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Abstract 

Background  The opioid crisis remains one of the most daunting and complex public health problems in the United 
States. This study investigates the national epidemic by analyzing vulnerability profiles of three key factors: opioid-
related mortality rates, opioid prescription dispensing rates, and disability rank ordered rates.

Methods  This study utilizes county level data, spanning the years 2014 through 2020, on the rates of opioid-related 
mortality, opioid prescription dispensing, and disability. To successfully estimate and predict trends in these opioid-
related factors, we augment the Kalman Filter with a novel spatial component. To define opioid vulnerability profiles, 
we create heat maps of our filter’s predicted rates across the nation’s counties and identify the hotspots. In this con-
text, hotspots are defined on a year-by-year basis as counties with rates in the top 5% nationally.

Results  Our spatial Kalman filter demonstrates strong predictive performance. From 2014 to 2018, these predictions 
highlight consistent spatiotemporal patterns across all three factors, with Appalachia distinguished as the nation’s 
most vulnerable region. Starting in 2019 however, the dispensing rate profiles undergo a dramatic and chaotic shift.

Conclusions  The initial primary drivers of opioid abuse in the Appalachian region were likely prescription opioids; 
however, it now appears that abuse is sustained by illegal drugs. Additionally, we find that the disabled subpopula-
tion may be more at risk of opioid-related mortality than the general population. Public health initiatives must extend 
beyond controlling prescription practices to address the transition to and impact of illicit drug use.
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Introduction
Propelled by prescription practices and the subsequent 
misuse of opioids, the United States continues to struggle 
with the opioid crisis [1–3]. The crisis was ignited in the 
1990s with the aggressive prescribing of potent opioids 
like OxyContin. Despite the potential for dependency 
and abuse, these drugs were marketed with the promise 
of being non-addictive which led to an increase in pre-
scription opioid consumption and significantly contrib-
uted to the epidemic’s progression [1–3]. As the crisis 
continues to unfold, the medical community and regu-
latory bodies face the difficult task of balancing effec-
tive chronic pain management against the risks of opioid 
abuse [4].

In efforts to find this balance, certain measures, like 
prescription drug monitoring programs [5], have effec-
tively reduced the national rate of opioid prescriptions 
by 44.4 percent from 257.9 million in 2011 to 143.4 mil-
lion in 2020 [6, 7]. Despite this decline however, opioid-
related overdose deaths have risen, likely driven by the 
increasing prevalence of illicit opioids such as fentanyl 
and heroin [3, 8]. Nevertheless, such statistics may belie 
the more insidious ongoing impact of prescription opi-
oids. For example, data has suggested some patients can 
transition from medically prescribed opioids to illicit 
use or develop a substance use disorder [8, 9]. Such find-
ings highlight the complexity of the opioid epidemic and 
underscore the necessity of a continued investigation into 
the evolving role of prescription opioids [10–12].

The complexity of the opioid crisis is further com-
pounded by the fact that certain subpopulations are 
more prone to opioid abuse than the general population, 
making it challenging to develop uniform prescription 
practices. For instance, research has indicated that indi-
viduals with disabilities are more likely to misuse opi-
oids and develop opioid use disorders [13]. Yet, they are 
often less likely to receive adequate treatment compared 
to those without disabilities [13]. For the aforementioned 
reasons, our study chose to survey the national opioid 
crisis by exploring three key factors: opioid-related mor-
tality rates, opioid prescription dispensing rates, and dis-
ability rank ordered rates. We sought to uncover insights 
into each individual factor, as well as their potential 
interrelationships.

For data estimation and prediction, the cornerstone of 
our analysis utilizes a Kalman filter [14, 15]. The Kalman 
filter uses a series of observations to estimate unknown 
parameters and has been applied in many diverse set-
tings, from navigating astronauts to the moon to real-
time vehicle tracking [16, 17]. Despite its versatility, 
such applications primarily focus on temporal statisti-
cal modeling, as the method traditionally lacks a spatial 
framework. To overcome this limitation, we propose a 

novel approach to augmenting the Kalman filter with a 
spatial component. This yields a principled framework to 
capture the complex geographical interrelations among 
counties within the United State’s diverse landscape, 
thereby improving the accuracy of our opioid-related 
data estimations and predictions.

