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Abstract: Thioredoxin (Trx) f and NADPH-dependent Trx reductase C (NTRC) have both been
proposed as major redox regulators of starch metabolism in chloroplasts. However, little is known
regarding the specific role of each protein in this complex mechanism. To shed light on this point,
tobacco plants that were genetically engineered to overexpress the NTRC protein from the chloroplast
genome were obtained and compared to previously generated Trx f-overexpressing transplastomic
plants. Likewise, we investigated the impact of NTRC and Trx f deficiency on starch metabolism by
generating Nicotiana benthamiana plants that were silenced for each gene. Our results demonstrated that
NTRC overexpression induced enhanced starch accumulation in tobacco leaves, as occurred with Trx
f. However, only Trx f silencing leads to a significant decrease in the leaf starch content. Quantitative
analysis of enzyme activities related to starch synthesis and degradation were determined in all of the
genotypes. Zymographic analyses were additionally performed to compare the amylolytic enzyme
profiles of both transplastomic tobacco plants. Our findings indicated that NTRC overexpression
promotes the accumulation of transitory leaf starch as a consequence of a diminished starch turnover
during the dark period, which seems to be related to a significant reductive activation of ADP-glucose
pyrophosphorylase and/or a deactivation of a putative debranching enzyme. On the other hand,
increased starch content in Trx f-overexpressing plants was connected to an increase in the capacity of
soluble starch synthases during the light period. Taken together, these results suggest that NTRC and
the ferredoxin/Trx system play distinct roles in starch turnover.
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1. Introduction

Post-translational redox modifications play a major role in different cell processes, with thioredoxins
(Trxs) being among the protagonists in this regulatory mechanism [1]. The Trxs modulate target protein
activities via a thiol-disulfide exchange mechanism that involves the two redox-active Cys residues
of the canonical WC(G/P)PC active site [2]. In plants, the Trx system is particularly complex, with a
great number of Trx isoforms [3] and more than 400 potential Trx targets [4]. The first experimental
evidence of redox regulation and signalling in a biological system was reported in plant chloroplasts [5].
In illuminated chloroplasts, ferredoxin (Fd) and Fd-Trx reductase (FTR) are responsible for feeding
the electrons that were generated in the photosynthetic electron transport chain into the regulatory
Trx system. In the dark, or in non-photosynthetic plastids, the NADPH that is generated from the
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oxidative pentose phosphate pathway (OPPP) is the source of reducing power for Fd reduction via
Fd–NADPH reductase (FNR) [6]. Plastid Trxs act as transmitters of the redox signal by transferring
electrons from Fd to downstream target enzymes. Five types of classical Trxs (MW about 10–12 kDa)
have been reported for plastids (Trx f, m, x, y, z) [7,8], as well as “Trx-like” proteins with non-canonical
active sites, or “atypical Trxs”, in which the Trx motifs are associated with other domains [9].

C-type NADPH-dependent Trx reductase (NTRC), which was first identified in rice [10], has been
classified as an atypical Trx [9], but also as a Trx reductase [11]. Its Trx domain is an extension (at the
C-terminus) of the NADPH-Trx reductase (NTR) domain. NTRC is only found in photosynthetic
organisms, such as plants, algae, and certain cyanobacteria [10,12], both in chloroplasts and non-green
plastids [13]. It has been described as a bifunctional enzyme that reduces target proteins while using
NADPH as an electron donor [14–16]. The homodimer of NTRC is reported to be catalytically active [17].
The discovery of NTRC thus unveiled the existence of a redox regulatory system in chloroplasts,
other than that provided by Fd/Trx, which operates during both light and dark periods while using the
NADPH that was generated from photosynthesis and OPPP, respectively. Some authors suggest that
NTRC becomes a key reducing system during the night, when the level of reduced Fd is low [12,16].

Starch, which is composed of amylose and amylopectin, is the most abundant storage carbohydrate
in plants. Transitory starch is considered to be a carbohydrate reservoir that buffers the diurnal changes
in the supply of photoassimilates. ADP-glucose pyrophosphorylase (AGPase), which catalyzes the
first committed step of starch synthesis in higher plants, is considered to be a key enzyme in this
process, controlling the flux of carbon into starch [18]. Additionally, an alternative model that considers
the transport of ADP-glucose (generated in the cytosol through sucrose synthase activity) into the
chloroplast has also been proposed [19–21]. Three major classes of enzymes act simultaneously in
starch synthesis: starch synthases (SSs), branching enzymes (BEs), and debranching enzymes (DBEs).
Soluble SSs (four isoforms in higher plants) are believed to be primarily responsible for amylopectin
synthesis, catalyzing the formation of a polymer of α-1,4-glycosidic bonds while using ADP-glucose.
BEs create branches from existing chains via glucanotransferase reactions, and DBEs (ISA1 and ISA2)
hydrolyze some of the branches again during the synthesis of amylopectin [22]. For starch degradation,
starch granule surface solubilization is required to provide hydrolases access to the glucan chains.
This process is dependent on the reversible phosphorylation and dephosphorylation of glucans,
which are completed by glucan, water dikinases (GWDs), phosphoglucan phosphatases (PWDs),
and a glucan-binding phosphatase (SEX4) [23]. The complete degradation of starch is achieved by
endo-acting α-amylases (AMYs) and exo-acting β-amylases (BAMs) enzymes, along with DBEs (ISA3
and LDA) for hydrolysis of the branch points [23].

Starch metabolism is extraordinarily well tuned due to the presence of very sophisticated regulatory
mechanisms. Post-translational modifications, including redox regulation, are the main way by which
the activity of enzymes that are involved in transient starch metabolism are regulated [24,25]. In higher
plants, AGPase was described as a heterotetramer consisting of two large (AGPS) and two small
(AGPB) subunits. In vitro experiments demonstrated that Trxs mediate its activation by the reduction
of a disulfide bridge between the two small subunits [26,27]. Arabidopsis trxf and ntrc mutants,
which showed a decrease both in starch content and in AGPase redox activation, verified the in vivo
relevance of these findings [28–32]. From these works, it is proposed that Trx f is a key enzyme that is
involved in light-dependent activation of AGPase, while NTRC has been identified as AGPase regulator
in the dark in response to sugars. However, the impact of the redox regulation of AGPase in vivo and
its role in starch synthesis have fallen under discussion [19,33–35]. Other starch biosynthetic enzymes,
like ISA1/ISA2, SS1, and SS3, have been reported to be susceptible to reducing agents [36]. However,
only SS1 has been confirmed as a redox-regulated enzyme in vitro, being mainly activated by Trx f,
but also by Trx m and NTRC [37].

