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A general theoretical approach to the description of epitaxial layers with

essentially different cell parameters and in-plane relaxation anisotropy has been

developed. A covariant description of relaxation in such structures has been

introduced. An iteration method for evaluation of these parameters on the basis

of the diffraction data set has been worked out together with error analysis and

reliability checking. The validity of the presented theoretical approaches has

been proved with a-ZnO on r-sapphire samples grown in the temperature range

from 573 K up to 1073 K. A covariant description of relaxation anisotropy for

these samples has been estimated with data measured for different directions of

the diffraction plane relative to the sample surface.

1. Introduction
High-resolution X-ray diffraction (HRXRD) is one of the

most effective tools for investigation and nondestructive

control of epitaxial crystalline thin-film layers (Pietsch et al.,

2004). An important part of HRXRD analysis is defined by

construction of the appropriate sample model and connection

of its parameters with diffraction pattern features. It is well

known that the interaction between atoms in adjacent thin

films leads to deformation of the crystal unit cells that depends

on the layer thickness. In the case of layers having a cubic

crystallographic system and being isotropic, in-plane char-

acterization of this deformation is a well established proce-

dure with the relaxation R as the only parameter connected

with in-plane strain of the unit cell (mismatch). However,

nowadays epitaxial layers with hexagonal materials in

different orientations are widely used in industrial light-

emitting diode production (Paskova, 2008). In this investiga-

tion, a complicated epitaxial relation in combination with an

in-plane anisotropy appear (Laskar et al., 2011). Consequently

more parameters should be used for the accurate character-

ization of unit-cell deformations. In the present paper, a set of

parameters allowing one to describe layers with anisotropic

epitaxial relations is introduced and a general procedure for

evaluation of these parameters is developed, based on the

X-ray diffraction profiles or reciprocal space maps (RSM). We

consider this a covariant description because it can be used in

the same form for arbitrary symmetry and orientation of the

crystal unit cells in each layer. A series of papers (Yang et al.,

1994; Caro & Tapfer, 1995, and references therein; Caro et al.,

1996; Bottomley et al., 2001; Brandt et al., 2002) have been

devoted to theoretical analysis of similar problems. However,

in these works the fully pseudomorphic layers were consid-

ered and relaxation anisotropy was not taken into account.

We are proposing a generalized theoretical approach to

describe the relationships between multiple crystalline layers

that may display relative mismatches and in-plane anisotropy.

The validity of XRD data evaluation was verified on the basis

of an iteration scheme for error analysis and reliability

checking. Diffraction data were collected in three different

crystallographic directions from a-ZnO on r-sapphire samples

grown at different temperatures from 573 to 1073 K. The

analysis was performed according to the approach described

above.

The paper is organized as follows. In Theoretical approach,

we show how the conventional parameters used for the

description of the epitaxial layer state for cubic in-plane

isotropic layers can be generalized for in-plane anisotropic

layers with arbitrary epitaxial relations. In Fit algorithm and

error analysis, we describe a way to get values and errors of

sample parameters from Bragg peak positions obtained from

the set of diffraction profiles/RSM to describe layers with

arbitrary epitaxial relations. Application to a-ZnO films on

r-sapphire substrates, grown at different temperatures from

573 to 1073 K, is presented in Experimental: a-ZnO on

r-sapphire.

2. Theoretical approach

Here we provide a reminder of the principal definitions of the

conventional approach for the cubic crystallographic system

(Fig. 1a) and isotropic in-plane relaxation. The typical crys-

tallographic representation of the interface between two

epitaxial layers is displayed in Fig. 1(b). Using the lattice

constant values as a basis for further definitions, the lattice

constant mismatch F of the relaxed top layer or initial

mismatch is defined as follows:
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aL;R
¼ ð1þ FÞaS; ð1Þ

where aL;R is the lattice constant for the relaxed layer. In this

paper, we will consider only the strain of the pseudomorphic

layer so the structure of the relaxed layer and the parameter F

are supposed as known values. It is also assumed that the other

in-plane lattice constant bL;R is defined utilizing the same

equation (isotropic relaxation).

