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Abstract. During malignant progression to overt cancer cells, 
normal cells accumulate multiple genetic and non-genetic 
changes, which result in the acquisition of various oncogenic 
properties, such as uncontrolled proliferation, drug resistance, 
invasiveness, anoikis-resistance, the ability to bypass onco-
gene-induced senescence and cancer stemness. To identify 
potential novel drug targets contributing to these malignant 
phenotypes, researchers have performed large-scale genomic 
screening using various in vitro and in vivo screening models 
and identified numerous promising cancer drug target genes. 
However, there are issues with these identified genes, such as 
low reproducibility between different datasets. In the present 
study, the recent advances in the functional screening for 
identification of cancer drug target genes are summarized, and 
current issues and future perspectives are discussed.
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1. Introduction

Most human solid tumors develop through multi-step 
carcinogenesis (1,2). During this process, normal cells, 
presumed to be tissue‑specific stem cells, accumulate multiple 

molecular changes advantageous to step‑wise growth, finally 
transforming into overt cancer cells (3). Previous advances in 
genome‑wide profiling technologies have revealed a number 
of molecular changes in malignant cells at the genetic, epigen-
etic, transcriptional and translational levels (4-6). Genetic 
alterations in proto‑oncogenes that significantly contribute 
to malignant phenotypes are called driver oncogenes, such as 
activated forms of epidermal growth factor receptor (EGFR), 
HER2/Neu and BRAF (7-10). There are multiple drugs that 
successfully target these driver oncogenes. For example, 
EGFR‑targeted drugs, such as gefitinib and erlotinib, exhibit 
anti-cancer activity against lung cancer with activating muta-
tions in EGFR (11,12).

However, it is difficult to pharmacologically inhibit 
oncogenic signaling of some driver oncogenes. For example, 
the development of mutant KRAS-targeted drugs has proven 
problematic over the previous three decades (13). Although 
recently, treatment with AMG510, a novel inhibitor against 
KRAS G12C, resulted in a promising response rate in patients 
with lung cancer harboring this specific type of mutation, 
development of drugs targeting other types of KRAS mutations 
have not yet been successful (14-16). In addition, mutations in 
driver oncogenes in a number of types of human cancer have 
not been identified (17). In such cases, cancer results from 
non-oncogenes conferring various malignant phenotypes, 
occasionally in a context-dependent manner (18) and these 
genes may serve as novel therapeutic targets. For example, a 
study demonstrated that cancer cells depend on non-oncogene 
Heat shock factor 1 (HSF1), which is the master regulator of 
the heat shock response in eukaryotes, for their proliferation 
and survival than their non-transformed counterparts (19). To 
identify drug target genes for cancer cells harboring oncogenes 
which are difficult to pharmacologically inhibit, or do not have 
known oncogenes, it is vital to perform an unbiased, large-scale 
functional screening (20). Two important gene modulating 
technologies, RNA interference (RNAi) and clustered 
regularly interspaced short palindromic repeats-associated 
protein 9 (CRISPR-Cas9) have emerged as powerful tools for 
evaluating gene function (21). In addition, technologies in next 
generation sequencing have improved. The combination of 
these advanced technologies has allowed investigation of gene 
function at genome-wide levels in a high-throughput manner.

Thus, functional screening based on cancer-specific 
characteristics has been extensively conducted. In the 
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majority of cases, functional screening is a four-step process: 
i) Inducing loss-of-function via RNA interference (RNAi) or 
CRISPR-Cas9 in cells; ii) evaluating the effects of the loss 
of the selected gene on phenotypes critical to cancer cells; 
iii) quantifying short hairpin RNAs (shRNAs) or single-guide 
RNAs (sgRNAs) via next-generation sequencing or micro-
array hybridization; and iv) data analysis (Fig. 1). Malignant 
phenotypes used for functional screening include uncontrolled 
promoted proliferation, drug resistance, invasiveness and the 
ability to bypass oncogene-induced senescence (OIS). In the 
present study, the recent advances in functional screening to 
identify cancer drug target genes have been summarized, and 
current issues and future perspectives have been discussed.