In addition to starch synthesis, enzymes that are involved in starch degradation have been shown to
be under redox control [24,36]. Among them, chloroplast localized AMY3 could be activated by reduced
Trxs in Arabidopsis, with Trx f being the most effective [38]. The same applies to BAM1, which NTRC
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could also partially activate [39,40]. The enzyme GWD, which catalyzes the phosphorylation of starch,
and SEX4, which is required for glucan desphosphorylation, can also be reduced and activated by Trxs
in vitro, with Trx f being the more efficient activator [41–43]. Nevertheless, Arabidopsis gwd mutant
plants expressing a redox-insensitive GWD displayed normal starch turnover [44]. According to the
widely accepted model for the night-active starch degradation pathway [23,45], the reductive activation
of starch degradative enzymes by Trxs (during the day) may seem to be contradictory. However,
there is considerable evidence supporting that starch degradation also takes place in such conditions,
being mainly associated with certain stresses or guard cell opening [39,46], indicating the existence
of starch degradation in leaves during the day and, probably, its biosynthesis at night, as previously
proposed [19,33,47]. Despite this fact, NTRC could also provide the reducing power to redox-activate
starch turnover during the night.

A combination of in vitro and in vivo evidence indicates that Trx f and NTRC both clearly modulate
transitory starch metabolism in leaves, although a distinguishable role for each Trx type in vivo is
unclear. Previous results showed that Trx f overexpression from the chloroplast genome promotes
starch accumulation in tobacco leaves [48]. Therefore, plastid transformation was used to generate
NTRC overexpressing tobacco plants, so as to examine whether NTRC and Trx f perform discernible
and specific functions on the regulation of starch metabolism. Moreover, Nicotiana benthamiana plants
with silenced ntrc or Trxf genes were generated as the controls for enzymatic analyses. Our results
help in gaining insights into Trx specificity in vivo, showing that NTRC overexpression promotes
the accumulation of transitory leaf starch by diminishing starch turnover during the dark period,
while starch synthase activation appears to be the main determinant of starch accumulation in Trx f
transgenic plants.

2. Results

2.1. Generation of Transplastomic Tobacco Plants Overexpressing a Fully Functional NTRC

The mature Arabidopsis ntrc coding sequence was placed under the control of the plastid psbA
promoter and terminator and then inserted, together with the selectable spectinomycin resistance gene
aadA, into the tobacco plastid genome between the trnI and trnA genes for chloroplast expression
(Figure 1a). Southern blotting verified site-specific integration and then confirmed the homoplasmy
of the regenerated spectinomycin-resistant plants. The flanking region probe (Figure 1a) identified a
4.5 kb hybridizing fragment in Wt plants, and then recognized two fragments (5.2 and 2.3 kb) in the
NTRC-overexpressing lines (Figure 1a,b), which are hereafter referred to as o/exNTRC. The absence of
4.5 kb bands in o/exNTRC plants indicated homoplasmy.

Immunodetection confirmed NTRC overexpression, with the overexpressed and the endogenous
proteins showing similar mobility (Figure 1c). In the Wt plants, the NTRC band was visible in the
blot when 50 µg of total protein were loaded, whereas only 1 µg of total protein was sufficient for
the o/exNTRC plants. Densitometric analysis of several immunoblots showed the NTRC in the
transplastomic plants to be some 200 times more abundant than endogenous NTRC in the Wt plants.
Moreover, the affinity-purified NTRC from tobacco chloroplasts catalysed both the reduction of insulin
in the presence of dithiothreitol (DTT) (Figure 1d) and the reduction of DNTB in the presence of
NADPH (Figure 1e) in a concentration-dependent manner. Thus, the NTRC that was overexpressed in
tobacco chloroplasts was fully functional and it showed both Trx and NTR activities.

Phenotypically, o/exNTRC plants were slightly, but significantly, smaller than Wt plants
(Figure 2a,b). Moreover, their leaf chlorophyll content was approximately 30% lower than that
of the Wt plants (Figure 2c), as consistent with the pale-green color of o/exNTRC plants (Figure 2a).
However, these differences disappeared by the adult stage (Table S1).
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Figure 1. The integration, overexpression, and functionality of the NADPH-dependent Trx reductase 
(NTRC) protein, and homoplasmy confirmation of transplastomic tobacco plants (T1 generation). (a) 
Map of the wild-type (Wt) and transformed NTRC plastid genomes. The ntrc gene, driven by the 
psbA promoter and terminator, was cloned into the intergenic region between trnI and trnA. The 
arrows in the boxes show the direction of transcription. The probe for the Southern blot is shown over 
the corresponding sequence. The sizes of the predicted bands after DNA digestion with BglII are 
indicated. 16S5′, trnI, trnA, 23S3′: original sequences of the chloroplast genome; aadA: aminoglycoside 
3′-adenylytransferase gene; Prrn: 16SrRNA promoter and 5′-untranslated region; PpsbA: psbA 
promoter and 5′-untranslated region; and, TpsbA: terminator region of the psbA gene. (b) Southern 
blot analysis of Wt and o/exNTRC plants. The sizes of the bands after DNA digestion with BglII are 
indicated. (c) Immunoblot analysis of total protein extracts from fully-expanded leaves of seven week-
old plants. Protein loading for o/exNTRC (1 µg) and Wt (50 µg) extracts was adjusted to make NTRC 
bands visible in the blot. A specific primary anti-NTRC antibody [10] at 1:750 dilution was used. The 
arrowhead indicates the NTRC band. Asterisks indicate non-specific bands. (d) Dithiothreitol (DTT)-
dependent insulin reduction assay of NTRC was performed in a reaction mixture containing 2, 4, and 
8 µM of purified NTRC, supplemented with 0.5 mM DTT. Negative control runs were performed in 
the absence of NTRC (line DTT in graph). Trx from E. coli (1 µM) was used as a positive control. (e) 
NADPH-dependent reduction of DTNB was assayed at room temperature in a buffer containing 2, 4, 
and 8 µM of NTRC supplemented with 150 µM NADPH. Negative controls runs were performed in 
the absence of NTRC (line NADPH in graph). 
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Figure 1. The integration, overexpression, and functionality of the NADPH-dependent Trx reductase
(NTRC) protein, and homoplasmy confirmation of transplastomic tobacco plants (T1 generation).
(a) Map of the wild-type (Wt) and transformed NTRC plastid genomes. The ntrc gene, driven by
the psbA promoter and terminator, was cloned into the intergenic region between trnI and trnA.
The arrows in the boxes show the direction of transcription. The probe for the Southern blot is
shown over the corresponding sequence. The sizes of the predicted bands after DNA digestion with
BglII are indicated. 16S5′, trnI, trnA, 23S3′: original sequences of the chloroplast genome; aadA:
aminoglycoside 3′-adenylytransferase gene; Prrn: 16SrRNA promoter and 5′-untranslated region;
PpsbA: psbA promoter and 5′-untranslated region; and, TpsbA: terminator region of the psbA gene.
(b) Southern blot analysis of Wt and o/exNTRC plants. The sizes of the bands after DNA digestion
with BglII are indicated. (c) Immunoblot analysis of total protein extracts from fully-expanded leaves
of seven week-old plants. Protein loading for o/exNTRC (1 µg) and Wt (50 µg) extracts was adjusted to
make NTRC bands visible in the blot. A specific primary anti-NTRC antibody [10] at 1:750 dilution was
used. The arrowhead indicates the NTRC band. Asterisks indicate non-specific bands. (d) Dithiothreitol
(DTT)-dependent insulin reduction assay of NTRC was performed in a reaction mixture containing 2, 4,
and 8 µM of purified NTRC, supplemented with 0.5 mM DTT. Negative control runs were performed
in the absence of NTRC (line DTT in graph). Trx from E. coli (1 µM) was used as a positive control.
(e) NADPH-dependent reduction of DTNB was assayed at room temperature in a buffer containing 2,
4, and 8 µM of NTRC supplemented with 150 µM NADPH. Negative controls runs were performed in
the absence of NTRC (line NADPH in graph).Plants 2019, 8, x FOR PEER REVIEW 5 of 22 
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Figure 2. Phenotypic characterization of the T1 generation of NTRC-overexpressing homoplasmic
plants. (a) Wt and o/exNTRC plants were grown in phytotron for seven weeks under standard
conditions (150 µmol photons m−2 s−1, 16-h photoperiod and 28 ◦C). Mean stem height (b) and
chlorophyll content (c) (SPAD value) was measured. Values ± SE were obtained from 15 plants per line.
Different letters represent significant differences between lines (p < 0.05, ANOVA).