The difference between the relaxed and the actual lattice

constants is characterized by the relaxation degree R,

R ¼ ðaL � aSÞ=ðaL;R � aSÞ: ð2Þ

This is closely connected with the actual mismatch of the top

layer, which is usually defined with the diffraction data,

� ¼ ðaL
� aS
Þ=aS; ð3Þ

and its strain

� ¼ ðaL � aL;RÞ=aL;R ¼
�
ð1þ RFÞ=ð1þ FÞ

�
� 1: ð4Þ

The out-of-plane lattice constant c can be found on the basis of

Hook’s law, which is expressed as the Poisson ratio for the

considered isotropic case:

ðcL
� cL;R

Þ=cL;R
¼ �

�
2�=ð1� �Þ

��
ðaL
� aL;R

Þ=aL;R
�
: ð5Þ

In order to generalize equations (1)–(5) for anisotropic

relaxation (two-dimensional) we should introduce a ‘sample’

orthogonal coordinate system S: S1, S2, S3 with S3 parallel to

the sample normal and S1, S2 describing the interface plane.

There is some degree of freedom for selection of S1,2 that will

be used below.

Let us assume that the pseudomorphic state interface

between layer and substrate has an in-plane translation

symmetry, forming a coincidence-site lattice (CSL) (Zur &

McGill, 1984), which is in general different from those of layer

and substrate. The actual in-plane translation symmetry of the

CSL can be parameterized by defining three nodes in the layer

and in the substrate which coincide. We will call them anchors.

The anchors are given in Miller indices in crystallographic

reference systems for the layer CL and for the substrate CS;

hence they enable the description of the mutual arrangement

of CL, CS and S. One of the anchors is by definition [000] in

both CL and CS. The other two anchors are in general given by

the sum of CSL translation vectors with integer factors.

For example, the trivial case of relaxed Ge on Si in terms of

anchors can be described in the following way:

AR
L;1 ¼ ½110� in CL; AR

S;1 ¼ ½110� in CS;

AR
L;2 ¼ ½

�1110� in CL; AR
S;2 ¼ ½

�1110� in CS;
ð6aÞ

or by

AR
L;1 ¼ ½100� in CL; AR

S;1 ¼ ½100� in CS;

AR
L;2 ¼ ½010� in CL; AR

S;2 ¼ ½010� in CS;
ð6bÞ

both leading to the same CSL. Compared with the epitaxial

relations, anchors define not only the directions of CSL

translation vectors but their magnitude as well.

In order to proceed with the generalization of equations

(1)–(5) let us introduce the following quantities:

a
LR;n
i ¼ AR

t;n � Si ð7Þ

for the relaxed top layer anchor projections on the sample

axis,

aL;ni ¼ At;n � Si ð8Þ

for the actual top layer anchor projections on the sample axis,

and

aS;ni ¼ Ab;n � Si ð9Þ

for the bottom layer (substrate) anchor projections on the

sample axis; the anchor projections on S3 are zero by defini-

tion.

Then the mismatch between the relaxed layer and the

substrate is described by the known 2 � 2 matrix Fij [compare

with equation (1)]:

a
LR;n
i ¼ ð�ij þ FijÞa

S;n
j : ð10Þ
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Figure 1
Models of partly relaxed epitaxial Ge(001) layers on Si(001) substrates.
(a) Crystal lattices of a relaxed Ge(001) layer on an Si(001) substrate. (b)
Conventional relations of a Ge(001) epitaxial layer on Si(001). aS and cS

are the lattice constants of the bottom Si(001) layer. aL;R and cL;R are the
relaxed lattice constants of the top Ge(001) layer. aL and cL are the actual
or strained lattice constants of the top Ge(001) layer. (c) Coincidence-site
lattices of a Ge(001) epitaxial layer on Si(001). Axes X and Y correspond
to sample basis axes S1 and S2. Relaxation vectors R1 and R2 have
directions U1 and U2 of the sample principal basis and length values
corresponding to relaxation degree. Gray circles mark out coinciding
pairs of lattice nodes – anchors A1{Ge[110]; Si[110]}, A2{Ge[110]; Si[110]}.
(d) Demonstration of anisotropic relaxation of an epitaxial layer.
Relaxation vectors R1 and R2 show the directions of relaxation and
strain degree.



