], and German [32–34] soldiers can weigh from approximately
25 kg to well over 45 kg. Of most concern, research suggests that regardless of advances
in weaponry, changes in theatres of war, and changes to technology in general, the loads
carried by soldiers into combat are increasing [15,35]. Not only may the weight of these
loads differ between occupations but the contexts in which these loads are carried may
vary, law enforcement officers may wear their relatively lighter loads daily for the duration
of their career, while firefighters will don their loads for specific periods (e.g., while fighting
a structural fire) and military personnel, again depending on their unit’s roles and tasks,
could carry loads for varying lengths of time and over varying distances [36,37].

3. Physiological Responses to Load Carriage

The weight of the loads carried by soldiers is known to elicit a physiological cost.
Increases in load weight have been found to reduce endurance time [38] and increase
the energy cost of walking (forwards and backwards, and up and down stairs), and
running [39–41]. However, it is not only the weight of the load being carried that influences
the soldier’s physiological responses to a load carriage task, so too do the contexts in which
loads are carried [15]. An example of a contextual influence is the speed at which the carrier
is moving while the load is carried, whereby increases in speed of movement increase
the energy cost of carrying a given load to the point where it has been suggested that
increases in speed may have a greater impact on energy expenditure than increases in load
weight [42].

Changes in both terrain gradients and terrain surfaces have also been observed to
affect the energy costs of load carriage, such that increases in gradients traversed increase
the energy costs of carrying loads [43–45]. As with speed, increases in the grade (angle) of
the terrain may impart a greater energy cost to the soldier than increases in load weight [45].
When considering the incline of terrain, Crowder et al. [45] advised that the grade might
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be more important than the load from an energy cost perspective because a 1% increase in
grade increased energy cost by approximately 10-fold more than a 1% increase in load with
no change in grade. Changes in energy cost per unit of downhill gradient are not linear but
rather assume a “U” shape. That is, as the downhill grade increases, energy cost initially
decreases, reaches a minimum and then increases again. Lloyd and Cooke [46] observed
that as gradients declined from zero to −5%, there was a minor reduction in oxygen
consumption, with consumption then increasing steadily as the gradient decreased from
−12 to −27%. Further, Santee et al. [47], investigating the impact of declining gradients
of up to −12% (during 20 min of treadmill walking carrying 9.1 and 18.1 kg backpacks),
reported similar reductions in energy requirements occurring with declines in grade to
−12%, when compared to level walking. Considering these findings regarding the impacts
of incline and decline terrain gradients on load carriage energy expenditure, it is noteworthy
that studies assessing energy costs on both inclining (up to +27%) and declining gradients
(down to −30%) have reported that load carriage on inclining gradients is more energy
costly than that on decline gradients [46–48]. The nature of the terrain to be traversed
should also be considered, as different surfaces incur different physiological costs. Energy
cost when carrying load increases across the following list of terrain types: sealed roads,
dirt roads, light bush, heavy bush, swamp, loose sand, and deep (10–20 cm) snow [49,50].

As such, not only must the weight being carried by the soldier be considered but
so too must the context in which the load is carried, with speed of march and grade
and type of terrain also requiring consideration. These contextual factors may provide
a means for increasing the load carriage training intensity for a soldier recovering from
injury without increasing their carried weight, and so may be of value in a load carriage
reconditioning program.

4. Biomechanical Responses to Load Carriage

In addition to the physiological costs, load carriage tasks alter biomechanics, including
changes to the soldier’s posture, gait kinematics (stride length, stride frequency, etc.), and
ground reaction forces when walking [15,51]. Alterations to forward trunk lean, spine
shape, spinal compression, spinal shearing forces, and thoraco-pelvic rhythm have all been
associated with carrying loads [52–55]. Load carriage increases postural sway [56–60] and
the amount of force generated in the medial–lateral axis [61]. Likewise, load carriage has
been associated with changes in the parameters of gait, including changes in the duration of
the double support phase, stride length and stride frequency, with these changes dependent
on the load and the sex of the carrier [51,55,62–67]. Finally, ground reaction forces increase
in downward, antero-posterior, and medio-lateral directions as the carried load weight
increases [61–63,67–70].