To define opioid vulnerability profiles, we create heat 
maps of our filter’s predicted rates across the nation’s 
counties and identify the hotspots. In this context, hot-
spots are defined on a year-by-year basis as counties 
with rates in the top 5% nationally. Multiple contiguous 
hotspot counties are referred to as clusters of hotspots 
and indicate the most vulnerable areas in the nation. 
Although many studies have examined spatiotemporal 
variations in opioid-related outcomes, most have concen-
trated on specific states or localized areas, limiting their 
ability to capture national patterns and trends [18–23]. 
Additionally, much of this research draws from clinical 
data sources, such as hospital records or autopsy reports, 
which, while valuable, may not fully capture the broader 
public health dynamics at play. To address these gaps, we 
examine the opioid crisis from a nationwide public health 
perspective, leveraging county-level data to thoroughly 
investigate community-level vulnerabilities across the 
United States.

This study utilizes rates of opioid-related mortality, opi-
oid prescription dispensing, and disability aggregated at 
the county level spanning the years 2014 through 2020. 
The final year in the study is the latest point available 
for comprehensive data collection across all datasets, 
but also stands as a pivotal moment in public health due 
to the COVID-19 pandemic. Although the impact of 
COVID-19 on the opioid crisis and its disruption of data 
collection are outside the scope of this study, it is impor-
tant to acknowledge that the challenges associated with 
the opioid crisis were notably exacerbated by the 2020 
pandemic [24–26]. Consequently, 2020 is a critical year 
for examination within the context of the opioid crisis.

This paper begins by framing our study within the 
scope of existing research, followed by a detailed exposi-
tion of the data and methodologies employed. We then 
articulate our findings before delving into a discussion 
that situates these findings within the wider discourse on 
managing the opioid crisis and the potential implications 
for future public health strategies. The code to reproduce 
our results is available in the Github repository linked in 
the ‘Availability of data and materials’ section.

Related works
The intertwined dynamics of opioid mortality, prescrip-
tion rates, and social vulnerability has been explored 
in previous research [27–30]. Such studies have con-
cluded that the crisis’s roots extend beyond prescription 
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practices to broader socioenvironmental issues and advo-
cate for addressing structural addiction determinants [31, 
32]. Specifically, factors such as disability, demographic 
status, lack of health insurance, and low income have 
been identified as significant predictors of opioid mis-
use and mortality [33–35]. Building upon such previous 
insights, our study offers novel geospatial evidence to the 
discussion.

The Kalman filter uses a series of observations to esti-
mate unknown parameters and has been applied in many 
diverse settings from navigating astronauts to the moon 
to real-time vehicle tracking [14–17]. In such Kalman 
filter applications, numerous methods have been inno-
vated to integrate spatial components into the filter 
[36–39]. For example, one study integrated the Kalman 
filter with the Kriging method; while another utilized the 
Kalman filter in conjunction with a separate spatiotem-
poral model. Extending this line of innovation, our study 
incorporates a spatial component through the process 
covariance matrix. Within this matrix, an exponential 
decay function is used to model spatial correlations. Our 
novel and independently derived approach bears simi-
larity to the one adopted by Rougier et  al. [40] in 2022; 
they however utilized an alternative function to compute 
covariance.

Heat maps are widely recognized and utilized for their 
efficacy in visualizing data intensity across regions. They 
translate complex datasets into choropleth maps. These 
maps facilitate an intuitive grasp of the varied vulner-
ability levels across a geographical landscape [41]. To 
further delineate such landscapes, hotspot identification 
is frequently used. Its utilization can play a pivotal role 
in epidemiology and public health research for pinpoint-
ing areas that are disproportionately impacted by various 
health issues [42–45]. For example, advanced Bayesian 
models have identified Ohio’s most vulnerable hotspots 
to opioid overdose mortality [23], and spacetime ran-
dom forest models have unraveled the complex geo-
spatial patterns of opioid-related crime in Chicago [46]. 
Our study highlights the public health utility of integrat-
ing the Kalman filter with both heat maps and hotspot 
identification.