The matrix Fij describes the strain only; the net rotation is

supposed to be excluded from the transformation (10),

therefore Fij is a symmetrical matrix. The vectors S1, S2 can be

chosen as the principal axes U1, U2 of Fij. In this in-plane

coordinate system, Fij has a diagonal shape and can be

described by two eigenvalues F1, F2:

F ¼ F1U1 �U1 þ F2U2 �U2: ð11Þ

The actual mismatch matrix �ij connects the anchor projec-

tions in the following way [compare with equation (3)]:

aL;ni ¼ ð�ij þ �ijÞa
S;n
j : ð12Þ

The relaxation matrix Rik connects the actual mismatch �ij and

the initial mismatch Fkj as follows:

�ij ¼ RikFkj: ð13Þ

In this coordinate system U1, U2 the relaxation tensor will

follow the strain tensor and have a diagonal form. It is

described by two values, R1;R2, that can be considered as the

covariant relaxation parameters. Consequently the actual

mismatch tensor can be expressed in the following way:

� ¼ R1F1U1 �U2 þ R2F2U2 �U2: ð14Þ

The in-plane strain tensor �ij of the top layer connects the

projections of the actual top layer and the relaxed top layer:

aL;ni ¼ ð�ij þ �ijÞa
LR;n
j : ð15Þ

The strain can also be expressed through the relaxation and

the initial mismatch [compare with equation (4)]:

�i;j ¼ ð�i;l þ Ri;kFk;lÞð�l;j þ Fl;jÞ
�1
� �i;j: ð16Þ

In order to reconstruct a complete deformation status of the

crystallographic unit cell, all the components of the three-

dimensional strain tensor have to be calculated. Hook’s law,

linking the strains and the stresses by the stiffness tensor, is

used:

�ij ¼ Cijkl"kl: ð17Þ

Taking into account that the in-plane strain tensor compo-

nents �i;j are known, the strain and the stress tensors are

symmetric, and the vertical components of the stress tensor

equal zero because only in-plane forces �13 = �23 = �33 = 0

exist, the values "13; "23; "33; �11; �12; �22 can be found from

equation (17). As the result, the complete strain tensor is

obtained:

" ¼
�11 �12 "13

�21 �22 "23

"31 "32 "33

0
@

1
A; ð18Þ

where the components �ij are defined by relaxation parameters

(16) and "ij are calculated from equation (2).

Knowing the three-dimensional strain, it is straightforward

to find the parameters of the strained crystallographic cell.

The connection of the crystallographic cell basis e1, e2, e3 with

the cell parameters is

a; b; c; �; �; 	
� �

¼ je1j; je2j; je3j; ff e2; e3ð Þ; ff e1; e3ð Þ; ff e1; e2ð Þ
� �

:

ð19Þ

The decomposition of the relaxed crystallographic cell basis

vectors in the principal axes basis of the initial mismatch is

Eij ¼ ei � Sj: ð20Þ

Hence, the decomposition of the strained crystallographic cell

basis vectors in the principal axes basis of the initial mismatch

is given by

E0ij ¼ Eilð�lj þ �ljÞ ¼ e0i � Sj: ð21Þ

Finally, the parameters of the strained crystallographic cell are

je0ij ¼ ðE
0
ikE0ikÞ

1=2; ð22Þ

ff e0i; e0j
� �

¼ arccos
E0ikE0jk

je0ijje
0
jj

 !
; ð23Þ

where in equation (22) summing over the index i is not

performed.