2. Types of functional screening according to phenotypes 
used

Dropout viability screening. Using genome-wide method-
ologies to identify target genes that substantially contribute 
to the uncontrolled proliferation of cancer cells is a straight-
forward approach to discovering cancer drug target genes for 
new drug development. This type of assay is called dropout 
viability screening. Two pioneering studies have conducted 
genome-wide dropout shRNA screening in various human 
cancer cell lines and identified genes essential for cancer 
cells (22,23). The Project Achilles study (launched in 2011) 
systemically identified genes essential for proliferation 
and/or survival in particular cancer cell types (genetic vulner-
abilities) by performing an integrative analysis involving two 
steps: i) Conducting a pooled shRNA screen that targeted 
11,194 genes in 102 (updated to 216 in the latest study) human 
cancer cell lines, including ovarian, colon, pancreatic, esopha-
geal and non-small cell lung cancers; and ii) combining these 
results with information on alterations of cancer genome 
through using publicly available databases (24,25). By 
analyzing such diverse types of cancer, the study identified a 
number of lineage‑specific essential genes. Another similar 
study used a pooled shRNA library comprised of 72 breast, 
pancreatic and ovarian cancer cell lines (26). In addition, after 
a CRISPR-Cas9-mediated gene-knockout technology became 
available in the experimental cell biology field (27), two studies 
demonstrated the feasibility of using lentiviral CRISPR-Cas9 
libraries for functional screening, with certain advantages over 
RNAi libraries in efficacy and reliability (28,29). Via negative 
screening with RNAi or CRISPR-Cas9, these studies identi-
fied genes essential for proliferation in cancer cells, of which 
certain genes were lineage‑specific.

One critical issue resulting from the nature of dropout 
viability screening is that such identified essential genes 
for cancer cells may also be essential for normal cells; for 
example, housekeeping genes involved in the ribosomal, 
proteasomal and spliceosomal pathways (26). Nevertheless, 
such essential genes may serve as promising therapeutic 
targets, as cancer cells highly depend on them for prolifera-
tion and/or survival compared with normal cells. One way to 
identify general essential genes that are likely to serve as 
cancer drug targets is to integrate results of genomic library 
screening with gene expression data and copy number changes 
between cancer and normal cells (20). This helps identify the 
genes that are associated with proliferation and/or survival 

in cancer cells (24). Using this approach, two housekeeping 
genes have been identified, proteasome 20S subunit alpha 6 
(PSMA6; a proteasomal catalytic subunit) and eukaryotic 
translation initiation factor 2 subunit beta (eIF2β; a subunit 
of translation-initiation factor EIF2), as promising therapeutic 
targets for lung cancer (30,31).

Another way to identify essential genes that contribute 
to oncogenic phenotypes is to reveal the genes which cancer 
cells depend on in specific contexts; for example, with certain 
types of driver oncogenes (32). This situation is referred to as 
synthetic lethality and is described later. One study demon-
strated that an essential gene BUD31, a component of the 
spliceosome is a potential therapeutic target specifically in 
MYC-driven cancers (33).

Synthetic lethality. A synthetic lethality refers to a phenom-
enon in which inhibition of one of two genes has no significant 
effects on cell viability but perturbation of both genes results 
in cell death (32). Synthetic lethality has attracted interest for 
the following reasons: i) If the synthetic lethality specifically 
occurs in cancer cells, treatments targeting genes involved 
in the synthetic lethality have a high therapeutic index; and 
ii) if the synthetic lethality involves driver oncogenes highly 
refractory to currently available treatment strategies, synthetic 
lethal genes may serve as good targets in types of cancer 
influenced by these oncogenes. A good example of such a gene 
is oncogenic KRAS, the most frequently mutated oncogene, 
although KRAS-targeted therapy is not used clinically (14). 
Using RNAi library screening, several studies have identi-
fied synthetic lethal genes in KRAS-mutated cancers, such 
as STK33, TBK1, PLK1, SNAIL2, CDK1 and GATA2 (34-39). 
However, these identified genes rarely overlapped between 
studies (40) and the identification of a synthetic lethal 
effect caused by STK33 has not been reproduced (41,42). A 
recently conducted large-scale synthetic lethal RNAi screen, 
Project DRIVE, also failed to confirm significant synthetic 
interactions of mutant KRAS with these identified synthetic 
lethal genes (20). There are several possible reasons for such 
inconsistent results, including differences in methods of gene 
silencing (for example RNAi methodologies such as transient 
transfection of siRNAs or shRNA, and difference in types of 
library), and differences in types of cells used (for example 
variable dependencies on KRAS signaling). In particular, 
the latter seems to significantly influence screening results. 
Most studies of KRAS synthetic screens used cancer cell 
lines with or without mutant KRAS and/or isogenic cancer 
cell lines transfected with or without mutant KRAS (34-39). 
Cancer cell lines are highly variable in genetic changes (even 
those with the same driver oncogenes), which may result in 
inconsistent screening results (17,43).