Methods
Data
This study examines the rates of opioid-related mortality, 
opioid prescription dispensing, and disability across the 
United States from 2014 to 2020. It is important to note 
that each dataset was collected differently: the opioid-
related mortality rates are measured per 100,000 persons, 
the opioid prescription dispensing rates are measured 
per 100 persons, and the disability rank ordered rates are 
measured as percentile ranks from 0 to 100. Throughout 

our study period, the county structure of the United 
States changed due to the formation of new counties and 
the reconfiguration of existing ones [47]. However, the 
Kalman filter requires a fixed state space for its predic-
tions, so our data has been curated to reflect the 2020 
county structure, which includes 3,143 counties. This 
step ensures that we provide the most up-to-date and 
cohesive representation of the national county landscape 
with respect to the data. Additionally, at most four coun-
ties were added or removed in any given year through-
out the study period, meaning this curation to the 2020 
structure had minimal impact on our overall results.

The drug mortality data were sourced from HepVu 
[48], originally collected by the Centers for Disease Con-
trol and Prevention’s (CDC) National Center for Health 
Statistics and the National Vital Statistics System. These 
data represent narcotic overdose deaths per 100,000 per-
sons, classified according to the International Classifica-
tion of Diseases, Tenth Revision (ICD-10) codes [49]. It 
is important to understand that these rates serve as indi-
cators of opioid misuse rather than exact counts of opi-
oid overdose mortality. Also sourced from the CDC are 
the opioid dispensing rates; these data reflect the rates of 
retail opioid prescriptions dispensed per 100 persons per 
year [50].

The disability rates utilized in this study are measured 
as percentile rank estimates of the civilian non-institu-
tionalized population with a disability in each county. 
These data were sourced from the CDC and Agency for 
Toxic Substances and Disease Registry’s Social Vulner-
ability Index (SVI) which utilizes data from the American 
Community Survey to assess the resilience of communi-
ties to external stresses on human health [51]. Given the 
SVI’s biennial publication, we impute data for the inter-
vening years by calculating half the difference between 
consecutive biennial data points and adding it to the 
earlier year’s rates. This method, with the understanding 
that yearly rate fluctuations are modest, provided a viable 
way to analyze the impact of disability rank ordered rates 
on the national opioid crisis throughout the entire study 
period. Notably, Rio Arriba County, New Mexico, experi-
enced a data collection error in 2018 [52]. Therefore, for 
this county, we employed a more granular approach by 
taking a quarter of the difference between the 2016 and 
2020 data points and adding it consecutively to each year 
starting in 2016.

For counties with missing annual data rates, we 
assigned a value of 0 to those counties. This approach was 
chosen over data imputation for several reasons. Firstly, 
the disability and mortality rate data had minimal miss-
ing values. The disability rate data had no missing values 
for any year in the study. While the mortality rate data 
was missing values for only eleven counties each year, 
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representing just 0.003% of the data annually. Moreover, 
the set of missing counties in the mortality rate data was 
consistent across all years.

The dispensing rate data, however, presented more 
challenges with missing values: 184 counties in 2014, 181 
in 2015, 182 in 2016, 189 in 2017, 263 in 2018, 49 in 2019, 
and 62 in 2020. The early years of the study had a higher 
incidence of missing data, up to 8.3%, but the situation 
improved significantly in 2019 and 2020, with missing 
data reduced to a maximum of 1.9%. Data quality issues in 
opioid regulation have been previously documented as a 
significant problem [53]. Additionally, since the writing of 
this manuscript, the CDC webpage where the opioid dis-
pensing data were originally obtained has been updated 
with data from a new source and no longer includes any 
data prior to 2019. This poses challenges to potential data 
handling methods; to ensure consistency, we decided to 
assign missing values in the prescription rate dataset to 0.

While assigning a value of 0 to missing data does intro-
duce a bias, this bias is minimal in the context of our 
analysis. Our primary focus is on identifying the most 
vulnerable regions with the highest rates nationwide. 
By setting missing rates to 0, we exclude these counties 
from being identified as vulnerable. This approach does 
carry the risk of overlooking some potentially vulnerable 
counties due to missing data, but it ensures that we do 
not artificially inflate the vulnerability of a region. More 
importantly, it prevents genuinely critical areas with 
available data from being overshadowed.