5. Injuries Associated with Soldier Load Carriage

When the aforementioned physiological and biomechanical factors are considered in
combination, the potential for soldier load carriage to lead to injuries becomes apparent.
The physiological cost of carrying the load can lead to fatigue [12]. The increased energy
cost and increased and repetitive muscular force requirements can lead to central or gener-
alised fatigue and localised muscle fatigue increasing the risk of injury to the soldier [11].
Changes to spinal loading, gait patterns, and ground impact forces (through increases in the
total volume of impact forces over time [61]) can likely increase the risk of musculoskeletal
injuries, particularly during prolonged and/or high-intensity load carriage activities [71].

In terms of injury types, load carriage tasks are associated with causing injuries in
soldiers that range from fractures to ligamentous damage and from skin blistering to
neurological injuries [15,20,21,30,72–76]. Injury body site data from both specific load
carriage events [69,77] and longitudinal studies [20,74] suggest that the lower limbs are a
leading site of injury from load carriage, with the knee, ankle and foot found to be common
sites of musculoskeletal injuries [69,77]. However, some differences in the distribution
of these injury sites between sexes may exist. A study by Orr et al. [78] investigating sex
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differences in soldier load carriage injuries found that female soldiers were more than twice
as likely as their male counterparts to suffer from a foot injury, whilst in male soldiers,
the ankle was the leading lower-limb injury site and accounted for a larger proportion of
injuries. All other injury anatomical locations were similar for men and women, in the
proportions of injuries they hosted.

In aggregated injury data representing all injuries in an army population accrued over
an extended period of time, the back is typically, although not always [73], the second most
common site of load carriage injuries after the lower limbs [20,69]. However, in a study of
a single load carriage event, the back was the leading site of injuries that led to a soldier’s
inability to complete the march [69]. This finding is supported by a retrospective cohort
study by Orr et al. [78], which found that, when injuries were separated into body sites
(e.g., knee, ankle, and foot), the lower back presented as the leading site of injuries in both
male and female soldiers [78]. Again, a sex-specific difference was found, in which female
soldiers, while suffering similar proportions of lower back injuries, suffered more severe
lower back injuries than male soldiers [78]. When an individual walks with a backpack
load, forward lean is increased, generating cyclic stresses on the vertebrae, intervertebral
discs, muscles, and other spinal structures with each step [21]. Further, heavy loads do
not move in synchrony with the trunk and trunk stiffness increases with such heavy loads
due to both active co-contraction of the abdominal and paraspinal muscles and paraspinal
reflexes. The combined stresses on vertebra, discs, muscles and other spinal structures are
likely associated with back pain and injuries experienced in susceptible individuals [21].

Stress fractures (fatigue fractures) appear to be due to a bone remodeling imbalance,
where the physiological processes that remove bone tissue outpace processes that produce
new bone in stressed areas; stress fractures are typically associated with repetitive bone
loading in activities such as walking with loads and other repetitive actions for which
individuals are not adequately conditioned [79,80]. In military populations, common sites
of stress fractures include the pelvis, tibia, calcaneus, and metatarsals [81,82]. Acknowl-
edging that factors other than load carriage (e.g., running volume [30]) contribute to stress
fractures, load carriage itself has been found to be a cause of stress fractures. In fact, the first
report of stress fractures in the literature was by Dr Breithaupt, who noted the condition
in Prussian Army soldiers returning from long marches, although he likely misconstrued
the aetiology [83]. The injury was later termed “march fracture” since it was often seen
in soldiers involved in marching with loads [83,84]. In a study of pelvic stress fractures
in female soldiers, Pope et al. [81] identified the longer step length requirement typical of
female soldiers (to keep ‘in-step’ with male soldiers, who are on average taller, during pack
marches) as contributing to specific pubic ramus stress fractures in the female soldiers.