Plants 2019, 8, 543 5 of 20

2.2. Production of Nicotiana Benthamiana Plants with Reduced Expression of NTRC or Trx f

Tobacco rattle virus-based virus induced gene silencing (VIGS) was applied to efficiently silence
the ntrc or Trxf genes in N. benthamiana because the potent antiviral machinery of tobacco limits the
efficacy of VIGS in this species [49]. To construct the gene-silencing vectors, conserved regions of ntrc
and Trxf cDNA were individually cloned into the pTRV2 (TRV RNA2) vector [50]. Co-infiltration
of Agrobacterium cultures carrying pTRV1 (TRV RNA1) or pTRV2-Trxf or –NTRC derivatives into
N. benthamiana seedlings initiated VIGS. VIGS-NTRC and VIGS-Trxf plants showed no apparent
phenotypes three weeks after infiltration and they were indistinguishable from non-silencing control
plants (VIGS-GUS) under the assayed growing conditions (Figure 3a). By contrast, VIGS-PDS plants,
used as positive controls for gene silencing, efficiently induced the photobleaching of N. benthamiana
leaves (Figure 3a). The RT-qPCR analysis revealed that ntrc and Trxf gene expression was efficiently
and specifically reduced in each VIGS-silenced line (Figure 3b). Hence, VIGS-NTRC plants exhibited a
reduction of 92% in the ntrc expression without any effect on Trxf gene expression. Similarly, VIGS-Trxf
plants specifically reduced Trxf gene expression by approximately 96% when compared to VIGS-GUS
plants, while ntrc expression remains unchanged (Figure 3b). The high silencing efficiency that was
achieved in these plants was also confirmed at protein level by western blot (Figure 3c). The bands
corresponding to those of NTRC and Trx f proteins were significantly reduced in the total protein
extracts of VIGS-NTRC and VIGS-Trxf plants, respectively (Figure 3c).
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Figure 3. NTRC and Trx f silencing in N. benthamiana plants. (a) Representative photographs of
virus induced gene silencing-NTRC (VIGS-NTRC) and VIGS-Trxf plants taken three weeks after
infiltration. The negative control VIGS-GUS and the positive control VIGS-PDS were also shown.
(b) Suppression rate of ntrc and Trxf genes in VIGS plants analyzed by RT-qPCR three weeks after
infiltration. The relative transcript levels of ntrc and Trxf in VIGS-NTRC and VIGS-Trxf plants were
expressed relative to that of the negative control (VIGS-GUS), previously normalized to 1. The data
represent means ± SE of six biological replicates. Statistical significance as compared to control plants
is indicated by different letters (p < 0.05, ANOVA). (c) Immunoblot analysis of NTRC and Trx f protein
level in silenced plants when compared to VIGS-GUS plants. 40 and 80 µg of total protein extracts
from each line were separated by electrophoresis on 10% and 15% SDS-PAGE for NTRC and Trx f,
respectively. Protein detection was performed with a primary antibody, anti-NTRC [10], or anti-Trx
f [51], at 1:750 or 1:5000 dilution, respectively. Arrow refers to NTRC in the left blot and to Trx f in the
right blot.
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2.3. Transient Starch Accumulation Pattern in Leaves of Plants with Altered NTRC or Trx f Levels

We further investigated the leaf starch content in plants with increased levels of NTRC (o/exNTRC)
to gather additional evidence regarding the role of plastid Trxs in starch metabolism. For comparison,
we included the Trx f overexpressing line (o/exTrxf), which is characterized by an enhanced starch
accumulation in leaves [48]. Our results showed an increased leaf starch amount in both o/exNTRC and
o/exTrxf plants as compared to Wt at the end of the day (16 h light) by about 35% and 60%, respectively
(Figure 4a). The same, but even more pronounced, trend was shown in these plants at the end of the
night period (8 h dark), with a similar increase in both of the genotypes that almost tripled the starch
content over the Wt plants (Figure 4a). Curiously, when the starch content was analyzed in leaves
of plants with reduced levels of NTRC or Trx f, only VIGS-Trxf plants showed a significant decrease,
whereas the VIGS-NTRC plants achieved similar starch quantities when compared to the VIGS-GUS
control plants (Figure 4b). As expected, less starch was produced at night in both genotypes.
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± SE of six measurements from individual plants. Different letters above the bars indicate significant
differences among lines for each specific harvesting period (p < 0.05, ANOVA).