The proposed method is valid for every crystallographic

system. It can be shown that the expressions for strain and

unit-cell deformation, as obtained from Romanov et al. (2006)

and Laskar et al. (2011) for specific cell configurations, can be

derived from the equations above.

3. Fit algorithm and error analysis

Once the parameters from equation (20) are known, the direct

diffraction problem can be solved, i.e. the positions of Bragg

peaks in diffraction profiles and/or RSM can be calculated for

an arbitrary sample. However, in most cases the solution of the

inverse problem, that is the evaluation of the sample para-

meters (like solid solution concentration, relaxations R1;R2

etc.) from a series of Bragg peak positions, is required. In the

one-dimensional case this problem can be solved analytically.

In the considered two-dimensional case, a quite large system

of linear equations has to be solved. Following from equations

(7)–(23) this should be carried out for each set of available

diffraction data, e.g. symmetric and asymmetric profiles, or

RSM, etc. Direct solution of these equations is not effective

because the experimental data could be limited or, in the

opposite case, the system of equations could be overcomplete.

Therefore we have evaluated these parameters by fitting all

experimental Bragg peak positions that could be extracted

from the diffraction profiles and RSM in a concrete experi-

ment. The proximity of the measured Bragg peak position to

the theoretical one has been used as a partial cost function f�
which should be equal to zero for exact values of the sample

parameters.

The actual form of the cost function f� depends on the

experimental setup. If an open detector is used, the Bragg

peak position in a diffraction profile corresponds to the

direction of the incoming wavevector kin which satisfies the

Bragg condition H(S) = kout � kin, while the direction of the

outgoing wavevector kout cannot be obtained owing to the

X-ray diffraction and imaging
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large detector aperture. In this case, we have used the

following cost function:

f� ¼
HðSÞ þ kin

� �2

k2
0

� 1

�����
�����: ð24Þ

Here H(S) is the reciprocal lattice vector calculated on the

basis of sample parameters of interest from equations (7)–

(23).

In the case of RSM, both kin and kout can be found from the

scattering experiment and the cost function is defined as

f� ¼
�
Q�HðSÞ

�2
=k2

0; ð25Þ

where Q = kout � kin is the transferred wavevector.

The cost function from a single peak provides only some

link between parameters, e.g. the peak position in a symmetric

scan can give only the connection between relaxation and

concentration. To determine each of them an additional

asymmetric scan is needed. For an arbitrary set of diffraction

data we have built up the complete cost function f ¼
P

f�.

Then the parameters were evaluated by means of minimiza-

tion of this cost function.

In order to find out whether the parameters of interest can

be obtained from a given set of diffraction data, a procedure

for evaluation of their errors has been developed. Generally,

some information for the estimation of the errors can be

gained from the analysis of the optimization algorithm

convergence. In the case of fitting overcomplete sets of

measured data this kind of error estimation can be sufficiently

accurate, because of the random character of the experimental

errors of different points in the considered data set (Giacov-

azzo et al., 2002). However, when the number of the char-

acteristic parameters of the measured data has the same order

as the number of optimized sample parameters, the error

estimation on the basis of the cost function can be incorrect.

For example, when the numbers of the data and sample

parameters coincide, the optimization can be made perfectly

with the achieved value of the cost function being exactly

equal to zero. However, the obtained results may still contain

errors; they are just undetected by this method. This situation,

commonly encountered in the problem of cell parameter

determination from Bragg peak positions in set of diffraction

profiles, is analyzed below.