Neurological injuries are also associated with load carriage tasks and include several
paresthesias (brachial plexus, digitalgia and meralgia) [75,76]. With a mechanism of injury
that can involve either neural traction or compression, causes of paresthesias include
loads transferred through backpack shoulder straps (brachial plexus palsy [76]), poorly
fitting boots (digitalgia paresthetica [76]) or wearing body armour that compresses the
thighs while seated for long periods of time (meralgia paresthetica [75]). Although the
incidence rates for these injuries are not high compared to those for other load carriage
injuries [75,76], recovery can take up to several months [85], with surgical intervention for
brachial plexus palsy recommended if there is failure to recover strength and endurance
after 24 months [86].

The Wider Impacts of Soldier Load Carriage Injuries

The impacts of injuries to soldiers while carrying loads can be traced through history.
Circa 400 BC, following the long marches of Cyrus’ infamous 10,000 Greek mercenaries,
the army was thought to have suffered from stress fractures, torn ligaments, muscle
damage, blisters and abrasions [87]. In 1870, the Prussian Guards fighting in the Franco-
Prussian War left the Rhine with 30,000 soldiers but lost 12,000 fighting soldiers from
fatigue induced by carrying heavy loads over the weeks of marching [88]. In 1944, during
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World War II, American troops were said to have been so overloaded that their loads
were attributed with causing deaths in the water during landings at Omaha Beach [89].
In 1983, US soldiers assaulting an airhead in Grenada were so overloaded that a large
number of them were left on the roadside on intravenous drips and unable to continue
to fight [89]. More recently, research suggested that nearly a half (45%) of US combat
forces reported suffering a musculoskeletal injury during a 12-month deployment and the
authors concluded that tasks requiring physical energy expenditure such as load carriage,
lifting, or standing resulted in an increased risk of musculoskeletal injury in this study;
lifting/carrying, dismounted patrols, and physical training were associated with 26% of
the reported musculoskeletal injuries [90].

Thus, the potential impact of load carriage injuries on an army can be devastating,
adversely affecting its combat capability [91]. Noting the impacts of injuries on army
capability, injury prevention, including prevention of recurrences through rehabilitation, is
considered by some as a force multiplier [92], a term acknowledging that reducing injuries
and optimising rehabilitation will substantially increase combat capability. This makes
sense intuitively. For example, if a soldier is injured and they cannot go out on a foot patrol,
the rest of the unit must then perform the task with fewer personnel, who may now have
to carry additional mission essential stores (increasing their load) with a reduced lethality
capability (one less soldier to engage the enemy), factors that both increase the risk of injury
and death to the remaining soldiers.

Noting these impacts of load carriage injuries on strategic capability, preventing
injuries is of critical importance. This assertion is strengthened by the fact that previous
injury is a risk factor for future injury [20,93–95]. A study by Orr et al. [20] found that, of
soldiers injured while carrying load during basic training, 32% sustained an additional
injury (to the same or another body site) within the first 12 months of service in an
operational unit and overall 52% of those injured reported sustaining an additional load
carriage injury (to the same or another body site) at some time during their career. Not
only is the prevention of load carriage injuries paramount, but so too is the optimisation
of an injured soldier’s rehabilitation for return to work (especially after a load carriage
injury), as their ability to return affects not only the individual soldier but also the fighting
capability of their unit.

6. Physical Conditioning and Rehabilitation for Soldier Load Carriage Tasks

Soldiers will often be the physical platform upon which heavy loads are carried [96],
especially in austere or isolated environments where alternative methods are not readily
available. In attempting to reduce injury risk in load carriage contexts, the hierarchy of
controls for hazards should be considered. This hierarchy includes elimination, substi-
tution, isolation, engineering controls, administrative controls, and personal protective
equipment [96]. Elimination, substitution, isolation, and significant engineering controls
are rarely considered viable options for control of injury risks arising from load carriage in
military training and operational settings, due to requirements such as stealth, movement
(affecting proximity of stores), and self-sufficiency during operational duties. The soldier
must therefore be physically robust enough to withstand the forces imparted by the loads
they must carry [96]. Recognition of the need for soldiers to be physically conditioned and
robust enough to carry load is not new and can be traced back to Flavius Renatus who,
in his epitome Epitoma rei militaris, described the physical training of Roman soldiers to
carry loads and march long distances [97]. Following injury from any cause, soldiers must
therefore be supported to recover, return to work and be reconditioned for load carriage.