Project DRIVE comprehensively assessed dependen-
cies and synthetic lethal relationships using 398 cancer cell 
lines from different organs (20). To minimize false‑positive 
rates, an average of 20 shRNAs per gene were used and, 
although synthetic lethal genes could not be confirmed 
for mutant KRAS, a number of novel findings regarding 
synthetic lethality which are translatable to developing novel 
therapeutics were identified. For example, reduced expression 
levels of an anti-apoptotic protein BCL2L1, and increased 
expression levels of pro-apoptotic protein BIM, were the 
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strongest predictors of the growth-inhibiting effects following 
knockdown of anti-apoptotic protein myeloid cell leukemia 
sequence 1 (MCL1).

Recently, via genome-wide CRISPR-Cas9 screening, two 
independent groups identified WRN helicase as a synthetic 
lethal target in microsatellite unstable cancer types (44,45). 
Moreover, a small molecule inhibitor of WRN helicase 
(NSC617145) has been revealed to exhibit cytotoxic effects in 
cells derived from patients with Fanconi anemia, in a synthetic 
lethal manner (46).

Dropout viability screening under drug treatment. Drug 
resistance is a critical problem in chemotherapy (47). Cancer 
can be resistant to a number of types of drugs, such as cyto-
toxic, molecular-targeted drugs and immune checkpoint 
inhibitors (47-49). Therefore, researchers focus extensively on 
finding therapeutic approaches to overcoming the development 
of drug resistance.

Dropout viability screening in the presence of anti-cancer 
drugs is a powerful approach to identifying genes responsible 
for drug resistance and several potentially chemo‑sensitizing 
targets have been reported (Table I). Using a genome-wide an 
arrayed RNAi library, Whitehurst et al (50) identified several 

genes influencing resistance to paclitaxel in a lung cancer 
cell line. Lin et al (51) identified MCL1 as a potential drug 
target gene that sensitizes a small cell lung cancer cell line 
to ABT-737, an inhibitor of the antiapoptotic molecules Bcl-2, 
Bcl-X(L) and Bcl-w. After the development of pooled RNAi 
library technology, numerous investigators began using such 
libraries. For example, Prahallad et al (52) revealed genes 
responsible for resistance to a BRAF inhibitor PLX4032 
(vemurafenib) in types of cancer harboring BRAF V600E 
mutations. It was revealed that EGFR activation, which is 
rapidly induced by vemurafenib treatment, induces resis-
tance to vemurafenib treatment, suggesting that combination 
therapy of vemurafenib and an EGFR inhibitor may be 
beneficial. Previously, studies using CRISPR‑Cas9 libraries 
were published. Most of these studies used the same type of 
genome-wide library, GeCKO CRISPR Library version 1 or 2, 
comprising of >120,000 sgRNAs targeting nearly the entire 
genome (53-56). For example, Sustic et al identified the endo-
plasmic reticulum to nucleus signaling 1 (ERN1)‑JNK‑JUN 
pathway as a potential target for improving the anti-cancer 
effects of MET inhibitors in KRAS-mutated colon cancer (56). 
KRAS-targeted therapy has not been successfully developed 
previously and, therefore, these findings are promising.