Consider the set of normalized sample parameters fxjg,

0 	 xj 	 1 (like concentration, relaxation etc.), which are

determined on the basis of fitting the set of parameters fy�g of

the measured data (like Bragg peak positions) that are defined

with some experimental errors �y� assumed to be indepen-

dent. The correct values fxjg of the sample parameters

correspond to the accurate values y�, containing no experi-

mental errors, and are determined by minimizing the cost

function f ðxj; y�Þ:

@

@xi

f ðxj; y�Þ ¼ 0: ð26Þ

The values fxj þ �xjg determined from the real (inaccurate)

data are connected in the same way to the measured values

fy� þ �y�g:

@

@xi

f ðxj þ �xj; y� þ �y�Þ
� �

¼ 0: ð27Þ

Expanding equation (27) to the first order of the errors and

taking into account equation (26), we obtain the following

equation for the inaccuracies �xj:P
j

Hij�xj þ
P
�

Yi��y� ¼ 0; ð28Þ

where

Hij ¼ @
2f=@xi@xj ð29Þ

is the cost function Hessian for the sample parameters and

Yi� ¼ @
2f=@xi@y� ð30Þ

is the matrix of the mixed derivatives.

If the Hessian Hij is a nonsingular matrix, equation (28)

provides all the necessary information for estimation of the

errors f�xjg:

�xj ¼
P
�

Aj��y�; where Aj� ¼
P

i

H�1
� �

ji
Yi�: ð31Þ

The deviations �y� of the measured data from the exact values

are unknown (otherwise the exact value could be found) and

random in nature. From the experimental conditions and the

methods of data processing, only the variances of the quan-

tities �y� ¼ h�y�i
1=2 can be estimated. Taking into account the

independence of the random variables, the following expres-

sion for the mean squared errors of the estimated sample

parameters is found:

�xj¼
:
h�xji

1=2
¼

hP
�

ðAj��y�Þ
2
i1=2

: ð32Þ

A more general consideration, accounting for both singular

and nonsingular Hessians, is provided in Appendix A.
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Figure 2
Sketch of an a-ZnO epitaxial layer on r-sapphire. (a) Mutual orientation
of crystallographic cells of an a-ZnO heteroepitaxial layer on r-sapphire
substrate. (b) Coincidence-site lattices of an interface ZnO(110) epitaxial
layer on Al2O3(112) with anchors A1{ZnO[003]; Al2O3[111]},
A2{ZnO[110]; Al2O3[110]} of a-ZnO on r-sapphire.



4. Experimental: a-ZnO on r-sapphire

A set of a-ZnO films were grown on r-Al2O2 substrates. ZnO

films were grown in the temperature range of 573–1073 K with

an interval of 100 K. The ZnO film thickness was about

280 nm. Structural characterization for the a-ZnO/r-Al2O3

nonpolar heterostructures was performed with a Rigaku five-

circle SmartLab system, equipped with a high-power X-ray

source (45 kV, 200 mA) and a Bartels-type Ge(220) mono-

chromator. For each sample, HRXRD measurements were

performed at 110, 110 and 004 reflections (see Fig. 3a). The

mutual orientation of the a-ZnO crystallographic cell on

r-sapphire is presented in Fig. 2(a). According to epitaxial

relations referred to in the paper by Han et al. (2012), pairs of

anchors were specified as {ZnO[003]; Al2O3½111�} and

{ZnO½110�; Al2O3[110]} (see Fig. 2b). Relaxation parameters

were found using the fitting algorithm with errors that are

presented in Table 1. Strain and mismatch parameters were

calculated from the relaxation. Relaxation, strain and

mismatch results are shown in Fig. 3(b). Crystallographic

lattice constants, including angle 	 distortion of the ZnO layer,

are calculated according to the proposed theoretical approach

and the results are shown in Fig. 3(c).

5. Conclusion

A general formalism for describing anisotropic relaxation in

layers with arbitrary epitaxial relations has been proposed. An

iteration scheme of layer parameter determination from peaks

of arbitrary sets of one- and two-dimensional diffraction data

was considered. It is based on construction of a cost function

and its minimization over layer parameters. Error evaluation

and reliability checking of the obtained results has been

described. Application of the proposed approaches has been

demonstrated on X-ray diffraction data of a-ZnO on

r-sapphire samples grown in the temperature range from 573

K up to 1073 K.