2.4. Comparative Analysis of Enzymes Related to Starch Synthesis

The activities of two well-known redox regulated enzymes, SS and AGPase [24], were analyzed
in order to investigate whether o/exNTRC and o/exTrxf plants show higher starch synthesis capacity.
Interestingly, o/exTrxf plants displayed a clear increase on SS activity, while the o/exNTRC plants
showed no differences when compared to Wt plants (Figure 5a). Accordingly, when the silenced
plants were analyzed, the VIGS-Trxf plants showed significantly lower SS activity as compared to the
VIGS-GUS control plants (Figure 5b), while no differences were found in the VIGS-NTRC plants.

The levels of mRNA transcripts of two putative N. tabacum soluble SS protein-coding sequences
were analyzed using RT-qPCR in order to investigate if o/exNTRC and o/exTrxf plants show a higher
starch synthesis capacity (Figure S1). It must be mentioned that only two soluble SS orthologous genes
from N. tabacum are well identified (SS1 and SS3). Given that the transcript levels of these two genes
remained unchanged in the o/exTrxf genotype (Figure S1), a specific posttranslational regulation of
this enzyme by Trx f can be suggested.

Regarding AGPase, we previously demonstrated that its redox state, as a proxy of its in vivo
activity, was not affected in o/exTrxf plants [48]. In the same way, VIGS-Trxf plants were analysed
in this study, and no differences on the AGPase redox state as compared to control plants were
found (Figure S2). The degree of AGPB monomerization was analysed by western blotting under
non-reducing conditions to assess the AGPase redox activation in o/exNTRC plants. Densitometric
quantification of the oxidized (~100 kDa, dimer) and reduced (~50 kDa, monomer) forms of AGPB
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revealed no differences in AGPB reduction between o/exNTRC and Wt plants at the end of the light
phase (Figure 6a). In contrast, the o/exNTRC plants showed an increase in the AGPB monomerization
when compared to Wt at the end of the dark period (Figure 6a). A surprising increase in monomerization
of 2-Cys peroxiredoxin (Prx), a well-known NTRC target [52], during the dark period also occurred in
o/exNTRC plants (Figure S3), which suggests that NTRC is mainly operating as a reducer in tobacco
o/exNTRC plants during the night. When the VIGS-NTRC plants were analyzed, a reduction in the
AGPB monomerization was shown under both light and dark conditions as compared with VIGS-GUS
control plants (Figure 6b), although thedifferences were only statistically significant at the end of the
light period.
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Figure 6. Redox activation of ADP-glucose pyrophosphorylase (AGPase) in plants with altered levels
of NTRC. (a) Leaves of Wt and o/exNTRC homoplasmic plants (T1 generation) were sampled at the
end of the light (L; 150 µmol m−2 s−1) and dark (D) periods. (b) Leaves of non-silencing control plants
(VIGS-GUS) and VIGS-NTRC plants were harvested at the end of the light (L; 80 µmol m−2 s−1) and
dark (D) periods. A representative non-reducing western blot of AGPB (AGPase small subunit) is
shown in each case. m: monomer; d: dimer. AGPB monomerization is presented as the percentage
of the 50-kDa monomer relative to the total amount of AGPB. Each value is the mean ± SE of four
individual plants. Different letters above bars represent significant differences (p < 0.05, ANOVA).
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Overall, our results point to a putative specific regulation of SS by Trx f and suggest that the
starch-related phenotype of o/exNTRC plants might be a consequence of altered night-time starch
metabolism due to the higher reduction of AGPase during this period.

2.5. Comparative Analysis of Enzymes Related to Starch Degradation

We also analyzed whether the higher starch content that was observed in NTRC- or Trx
f-overexpressing tobacco leaves could be related to a downregulation of enzymes that are involved
in starch degradation. To this end, the activities of AMY, BAM, and LDA were measured in leaves
that were harvested after 4 h of darkness from plants overexpressing NTRC or Trx f. Our results
showed no differences in any of these enzyme activities among Wt, o/exNTRC and o/exTrxf plants
(Figure 7a–c). Equally, no differences between lines were found in AMY, BAM, and LDA activities
when plants with reduced levels of NTRC or Trx f were analyzed (Figure 7d–f), suggesting that neither
NTRC nor Trx f seem to alter the overall activity of these amylolytic enzymes in tobacco leaves, at least
in the assayed growing conditions. In addition, these results indicate that the increased transitory
starch accumulation in o/exNTRC or o/exTrxf leaves does not occur at the expense of the deactivation
of these starch-degrading enzymes.
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2.6. Qualitative Study of Redox Sensitive Amylolytic Enzymes in Tobacco Plants

Zymographic analyses were performed in order to determine the amylolytic enzyme profiles of
tobacco extracts. We first analyzed the redox sensitivity of starch-degrading enzymes in Wt tobacco
plants by incubating the protein samples in the presence of the reducing reagent DTT or the oxidizing
reagent CuCl2, followed by zymogram analysis. Several starch-modifying activities were observed in
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tobacco leaf extracts under these conditions, including AMYs, BAMs, and DBEs (Figure 8a), which were
previously identified [53]. We found that the activity of a band corresponding to a putative DBE
was less noticeable when incubated with DTT (Figure 8a, as indicated by an arrowhead). In contrast,
a putative AMY was shown to be active only under reducing conditions (Figure 8a, indicated by an
asterisk). However, oxidant conditions did not appear to modify the activity of the amylolytic enzyme
profile (Figure 8a). Based on this qualitative assay, we zymographically analyzed the activity of starch
degradative enzymes in o/exNTRC and o/exTrxf extracts when compared to Wt. Our results revealed a
similar amylolytic enzyme pattern between the o/exNTRC and Wt plants in light conditions, while a
slight decrease in the activity of a putative DBE was shown in o/exNTRC extracts in the dark (Figure 8b,
arrowhead). Conversely, there was no difference in the activity of the starch-degrading enzymes
between Wt and o/exTrxf plants under light or dark conditions (Figure 8c). These findings suggest that
the overexpression of NTRC in tobacco plants leads to a downregulation of a putative DBE during the
night, which could explain, at least to some extent, the starch increase that was seen in these plants.
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Net starch synthesis and degradation were determined to further investigate the differential role 
of NTRC and Trx f overexpression in promoting starch accumulation in tobacco transplastomic 
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Figure 8. Analysis of amylolytic enzymes using native PAGE in Wt and NTRC- or Trx f-overexpressing
homoplasmic tobacco leaves (T1 generation). Soluble proteins were extracted from leaves harvested
after 8 h light or 4 h dark periods and separated (35 µg) in native polyacrylamide gels containing 0.2%
potato amylopectin. After electrophoresis, the gels were incubated overnight and then stained with
iodine solution to reveal pale bands where the amylopectin had been hydrolyzed. Putative activities of
α-amylases, β-amylases and debranching enzymes were identified according to [53]. Asterisks indicate
enzymes activated by reduction; arrowheads indicate enzymes deactivated by reduction. (a) Redox
mediated changes in starch amylolytic activities. Extracted proteins were treated with 40 mM DTT
or 200 µM CuCl2 for 2 h prior to gel loading. (b) Differences between Wt and o/exNTRC plants in
light and dark conditions. (c) Differences between Wt and o/exTrxf plants in light and dark conditions.
Representative panels from three independent experiments were shown for each line.