Immediately following injury, emphasis will necessarily be on early detection, sta-
bilisation, diagnosis and treatment of the injuries, to prevent further harm [98]. These
topics are beyond the scope of this article and clinical guidance in these areas is available
from many other sources, dependent on the specific type of injury. However, for optimal
outcomes, immediately following injury stabilisation the focus must turn to: preventing
unnecessary loss of physical conditioning; returning the soldier to work as soon as possible
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using approaches that will support their recovery from injury and build their confidence in
their capacity to return to work; and facilitating the progressive physical reconditioning of
the soldier for load carriage and other military tasks [99,100].

Deconditioning, loss of confidence, loss of function and isolation from the work team
can occur rapidly when the usual activity levels and work participation of soldiers reduce
following injury, during the initial treatment phase [101]. It is therefore essential that
physical conditioning and progressive return to work commence as soon as the injury is
stabilised and concurrently with injury treatment, within the bounds of what is safe and
beneficial for the soldier [102,103]. For example, a soldier who has experienced a tibial
stress fracture may be prohibited from full weight bearing for some time to unload the
bone and allow healing, but assuming the stress fracture is stable and they are not required
to wear a plaster cast, they may be able to participate in ‘water running’ in deep water
(eliminating weight bearing through the injured leg) during this time, in order to maintain
aerobic fitness levels, muscle function and joint movement [101]. They may also be able
to participate in strength training, seated or in other positions that do not require weight
bearing through the injured leg. In addition, they may be able to undertake a range of
usual military tasks, which do not require full weight bearing through the injured leg, in
familiar work environments and supported by peers and supervisors. The aim is always
to maintain as much conditioning and normal functioning and interaction in the work
environment as possible, while at the same time protecting the healing process for the
injury [99,100,104].

Once the initial tissue healing phase is complete and the soldier is ready to return
to, and progressively rebuild their capacity, for weight-bearing activities consideration
should be given to preparation and reconditioning for load carriage and other military
tasks. As with most forms of conditioning and return to work rehabilitation, specificity
is of importance and concepts such as the ‘principle of specificity’ [105] and ‘Specific
Adaptation to Imposed Demands’ [105] should form part of preparing and reconditioning
soldiers for load carriage and other military tasks. Research shows that load carriage-
specific training is optimal to improve load carriage performance [106–108]. Furthermore,
Rudzki [109] compared groups of military recruits assigned to either a running platoon or
a load marching platoon, and the load marching group were subjectively rated by staff as
performing better at military tasks overall than the run group.

Given that load carriage itself constitutes a source of injury risk, the frequency with
which load carriage training is scheduled during preparation or reconditioning following
injury is of importance. Research suggests that a load carriage-specific session should be
conducted at least once every seven to 14 days [106,107]. However, with an increased risk of
injury and no additional improvements in load carriage performance found when sessions
were greater than four per month [110], the recommendation is that load carriage-specific
sessions are conducted no more than once every 10 to 14 days, since a further increase in
frequency will typically not increase performance but may increase the risk of injury [30].
This reasoning is also strengthened by the observation of a slow recovery of neuromuscular
function in the trunk and limbs up to 48–72 h after a load carriage bout [11,111,112]). For
example, in a study by Leyk et al. [112], military ambulance workers performed a maximal
stretcher transport with a mean load of 25 kg on each side and wearing 10 kg of standard
military clothing. Following this task, grip strength was still significantly reduced 72 h
later, leading the authors to assume that the vertical movements of the stretcher led to
eccentric stress and to muscle damage during the maximal stretcher transport.