APPENDIX A
Error analysis. General case

A1. Equations

The number of measured parameters can be less than the

number of sample parameters that a researcher would like to

determine. Although the desired complete determination of

the sample parameters is impossible in this case, some useful

information can be retrieved from the experimental data.

Below we show that, in general, the sample parameters can be

divided into the following groups: (i) determined, (ii) partially

determined and (iii) undetermined. The first type of para-

meters can be found from the provided experimental data with

reasonable inaccuracies. The correct value of each parameter

from the second group, considered separately, cannot be

determined sufficiently accurately. However, there are some

constraints on the set of ‘partially determined’ parameters

imposed by the measurement results. This means that, fixing

the values of some of these parameters on the basis of some

X-ray diffraction and imaging
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Table 1
Dependency of relaxations R1 and R2 in directions [001] and [110] of an
a-ZnO layer on r-sapphire on growth temperature.

Temperature (K) R1 R2

573 0.243 (3) 1.000 (1)
773 0.391 (3) 1.000 (1)
873 0.450 (3) 1.000 (1)
973 0.583 (5) 1.000 (1)
1073 0.660 (5) 1.000 (1)

Figure 3
Lattice parameter evaluation of an a-ZnO layer on r-sapphire. (a)
Measured reflections 004, 110 and 110 and crystallographic axes a, b and c
of an a-ZnO heteroepitaxial layer on r-sapphire substrate. (b)
Dependency of relaxations R1, R2, strains �1, �2 and mismatches �1, �2

in two azimuthal directions [001] and ½110� of an a-ZnO heteroepitaxial
layer on r-sapphire on growth temperature. (c) Dependency of crystal-
lographic cell parameters (a, b, c, 	) of an a-ZnO heteroepitaxial layer on
r-sapphire on growth temperature. Bulk (relaxed) cell parameters (a, b, c)
of ZnO are shown for eye guidance.



other information (e.g. information concerning preparation of

the sample), one can find the correct values of the other

partially determined parameters. The ‘undetermined’ para-

meters are those for which the measured data provide no

useful information.

If all the parameters are determined, equation (32) provides

the estimated values of the parameters’ errors. However, if

there are some ‘partially determined’ or ‘undetermined’

sample parameters, the Hessian is singular and the matrix H�1

is not correctly defined. To resolve this problem one can

consider an eigenbasis of the Hessian matrix and exclude

eigenvectors corresponding to zero (or too small) eigenvalues,

from determination of the errors. More precisely, the errors

corresponding to such eigenvectors must be estimated from

some conditions different from those of equation (28). Below

it is shown that these conditions are provided by normal-

ization of the parameters xj.

We slightly modify equation (27) by introducing the cost

function error �f ðxjÞ, independent of errors of the measured

parameters y�:

ð@=@xiÞ f ðxj þ �xj; y� þ �y�Þ þ �f ðxj þ �xjÞ
� �

¼ 0: ð33Þ

This error accounts for calculation inaccuracies and is intro-

duced to make the error evaluation procedure more stable.

Let the orthogonal matrix Uj0 j describe the linear transfor-

mation of the sample parameters, diagonalizing the Hessian:

xj0 ¼
P

j

Uj0jxj; Hi0j0 ¼
:
ð@2f Þ=ð@x0i@x

0
jÞ ¼ 
i0�i0 j0 : ð34Þ

The solution provided by equation (31) is then simplified:

�xj0 ¼ 

�1
j0

	P
j

Uj0 jZj þ �fj0



; ð35Þ

where

�f 0j0 ¼ @�f=@xj0 ð36Þ

characterizes the influence of the finite calculation precision

on the derivatives of the cost function.

Equation (35) is valid for nonzero eigenvalues only.