2.7. NTRC and Trx f Overexpression Differentially Alters the Net Starch Synthesis and Degradation

Net starch synthesis and degradation were determined to further investigate the differential role
of NTRC and Trx f overexpression in promoting starch accumulation in tobacco transplastomic plants.
Our results showed that, during the light period, NTRC overexpression in the chloroplasts did not alter
the net starch synthesis when compared to Wt (≈1.8 µmol glucose.g FW−1 h−1), whereas it was greatly
increased by about 30% in o/exTrxf leaves (Figure 9a). However, contradicting results were found when
nocturnal net starch degradation was analyzed (Figure 9b). After 8 h of darkness, only o/exNTRC
plants exhibited a significant reduction of about 40% in the net starch degradation when compared to
o/exTrxf and Wt plants. Overall, these results indicate that the overexpression of NTRC or Trx f in
the chloroplast leads to an increased leaf starch content, although different mechanisms seem to be
governing starch metabolism in each transplastomic line.
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Figure 9. Net starch synthesis (a) and degradation (b) in homoplasmic plants overexpressing NTRC
or Trx f (T1 generation). Pairs of samples were harvested from equivalent leaves of Wt, o/exNTRC,
and o/exTrxf plants at the end of the light (16 h) and dark (8 h) periods. The net starch synthesis
and degradation were calculated as reported in “Material and methods”. The results are the mean
± SE for seven individual plants. Different letters above each bar indicate significant differences
(p < 0.05, ANOVA).

3. Discussion

Chloroplasts contain a rich diversity of Trxs, whose reduction is dependent on Fd reduced by the
photosynthetic electron transport chain, and ultimately on light. Meanwhile, NTRC forms a complete
Trx system in a single polypeptide that relies on NADPH and, thus, might also be operative during the
night. Trxs and NTRC are both reported to control multiple plant processes, including the biosynthesis
of starch [24,54]. Previous studies led to the view that these two systems may have non-overlapping
functions in plants [55]. In this work, we have explored the specificity of NTRC and Trx f in the
regulation of starch metabolism by using overexpression and reverse genetic approaches.

3.1. Phenotype of N. Tabacum and N. Benthamiana Plants with Altered NTRC Protein Levels

We show that the overexpression of a fully functional NTRC protein in chloroplasts significantly
increases the transitory starch content in tobacco leaves (Figure 4a) and partially alters its phenotype
(slight growth delay and lower chlorophyll content than Wt) during the younger growth stages
(Figure 2). However, the o/exNTRC tobacco plants recover the Wt phenotype in their adult stage
(Table S1). NTRC has been unveiled as a redox regulatory system in chloroplasts that reduces target
proteins at the expense of NADPH [10]. Thus, the recovery of the Wt phenotype may indicate that
the overexpressed NTRC in tobacco plants competes for NADPH with the accelerated chloroplast
metabolism of growing tissues, but not in adult stages. In agreement with our results, the overexpression
of NTRC in Arabidopsis was previously shown to increase the starch content in illuminated leaves,
which also displayed chlorophyll reduction [56]. The importance of redox regulatory mechanisms in
the maintenance of well-adjusted tetrapyrrole biosynthesis during plant development has been broadly
demonstrated, with NTRC being a key player in this regulation [57]. Hence, NTRC overexpression
might alter the redox status of the chloroplast in young plants, thereby affecting chlorophyll synthesis.

In contrast, we found that N. benthamiana silenced VIGS-NTRC plants showed no apparent
phenotypic changes when compared with non-silencing control VIGS-GUS plants, and the two
sets of plants accumulated similar amounts of transitory starch (Figures 3a and 4b). Likewise,
it was determined that Arabidopsis ntrc mutant plants that were grown at low irradiance did not
show differences when compared to Wt in either plant growth or the patterns and rates of starch
accumulation [34]. On the contrary, an attenuation of starch content has widely been reported in ntrc
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Arabidopsis single mutants [28–30,56,58,59], which exhibit impaired growth phenotype. However,
it should be noted that most of these studies were carried out at light intensities exceeding 125 µmol
m−2 s−1, where the plants grew under photo-oxidative stress conditions. In that case, NTRC would play
an important role in protecting plants against such stresses [34]. Recently, the impaired growth of an
Arabidopsis ntrc mutant has been associated with an increased electron flow from the Trx pool to 2-Cys
Prx (involved in reducing H2O2) that might indirectly downregulate the Calvin–Benson cycle [60].
Thus, the lack of phenotype in VIGS-NTRC silenced plants may be explained by the low-irradiance
growing conditions, where limited H2O2 production is presumed. Under such conditions, the influence
of NTRC silencing on starch metabolism can therefore be better analyzed.