Figure 1. Flow diagram of the steps of phenotypic library screening with a genomic library for identifying cancer drug target genes. (A) Step 1: Loss of func-
tion, which is obtained by RNAi-mediated gene knockdown or Cas9-mediated gene knockout in cells. (B) Step 2: Phenotypic screen. Cells are subjected to 
various assays with different selection pressures including: 1, viability; 2, synthetic lethal; 3, viability under drug; 4, invasion/migration; 5, anoikis-resistance; 
6, resistance to oncogene-induced senescence; 7, cancer stemness; and 8, tumor growth in vivo. (C) Step 3: Quantifying shRNA or sgRNA. DNA is extracted 
from harvested cells. Abundance of each shRNA or sgRNA is quantified using next‑generation sequencing. (D) Step 4: Data analysis. Data are analyzed to 
generate ranked lists of promising cancer drug target genes. shRNA, short hairpin RNA; sgRNA, single-guide RNA.
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Immune therapy using immune checkpoint inhibitors 
provides significant clinical benefit to patients with various 
types of cancer, including melanoma, lymphoma, and 
lung cancer (57). However, intrinsic or acquired resistance 
inevitably occurs, limiting the clinical benefits (49). Using 
genome-wide CRISPR-Cas9 or siRNA libraries, two studies 
identified APLNR (encoding the apelin receptor) and C-C 
motif chemokine receptor 9 as genes that may cause resistance 
to immune checkpoint inhibitors (58,59).

Invasion and migration. Metastasis is significantly associated 
with a poor patient prognosis, and patients with metastatic 
cancer exhibit poor survival outcomes (60). Metastasis 
comprises several sequential steps: i) Migration from a primary 
site; ii) intravasation; iii) passage by blood flow; iv) extravasa-
tion; v) and final settlement at distant sites. To complete this 
process, cancer cells must acquire the ability to invade and 
migrate and cancer cells exhibit these oncogenic properties. 
Previous studies demonstrated that epithelial-mesenchymal 
transition (EMT) significantly contributes to metastasis in 
cancer cells (61,62). EMT, and its reverse phenomenon MET, 
were initially identified during embryonic development, 
in which embryonic cells transform into terminally differ-
entiated, specialized cells via several cycles of EMT and 
MET (61). A number of studies suggest a central role of EMT 
in metastasis (63‑65). Previous studies have identified target 
genes for inhibiting migration and/or invasion ability of cancer 
cells through library screening. Pavan et al (66) developed a 
system combining RNAi library screening with a micros-
copy-based high-throughput quantitative analysis to identify 
a signaling pathway contributing to EMT in breast cancer. 
The group identified 59 genes whose inhibition suppressed 
transforming growth factor β‑induced EMT in immortalized 
epithelial normal murine mammary gland cells. In addition, 
Pavan et al (66) focused on MEK5 and ERK5 belonging to 
the same signaling pathway and demonstrated the potential of 
targeting MEK5 and ERK5 as an anti-metastatic mechanism. 
Another study used migration ability as a phenotype for func-
tional screening, identifying genes contributing to migration 
in glioblastoma, a highly invasive cancer (67). The authors 
performed a genome-wide RNAi screening in glioblastoma 
cells with a functional selection of cells able to migrate through 
Matrigel, identifying two genes [KH-type splicing regulatory 
protein (KHSRP) and host cell factor C1 (HCFC1)] as targets 
of invasion-suppressing therapeutics for glioblastoma.

Resistance to anoikis: Anchorage‑independent growth. Upon 
detachment from the extracellular matrix or neighboring 
cells, normal epithelial cells undergo a type of apoptosis 
called anoikis (68). Anoikis prevents normal epithelial cells 
from colonizing at different organ sites, thereby maintaining 
the integrity of the body (68). Most cancer cells acquire 
resistance to anoikis, which is called anchorage-independent 
growth (AIG). The ability of AIG allows cancer cells to 
metastasize to different organs and is considered a hallmark 
of cancer cells (64). Several different molecular mechanisms 
underlying AIG have been identified, including the induc-
tion of intrinsic and extrinsic anti-apoptotic signaling, often 
triggered by changes in the expression patterns of integrin 
family members (68,69). In addition, previous studies have 
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demonstrated the role of EMT in AIG (68,70); however, 
the underlying molecular mechanisms of AIG are yet to be 
elucidated.