Normalization of the parameters fxjg implies that j�xjj<
 1.

Then one can assume that the following condition is satisfied:

j�xj0 j ¼
��P

j

Uj0j�xj

��� <
 1: ð37Þ

Finally, from equations (35) and (37) one can find the

following estimation for the mean squared error of the

transformed sample parameters fxj0 g:

�xj0 ¼ min 1; ~ZZj0=
j0

� �
; ð38Þ

where

~ZZj0 ¼

hP
�

	P
j

Uj0 jYj��y�


2

þ ð�f 0j0 Þ
2
i1=2

: ð39Þ

Then, the errors of the initial sample parameters can be

calculated as

�xj ¼

hP
j0

Uj0 j�xj0

� �2
i1=2

: ð40Þ

To complete the description of the error estimation protocol,

one needs to assign a certain value to �f 0j0 . This quantity was

introduced to resolve the ambiguity arising when the cost

function does not depend on some sample parameter (e.g. xn).

Such a parameter corresponds to the zero eigenvalue of the

Hessian: 
n0 = 0, xn0 = xn. On the other hand, one also has Zn = 0

and, finally, �xn0 ’ ð0þ �f
0
n0 Þ=0, which means that introduction

of nonzero quantity �f 0j0 6¼ 0 enables us to detect undetermined

parameters by large estimated errors (otherwise, the estimated

error is indeterminate and can happen to have a small value).

For correctly determined parameters, the introduction of �f 0j0
should not change the error estimation significantly:

j�f 0j0 j � 
j0�xj0 ’ Tr H=N, where N is the number of the found

sample parameters. Then, for all j0 the quantities �f 0j0 can be

assigned the following value:

�f 0j0 ¼ "Tr H=N; ð41Þ

where in calculations one can take " ’ 10�6 (the value must be

much less than the anticipated relative errors of the para-

meters but larger than the calculation errors caused by finite

machine precision).

A2. Parameters classification

The parameters for which equation (40) provides reason-

ably small errors (�xj < � ’ 0.5) are classified as determined

from the measurement results. The parameters that do not

satisfy this condition can be either partially determined or

undetermined. To distinguish between these two groups of

sample parameters, we evaluate the constrained errors.

The above-described (unconstrained) error estimation was

based on the assumption that all the sample parameters are

initially unknown and can take any values (consistent with

normalization). One can also make a constrained error esti-

mation for each of the parameters, assuming that the consid-

ered parameter is the only unknown quantity, while the values

of all other parameters are fixed. For a parameter with a large

unconstrained error �xj > �, the constrained error can turn

out to be small: �cxj < �. In this case the parameter is found to

be partially determined. If both the unconstrained and the

constrained errors are large, the parameter is undetermined.

Similarly to the above-described calculations, the

constrained error can be determined in the following way:

�cxj ¼ min
h

1;
nP
�

Yj��y�
� �2

þð�f 0j Þ
2
o1=2.

Hjj

i
: ð42Þ

Summarizing, the procedure of error evaluation and para-

meter classification can be divided into the following steps:

(a) the unknown sample parameters are normalized,

0 	 xj 	 1, and the cost function f ðxj; y�Þ is constructed;

(b) the optimal values fxjg, minimizing the cost function, are

found;

(c) the Hessian Hij and the mixed derivatives matrix Yj� are

calculated using equations (29) and (30);
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(d) the Hessian is diagonalized; transformation matrix Uj0j is

constructed from normalized eigenvectors of the Hessian;

(e) unconstrained errors �xj are calculated on the basis of

equations (38)–(41);

( f) constrained errors �cxj are calculated on the basis of

equation (42);

(g) the type is determined in the following way for each

parameter:

(i) if �xj <�, the parameter xj is determined;

(ii) if �xj >�, �cxj <�, the parameter xj is partially deter-

mined;

(iii) if �xj >�, �cxj >�, the parameter xj is undetermined.
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