3.2. Enhanced Starch Content in o/exNTRC Leaves as a Consequence of Impaired Starch Metabolism at Night

The increased amount of transitory starch that was seen in o/exNTRC leaves was not accompanied
by either upregulation of SS activity (Figure 5a) or redox-activation of AGPase during the day (Figure 6a).
Accordingly, no differences were found in the net starch synthesis that was calculated for o/exNTRC
plants when compared to the Wt (Figure 9a). There is general agreement regarding the role of NTRC in
regulating starch synthesis via AGPase reduction [28,30,58]. In this work, the o/exNTRC plants showed
a significant increase of AGPB monomerization, but only during the night (Figure 6a). It may be that,
in illuminated chloroplasts, overexpressed NTRC competes with the active chloroplast metabolism
for photosynthetically-generated NADPH, while the availability of NADPH generated via the OPPP
in the dark would supply more electrons to the NTRC system. We analysed the reduction pattern of
a well-known NTRC target (2-Cys Prx) in o/exNTRC plants, and demonstrated that it is also more
efficiently reduced at night, with up to a four-fold increase in 2-Cys-Prx reduction s compared to
light conditions to investigate this hypothesis (Figure S3). In agreement with these results, it was
previously shown that 2-Cys Prx was more reduced in Arabidopsis plants overexpressing NTRC under
dark conditions than in Wt plants [61]. All in all, the present findings point to a higher reductive
activation of both AGPase and 2-Cys Prx by overexpressed NTRC at night, when NADPH availability
is apparently higher. Interestingly, during the night, increased AGPB monomerization in o/exNTRC
plants converged with a reduction in starch turnover (Figure 9b). Thus, AGPase redox-activation in
darkness could account for the modified starch turnover in the o/exNTRC leaves by supporting starch
synthesis. Similarly, it was previously suggested that Arabidopsis lines expressing a mutagenized
and permanently active AGPase accumulated more leaf starch, which was probably due to a slow
starch turnover during the night [33]. When VIGS-NTRC silenced plants (grown under non-stressed
conditions) were analyzed for AGPase reduction, the proportion of fully reduced AGPB in the light was
significantly decreased when compared to Wt (Figure 6b), which is in agreement with the previously
reported results [28,30]. However, contrary to these works, no changes in the transitory starch
accumulation occurred in VIGS-NTRC silenced plants (Figure 4b). Our findings suggest that NTRC is
involved in AGPase redox-regulation, although this does not appear to have a direct impact on starch
biosynthesis during the day, at least under the assayed conditions. Other authors have also questioned
the role of AGPase redox-activation in starch biosynthesis [34,35], and starch synthesis stimulation
in vivo has been demonstrated, independent of such reductive activation [48,62].

In recent years, additional candidates have been added to the list of reductively activated starch
metabolizing enzymes, some of which are related to starch degradation [24,36]. Besides the Fd/Trx
system, which is presumed to upregulate starch degradation during stress conditions or in guard
cells under light conditions [39,46], NTRC could also provide reductive regulation of these enzymes
in the night. Indeed, BAM1 from Arabidopsis has been described to be partially reduced by NTRC
in vitro [39]. Therefore, a role for the overexpressed NTRC in the redox control of starch degradative
enzymes in tobacco leaves during the night cannot be ruled out. However, in the present work,
we show that the activity of AMY, BAM, and LDA enzymes in o/exNTRC or VIGS-NTRC plants
did not differ from that of the control plants (Figure 7), which suggested that the level of NTRC
accumulated in chloroplasts does not affect the overall amylase and LDA activities in vivo under the
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assayed conditions. Interestingly, zymographic analysis that was performed with o/exNTRC extracts
revealed a decrease in the activity of a hydrolytic enzyme in dark conditions when compared to Wt
(Figure 8b). Therefore, our results rather argue for an amylolytic enzyme deactivation in o/exNTRC
plants, which is in agreement with the reduction of its net starch degradation (Figure 9b). Although
Trx-mediated deactivation of other chloroplastic enzymes, like glucose-6-phosphate dehydrogenase,
has previously been described [63,64], this may be the first evidence for a starch-degrading enzyme.
The mobility of this downregulated degradative enzyme in the zymogram, which also seems to be
deactivated in Wt tobacco extracts that were incubated with DTT (Figure 8a), indicates that it might
correspond with a putative DBE [53]. Two DBEs involved in starch breakdown has been reported: ISA3
and LDA. LDA was previously described as a redox-sensitive enzyme, although it seems to be more
active under reducing conditions [36,65,66]. However, as stated before, no differences in LDA activity
were seen between the NTRC transgenic plants and their respective controls (Figure 7c,f). On the other
hand, a small but significant activation of the Arabidopsis ISA3 activity was observed under reducing
conditions [36]. In vivo analysis of DBE mutants shows that the Arabidopsis isa3 mutants accumulate
more leaf starch and have a slower rate of starch breakdown than Wt plants [67,68], a similar phenotype
as o/exNTRC plants. All in all, these findings suggest a possible downregulation of ISA3 activity in
o/exNTRC tobacco plants being exerted by the overexpressed NTRC, taking that no changes were
found in ISA3 gene expression in these transplastomic plants (Figure S1). This regulation could explain,
at least in part, the increased starch content and reduced starch turnover found in these plants. Further
investigations are required to shed light on this matter.

Finally, it should be noted that qualitative zymogram analysis also showed a putative AMY
isoform [53] that appears to be activated in Wt extracts that were treated with DTT as reducing agent
(Figure 8a). This enzyme could be an ortholog of the Arabidopsis plastid-localised AMY3, being the
unique redox-regulated AMY isoform that was reported in chloroplasts [36,38]. However, our results
showed that neither NTRC nor Trx f overexpression appeared to alter the redox status of this AMY
isoform in tobacco leaf extracts (Figure 8b,c).

3.3. Starch Synthase as the Main Determinant of Starch Accumulation in Trx f Transgenic Plants

We previously demonstrated that the overexpression of Trx f in tobacco chloroplasts has a
positive effect on transitory starch accumulation and leaf biomass production [48,69,70]. Consistent
with this, here we show a decrease in starch content in the corresponding Trx f silenced plants,
which did not display any visible phenotype (Figures 3a and 4b). Previous work also showed that
Arabidopsis trxf1 mutants led to a decrease in starch content without altering the plant phenotype [30,32].
However, double trxf1-f2 mutants that also accumulated less transitory starch showed some phenotypic
defects [29,31]. Some of these studies with Arabidopsis mutants that were attributed the decrease in
transitory starch to the AGPase deactivation [30,32]. However, we have previously demonstrated that
the redox state of AGPase was not altered in Trx f-overexpressing tobacco plants [48], and neither was
it in VIGS-Trxf plants (Figure S2).