Eskiocak et al (71) used the immortalized untransformed 
colon epithelial cell line HCEC as a model system to evaluate 
the effects of shRNA-mediated knockdown of selected genes 
on AIG. The effects of the knockdown of 151 candidate cancer 
genes (CAN‑genes), which have been identified as genes most 
likely to be drivers in breast and colorectal cancers, via a 
comprehensive statistical and bioinformatic analysis (72), 
were evaluated and revealed that CAN-genes are enriched 
in AIG suppressors. In addition, Simpson et al conducted a 
genome-wide shRNA screening to identify anoikis-resistant 
genes by culturing immortalized prostate and nasopharyngeal 
untransformed cell lines in a suspension condition, which 
identified α/β hydrolase domain containing 4 (ABHD4) as a 
promising target for inducing anoikis (73).

Resistance to oncogene‑induced senescence (OIS). Activation 
of certain types of oncogenes, such as mutant KRAS and 
BRAF, causes normal cells to undergo senescence (74,75). 
This type of senescence is stress-induced and is termed 
OIS (74,75). OIS functions as a barrier to carcinogenesis 
initiated by normal cells, whereas senescence-associated 
secretory phenotype (SASP) is a carcinogenesis-promoting 
aspect of OIS (76). OIS was discovered by Serrano et al (77), 
who demonstrated that oncogenic ras induces premature 
senescence in experimental cell cultures. Subsequently, the 
occurrence of OIS in human disease was demonstrated in a 
developmental process of melanoma. Two studies revealed 
that OIS prevents benign melanocytic nevi, presumed to be 
the origin of melanoma, from transforming to overt mela-
noma (78,79). These studies demonstrated that proliferation of 
nevi cells is suppressed at very low levels despite harboring 
the highly oncogenic mutation BRAFV600. Studies have also 
revealed that BRAFV600-induced OIS is associated with 
p16INK4A upregulation (78,79); however, other unidentified 
changes may also be involved because of the complex mecha-
nisms governing senescence (80). Therefore, several studies 
have attempted to the identify genes that may facilitate cells 
to bypass senescence induced by oncogenic RAS or BRAF. 
Vicent et al (81) performed RNAi screening to identify 
genes that facilitate bypassing ras-induced OIS in mouse 
models, reporting that Wt1 transcription factor (Wt1) is an 
OIS-bypassing gene using both in vitro and in vivo models. 
Vicent et al (81) also demonstrated WT1 to be an independent 
prognostic factor in patients with KRAS-mutated lung cancer. 
Another study performed a near-genome-wide screening 
(~15,000 genes) to identify regulators of BRAFV600-induced 
senescence and identified RASSF as an OIS suppressor (82). 
Some screenings searching for OIS-bypassing genes used 
primary normal culture, and immortalized untransformed 
normal cell lines as model systems (82,83) because these cells 
are more prone to exhibit OIS, primarily due to their intact 
senescent machinery. However, the ability of cancer cells to 
undergo OIS may be impaired because of alterations in genes 
involved in senescence (74). Therefore, the applicability of 
the identified OIS‑bypassing genes needs to be validated in 
multiple human cancer cell lines before exploring their useful-
ness as drug targets.

Cancer stemness. The cancer stem cell (CSC) theory 
hypothesizes that CSCs have the ability to self‑renew and 
to differentiate into phenotypically diverse cancer cells (84). 
Although the CSC concept has not been demonstrated, accu-
mulating evidence suggests that a number of types of cancer 
harbor CSCs (84,85). Notably, CSCs are hypothesized to be 
resistant to chemotherapy and irradiation (84). Therefore, 
the development of CSC-targeted therapeutics is attracting 
attention because of its potential to eradicate cancer cells. 
A functional library screening based on the sphere-forming 
ability of breast cancer cell lines identified ATG4 as a 
promotor of the breast CSC-like phenotype (86). However, 
the usefulness of a sphere-formation assay for evaluating 
the self-renewal capacity is based on the assumption that 
the assay developed for normal neural stem cells can be 
accurately used for CSCs. Therefore, validation of genes 
identified as cancer stemness genes by other assays, such as 
a transplantation assays and lineage-tracing approaches, are 
required.