As part of a load carriage conditioning program, intensity and volume need to pro-
gressively increase, at a safe rate, to meet the occupational requirements of the soldier.
Considering this, while volume can be manipulated by changing the duration or distance
of a load carriage event, intensity can be more adequately controlled by manipulating the
speed of march, grade, and type of terrain. Exploiting these factors may be particularly
useful in the early stages of reconditioning following injury, when loads carried, speeds
of movement, or forces applied to specific body parts need to be limited. For example, if
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the rehabilitation focus was on increasing weight bearing through the recovering body site
of injury but current aerobic fitness was limited, load mass could be increased from 15 to
20 kg, while the speed of march could be decreased (5.0 km/h to 4.5 km/h). This example
demonstrates how, while relative energy costs and workloads can be kept similar, gradual
increases to actual load mass can be made. Alternatively, if the rehabilitation focus was to
increase load carriage-specific aerobic fitness but no additional load mass was to be added
to the recovering body site, the load mass could be kept constant (e.g., 15 kg), while the
surface grade could be increased (0 to 3%) or the terrain swapped from formed roadway
to soft sand, thereby maintaining load mass but increasing energy costs and workload to
facilitate physical conditioning while avoiding overload of specific body sites.

While load carriage-specific sessions, limited to every 10 to 14 days, are an essential
component of load carriage conditioning and reconditioning programs, so too are resistance
and aerobic training [106,107]. A combination of resistance and aerobic training has been
associated with improvements in load carriage performance [106–108]. Studies show that
upper body relative strength (strength per unit of body mass) is more highly correlated to
loaded road march performance than lower body relative strength [108,113]. Furthermore,
increases in aerobic and musculoskeletal fitness are likely essential to prevent future
injury, with lower levels of these measures associated with an increased risk of injury
in soldiers [114–116]. As such, resistance training (notably relative strength based) and
aerobic conditioning should form part of the load carriage conditioning/reconditioning
plan for soldiers required to carry loads [107].

Factors external to the load carriage program need to be considered. If the soldier is to
remain with their unit whilst undergoing conditioning or reconditioning for load carriage,
the impacts of their other duties need to be considered and where necessary reduced to aid
in prevention of injury or reinjury [117]. Program-Induced Cumulative Overload (PICO)
is a term used to highlight the impacts that other duties and tasks of a physical nature
can have on a soldier undertaking a physical conditioning program [118]. As an example,
soldiers may be required to complete basic weapon skill training wearing full loads or
spend a period of time marching on a parade ground prior to a load carriage conditioning
session [118]. These additional musculoskeletal loads may pre-fatigue the soldier, possibly
increasing their risk of injury during any subsequent planned load carriage session. Other
examples include informal distances covered by soldiers simply moving between lessons,
the mess, the barracks, etc., with these distances often equating to 7–11 km per day in
some situations [119,120] and further increasing the total training load. On this basis,
daily program factors other than load carriage training need to be considered if the load
carriage conditioning or reconditioning plan is to be suitably progressive without leading to
excessive overload. To mitigate some of these concerns, consideration of the program could
allow for load carriage conditioning to be completed as part of other programmed activities.
For example, loads worn during a 40 min weapon training session could constitute the
load carriage conditioning session for a particular 10–14 days period, with progression
achieved by including marching to and/or from the weapon training session with loads.
Likewise, portions of the soldier’s day, once every 10–14 days, could involve wearing load
while undertaking programmed military training or administration, thereby providing a
loading benefit when the soldiers move around their military area during the day.

While this paper has focussed on the physical aspects of load carriage, a final consid-
eration is the impact of mental acuity associated with load carriage. The psychological
impacts of physical injury on return to work and performance, and impacts of an injury
on mental health are beyond the scope of this paper. However, it should be noted that
load carriage is known to impact on aspects of mental acuity, such as attention to task [13].
As such, adding cognitive challenges to the rehabilitation of personnel while conducting
load carriage tasks (e.g., remembering number sequences, and identifying the number
of ‘red circles’ or ‘blue squares’ on a marching route) could be beneficial. Likewise, the
addition of military psychologists to the allied health team may usefully inform the overall
rehabilitation process.
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7. Conclusions

With soldiers required to carry increasingly heavy external loads that have potential
to cause injury, optimal conditioning and reconditioning (following injury) practices are of
importance to both the individual and the army in which they serve. When implemented,
load carriage conditioning should include an appropriate load carriage-specific session ev-
ery 10–14 days, with training progressions achieved through manipulation of load weight,
speed, distance, and grade and type of terrain. The load carriage conditioning program
should also include aerobic fitness and resistance training sessions, while considering
factors external to the load carriage program which can impart a physical load, such as
other military duties and training (particularly those including load carriage).
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