Here, we demonstrated that SS activity in o/exTrxf plants was higher than in Wt plants (Figure 5a),
while VIGS-Trxf plants showed decreased SS capacity (Figure 5b). Moreover, the SS transcript
levels were unaltered in o/exTrxf plants when compared to Wt (Figure S1), which pointed towards a
posttranslational regulation of SSs by Trx f. It must be noted that there are five classes of SS in higher
plants (SSI, SSII, SSIII, SSIV, and GBSS) that are involved in starch biosynthesis. Based on mutant
phenotypes, each SS class appears to have a distinct role during amylopectin synthesis, although their
relative contribution varies in different tissues and among species [22]. SSI constitutes the major soluble
SS and it is a major determinant for the synthesis of amylopectin in Arabidopsis leaves [71]. Moreover,
based on the crystal structure of barley SSI, it was proposed that a disulfide bridge between two Cys
can be formed [72]. Interestingly, the ability of Arabidopsis SSI to be redox-activated was confirmed,
with Trx f being the most effective activator in vitro [37]. Supporting this idea, Arabidopsis plants
overexpressing Trx f from different species displayed increased SS expression and activity [73,74].
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Taken together, our results also support the view of a specific role of Trx f in the redox-regulation of
starch synthases in tobacco plants. Accordingly, the net starch synthesis was increased in o/exTrxf
plants, while the net starch degradation remained unaltered (Figure 9), which underpinned the idea
that Trx f seems to be mainly involved in starch biosynthesis modulation.

4. Materials and Methods

4.1. Plant Material and Growth Conditions

Arabidopsis ntrc coding sequence (GenBanK: NM_129731), excluding the putative transit peptide,
was amplified by PCR while using the primers described in Table S2 to generate o/exNTRC plants.
The amplified ntrc sequence, which included a 6xHis tag to facilitate protein purification, was cloned
into a pKS intermediate vector (Stratagene, La Jolla, CA, USA) for fusion to the promoter and 5′UTR
of the tobacco psbA gene. Finally, the NTRC expression cassette was introduced into the chloroplast
transformation vector pAF [75] to generate pAF-NTRC. Gold microprojectiles that were coated with
pAF-NTRC vector were bombarded into Nicotiana tabacum (Petite Havana SR1) in vitro-grown leaves,
as described previously [51]. Two rounds of selection and shoot development on RMOP medium
containing 500 mg/L spectinomycin were performed. Regenerated plants were transplanted and
grown in a phytotron (16 h light/8 h dark, 150 µmol m−2 s−1 and 28 ◦C) for homoplasmy confirmation
and seed production. Untransformed tobacco plants (Wt) and previously generated tobacco plants
overexpressing the NtTrxf sequence from the chloroplast genome [48] (referred to as o/exTrxf) were
also used in this study.

Silenced plants, in which the expression of ntrc or Trxf genes was strongly reduced, were also
generated in this study (referred to as VIGS-NTRC and VIGS-Trxf). To obtain these plants, tobacco
rattle virus-based VIGS was applied in N. benthamiana [76]. A database search (Nicotiana benthamiana
Genome and Transcriptome Sequencing Consortium: http://benthgenome.com) identified the tobacco
orthologous ntrc and Trxf genes in N. benthamiana by BLAST homology. In both cases, all the found
sequences had high similarity and a conserved region was used to specifically silence each gene.
ntrc and Trxf conserved fragments were amplified from RT-PCR-generated N. benthamiana cDNA while
using the primers described in Table S2 and cloned into the pTRV2 vector. pTRV1, which contains
the replication and movement viral genes, and pTRV2-NTRC or -Trxf derivatives were introduced
into Agrobacterium tumefaciens GV3101 and co-agroinfiltrated into 3–4-week-old N. benthamiana plants
according to a standard protocol [77,78]. The non-silencing TRV control, containing a 396-bp fragment
of the β-glucuronidase gene (GUS), was used as described previously [79]. The silencing of the
endogenous phytoene desaturase (PDS) gene, which causes photobleaching, was used as a positive
control for VIGS efficiency (VIGS-PDS). Silenced plants were grown in a phytotron in 16 h light/8
h dark light regime at 80 µmol m−2 s−1 and 24 ◦C. The plants were grown for three weeks prior to
analysis, allowing for the post-infiltration development of at least 2–3 full leaves.

4.2. DNA, RNA and Protein Analysis

A Southern blot analysis was performed to analyze homoplasmy in the T1 generation of plants
overexpressing NTRC. Leaf discs from o/exNTRC and wild-type (Wt) tobacco plants were finely
powdered in liquid nitrogen. Total plant DNA was extracted by using the cetyltrimethylammonium
bromide (CTAB) procedure [80]; 10 µg were digested with BglII, separated on a 0.8% (w/v) agarose gel,
transferred to a nylon membrane, and then hybridized with a 0.8 kb probe homologous to the flanking
sequences. Probe labelling and hybridization were performed while using the DIG High Prime DNA
Labelling and Detection Starter Kit II (Roche, Mannheim, Germany).

Analysis of ntrc and Trxf mRNA levels was carried out in VIGS-NTRC and VIGS-Trxf plants.
Total RNA from silenced leaf tissues was extracted using Trizol® Reagent (Thermo Fisher Scientific,
Waltham, CA, USA), while following the manufacturer’s protocol. The generation of cDNA and
RT-qPCR analysis were performed, as previously described [81]. The efficiency of the primers used in

http://benthgenome.com
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RT-qPCR was no lower than 98%. To normalize the mRNA levels of target genes between samples,
the relative actin mRNA levels were determined using actin-specific primers (Table S2) and a relative
quantification method [82].

Protein expression was analysed in the T1 generation of o/exNTRC homoplasmic plants, as well
as in VIGS plants. The total protein was extracted in Laemmli buffer (0.5 M Tris–HCl pH 6.5, 4% SDS,
20% glycerol, and 10% β-mercaptoethanol) and quantified while using the DC Protein Assay (Bio-Rad,
Hercules, CA, USA) with bovine serum albumin as a standard. The proteins were electrophoresed
on a 10% or 15% SDS-polyacrylamide gels for NTRC and Trx f, respectively, transferred to a PVDF
membrane and immunoblotted with specific antibodies: 1:750 dilution for NTRC [10] and 1:5000 for
Trx f [51]. A peroxidase-conjugated goat anti-rabbit antibody (1:10,000; Sigma-Aldrich, St Louis, MO,
USA) was used as secondary antibody. Detection was performed while using the ECL Prime detection
system (GE Healthcare, Buckinghamshire, UK).