Genomic Instability. A phenotype of genomic instability 
facilitates diverse oncogenic properties because it causes 
numerous mutations resulting from the activation of onco-
genic genes or inactivation of tumor suppressive genes (87). 
A previous study performed a genome-wide RNAi screen to 
identified the pathways and specific genes mediating genomic 
stability (88). A screen using elevation of γH2A.X variant 
histone (H2AX; a marker of double strand DNA damage) as an 
indicator for detecting DNA damage was conducted in HeLa 
cancer cells, identifying genes involved in DNA replication, 
checkpoint activation and DNA repair. The identified genes 
included TIMELESS and TIPIN encoding proteins that form 
a complex, leading to activation of the replication checkpoint. 
The identified genes may serve as promising drug targets to 
restore genomic stability in cancer cells (88).

Tumor growth in vivo. Tumor growth in vivo represents a 
more accurate screening method because it accounts for 
several aspects of real tumor growth, including 3-D condition, 
requirements for angiogenesis and the microenvironment (89).

One critical issue of in vivo pooled library screening 
is the difficulty in ensuring appropriate representation of 
the entire library in the initial population inoculated into 
model animals (89). There is a limitation to the maximum 
number of cells that can be inoculated, which limits the 
size and complexity of the library. Notably, the minimum 
cell numbers required for each shRNA differ significantly, 
depending on whether tumor suppressor genes or oncogenic 
genes are targeted for screening (89). In the case of oncogenic 
gene-targeted screening, low library representation tends to 
result in false-positive results, so instead of using genome-wide 
libraries, researchers used libraries focused on specific types 
of genes in order to identify oncogenic genes. For example, 
Singh et al (90) used an shRNA library of 150 genes associated 
with brain metastasis to conduct a library screening consisting 
of both in vivo (intracranial injection) and in vitro (tumor 
sphere-forming assay) assays to identify metastasis-promoting 
genes. The group successfully identified SPARC (osteonectin), 
cwcv and kazal like domains proteoglycan 1 (SPOCK1) 
and twist family bHLH transcription factor 2 (TWIST2) as 
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regulators of brain metastasis-initiating cells. In addition, 
most studies using in vivo genome-wide or near-genome-wide 
RNAi models discovered tumor-suppressive genes (91,92).

3. Conclusions and future perspectives

Shortly after RNAi technology for gene knockdown was 
developed in the laboratory, attempts to conduct large-scale 
functional screenings with RNAi were initiated (93). In addi-
tion, a gene knockout technique, CRISPR-Cas9 was also 
introduced for laboratory use (94). For >10 years, researchers 
have extensively conducted functional genomic screening to 
identify better targets and to develop new therapeutics for 
cancer. The present paper reviewed and summarized knowl-
edge obtained by these studies, which has the potential to 
be used for drug development. Nevertheless, breakthroughs 
that can be immediately translated into clinical use are yet 
to be made. In particular, despite many reported studies, 
KRAS synthetic genes that have been reproducibly confirmed 
have not been successfully identified; therefore, development 
of KRAS-synthetic lethal drugs has not been successful. 
Project DRIVE suggested that no single synthetic lethal 
genes for KRAS exist. However, there may be certain strate-
gies potentially enabling the identification of true KRAS 
synthetic genes; for example, one approach may be using 
more realistic modeling systems to evaluate malignant pheno-
types. Such models may include a 3-D culture of cell lines 
and patient-derived xenografts (95,96), although such models 
are usually difficult to manage for large‑scale screening. Due 
to the large heterogeneity in coexisting genomic alterations 
among KRAS-mutated tumors, studies using cancer cells may 
suffer from the presence of high background of noise during 
screening. Therefore, focus is needed on cancer cells which 
have higher similarities in harbored genetic alterations in addi-
tion to mutant KRAS.

An improvement in consistency of identified genes from 
a genome-wide screen has been revealed in CRISPR-Cas9 
knockout compared with shRNA techniques (28). However, 
pharmacological inhibition of gene function with compounds 
is usually incomplete; thus, target genes identified through 
partial knockdown with RNAi represent improved targets. 
Therefore, results from CRISPR-Cas9 and RNAi screens need 
to be regarded as complementary.

In conclusion, advances in the technology of gene silencing 
and next generation sequencing have enabled researchers to 
conduct large-scale high-throughput phenotypic screenings, 
resulting in the identification of numerous potential novel drug 
targets for cancer. However, there are several issues, such as 
low reproducibility in the identified genes (40). Thus, substan-
tial effort is required to adequately address these problems in 
order to identify novel cancer drug target genes.
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