4.3. Protein Purification and Activity Assays

Fully expanded leaves of the T1 generation of o/exNTRC homoplasmic plants were ground in
liquid nitrogen and homogenized 1:5 (w/v) in protein extraction buffer [20 mM sodium phosphate
pH 7.4, 500 mM NaCl, 0.1% (v/v) Triton X-100, including a cocktail of protease inhibitors from Roche
(Mannheim, Germany)]. The homogenate was incubated on ice for 45 min and cell debris was pelleted
by centrifugation (20,000× g, 20 min, 4 ◦C). Overexpressed NTRC was purified from plant protein
extracts by affinity chromatography on a Ni-NTA column (Qiagen, Hilden, Germany). The protein
content of eluates was measured with the DC Protein Assay (Bio-Rad, Hercules, CA, USA) and
the purity of NTRC was checked by SDS-PAGE and Coomassie Blue staining. The Trx activity of
the purified NTRC protein (2, 4, or 8 µM) was determined according to the DTT-dependent insulin
reduction assay [2], as described previously [83]. The NTR activity was determined by the reduction of
5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) [10].

4.4. Starch Determination

The starch determination was performed while using an amyloglucosidase-based test kit
(R-Biopharm AG, Darmstadt, Germany), according to the manufacturer’s instructions. Starch
content was analysed in fully-expanded young leaves of the T1 generation of o/exNTRC and o/exTrxf
homoplasmic plants harvested just before the inflorescence emission (seven-week-old plants) at the
end of the light (16 h) and dark (8 h) periods. Starch was also analyzed in silenced plants (VIGS-NTRC
and VIGS-Trxf) while using fully expanded leaves that were collected three weeks after infection.

For net starch synthesis and degradation determination, starch content at the end of the dark (8 h)
and the light (16 h) periods were measured and the slopes between both of those times were calculated.
For each determination, the paired samples were collected at the same position of the leaf blade at both
sides of the central vein.

4.5. Enzyme Activities Associated with Starch Synthesis and Degradation

Leaves from tobacco Wt, T1 generation of o/exNTRC and o/exTrxf homoplasmic plants, and N.
benthamiana VIGS-GUS, VIGS-NTRC, and VIGS-Trxf plants were harvested after 8 h illumination or 4 h
darkness and immediately frozen and ground in liquid nitrogen.

Enzymatic analysis of soluble starch synthase activity (not specific for any particular isoform)
was carried out in protein extracts from leaves sampled in the light according to [84]. Briefly, the
leaves were homogenized on 100 mM Tricine-NaOH (pH 8.0), 8 mM MgCl2, 2 mM EDTA, 12.5% (v/v)
glycerol, and 5% (w/v) insoluble polyvinylpyrrolidone-40, and then centrifuged at 10,000× g for 5 min
to obtain soluble protein in the resulted supernatant. The extract was incubated for 20 min at 30 ◦C in
a buffer containing 50 mM HEPES-NaOH (pH 7.4), 1.6 mM ADPglucose, and 2.5 mg/mL amylopectin.
The enzyme was inactivated by 30 s at 99 ◦C. Subsequently, the mixture was incubated with a solution
of 50 mM HEPES-NaOH (pH 7.4), 4mM PEP, 200 mM KC1, 10 mM MgCl2, and 12 units/mL of pyruvate
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kinase, and then incubated for 30 min at 30 ◦C. The mixture was then boiled for 30 s and centrifuged at
10,000× g for 5 min. The supernatant was mixed with a solution of 50 mM HEPES-NaOH (pH 7.4),
10 mM glucose, 20 mM MgCl2, and 2 mM NADP. The enzymic activity was measured as the increase
in absorbance of 340 nm after the addition of hexokinase (4.5 units/mL) and glucose-6-phosphate
dehydrogenase (1 unit/mL). One unit of activity was defined as the amount of enzyme causing an
increase of one unit per min in absorbance at 340 nm.

The activities of AMY and BAM were measured in leaves harvested in the dark while using the
Ceralpha® and Betamyl-3® assay kits (Megazyme, Bray, Ireland). Both of the assays are highly specific
and selective for each enzyme and avoid interferences from DBEs. For LDA assay, the PullG6 Method
(Megazyme, Bray, Ireland) was used according to the manufacturer’s instructions in leaves that were
harvested in dark conditions.

4.6. AGPB Redox Status

The AGPase redox status was determined by immunoblotting, analysing the degree of AGPB
monomerization in leaf samples that were collected at the end of the light (16 h) and dark (8 h)
periods. Protein extraction was performed, as previously described [27]. Proteins from 1 mg of fresh
weight were subjected to 10% non-reducing SDS-PAGE, transferred to nitrocellulose membrane, and
then probed with a specific AGPase antibody (Agrisera AB, Vännäs, Sweden) at a dilution of 1:1000.
A peroxidase-conjugated goat anti-rabbit antibody (Sigma-Aldrich, Saint Louis, MO, USA) at a 1:10,000
dilution was used as secondary antibody.

4.7. Zymograms of Starch Hydrolytic Activities

The leaf samples (300 mg) harvested after 8 h light or 4 h dark were ground in liquid nitrogen,
homogenized in 1 mL of soluble protein extraction buffer (50 mM Hepes pH 7.5, 2 mM EDTA,
and 10% glycerol), and then incubated for 5 min on ice. The supernatant was obtained after 10 min
of centrifugation at 14,000× g at 4 ◦C and soluble protein concentration was measured by Bradford
assay (Bio-Rad, Hercules, CA, USA) while using bovine serum albumin as a standard. Protein extracts
(35 µg) were incubated in the presence or absence of 40 mM DTT or 200 µM CuCl2 for 2 h on ice in
the dark and loaded on native PAGE gel (7.5% acrylamide) containing 0.2% (w/v) potato amylopectin
(Sigma-Aldrich, Saint Louis, MO, USA) as substrate in the separating gel. After migration (under
native condition for 4 h at 4 ◦C at 15 V.cm−1), the gels were incubated overnight at room temperature
in 100 mM Tris-HCl pH 7, 1 mM MgCl2, and 1 mM CaCl2 containing buffer. Activities were revealed
by iodine staining (Lugol solution; Sigma-Aldrich, Saint Louis, MO, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/12/543/s1,
Figure S1: RT-qPCR analysis of SS1, SS3, ISA3 and LDA expression in tobacco Wt, o/exTrxf and o/exNTRC
homoplasmic plants (T1 generation), Figure S2: Redox-activation ofAGPase in VIGS-Trxf N. benthamiana leaves,
Figure S3: Redox status of 2-Cys Prx in the T1 generation of o/exNTRC homoplasmic plants, Table S1: Phenotypic
characterization of the T1 generation of o/exNTRC homoplasmic plants grown in phytotron under standard
conditions at different developmental stages, Table S2: List of primers used in this work.
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