Kalman filter model
The Kalman filter operates on two principal equations: 
the state update equation, which models the evolution of 
a system’s state over time, and the observation equation, 
which links the system’s true state to observed data. These 
enable the Kalman filter to refine its estimates by updat-
ing previous predictions with new data. Opioid-related 
county-level data inherently possess both geospatial and 
temporal dimensions, making our data well-suited for 
the Kalman filter. Its inherent temporal nature allows it 
to leverage the evolution of opioid-related data over time, 
uncovering temporal patterns and trends. The spatial 
dimension is incorporated through the filter’s covariance 
matrix, capturing the spatial correlations between counties 
in the United States. A detailed mathematical exposition of 
the Kalman filter algorithm is provided in Appendix 1.

We now discuss our framework for understanding the 
dynamics driving the opioid crisis and how it aligns with 
the Kalman filter. In this framework, we analyze opioid 
trajectories in the United States at the county level, treat-
ing the state of the nation in any given year t as a random 
vector, Nt ∈ R

d , where d is the number of counties in the 

nation. The nation is modeled as evolving from its imme-
diate past state, Nt−1 , by the following equation:

The normal random vector εt represents the change in 
the nation’s state from one year to the next.

The process covariance matrix Q is specifically 
designed to capture the spatial correlations between 
counties. The entries of Q = [qij] are inversely propor-
tional to their respective county’s geographical centers of 
population [54] xi and xj , computed through an exponen-
tial decay function:

Here qij denotes the correlation between two counties, 
d(xi, xj) represents the geographical distance between xi 
and xj measured using the haversine function, and b > 0 
is the decay rate that modulates the speed at which corre-
lation decreases with distance. This decay rate is tailored 
to each factor in the data independently; and ensures that 
the correlation qij diminishes to 50% at a predetermined 
distance threshold. This threshold is derived from the 
approximate diameter of the most visually pronounced 
vulnerable region identified in the heat map visualiza-
tions of the data. In this way, we ensure a higher cor-
relation among proximate counties and a significantly 
reduced correlation for more distant ones. Further details 
on the parameter values utilized in our study are avail-
able in the Python code which constructs the covariance 
matrices for each dataset. This code can be found in the 
linked Github repository.

We selected the exponential covariance function over 
alternatives, such as the Gaussian, because of its ability to 
better capture the complex spatial patterns observed in 
our data. Opioid-related outcomes often exhibit abrupt 
changes between neighboring counties that a Gauss-
ian function, which enforces smoother spatial transi-
tions, may fail to capture. The exponential decay function 
accommodates these sharp transitions while preserving 
long-range correlations, offering a better fit for the non-
smooth spatial variations seen in the heat maps. Addi-
tionally, the Gaussian function’s light tails make it less 
effective at capturing rare events, which are important 
when modeling abrupt regional disparities in opioid-
related outcomes.

In constructing the covariance matrix, we used dis-
tances between county centroids rather than adjacency-
based connections to better capture continuous spatial 
relationships across U.S. counties. Adjacency-based 
models define spatial correlation strictly through shared 
borders, imposing a binary structure where counties 
are either connected or not, potentially oversimplifying 

(1)Nt = Nt−1 + εt , εt ∼ N (0,Q).

qij = exp{−b · d(xi, xj)}.
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complex spatial dependencies. This can be particularly 
limiting for opioid-related outcomes, which may be influ-
enced by broader regional dynamics extending beyond 
immediate neighbors. By leveraging centroid distances 
between county population centers, our approach mod-
els gradual changes in spatial correlation across varying 
distances. Moreover, given the significant heterogeneity 
in county sizes and shapes across the United States, cen-
troid-based distances provide a consistent and scalable 
measure of proximity.

Our observed data, i.e., the rates of opioid-related mor-
tality, prescriptions and disability in year t, can be mod-
eled, with some degree of error, as measurements of the 
true underlying state. Thus, letting Dt symbolize the 
observed data for an opioid-related variable in year t, the 
observation can be modeled as:

The normal random vector ηt represents the meas-
urement error in data collection, reporting, or other 
discrepancies from the true state. R is the observation 
covariance matrix and quantifies the uncertainty in the 
data measurements. To choose a data uncertainty level 
for our study, we conducted a sensitivity analysis. This 
analysis examined various uncertainty levels, specifically 
1%, 3%, and 5%, by evaluating the respective changes 
in the model’s predictive performance. Optimal pre-
dictive accuracy was found with a 1% data uncertainty 
level. Consequently, a 1% uncertainty assumption was 
adopted for all data measurements throughout our study. 
The results of this sensitivity analysis are summarized in 
Appendix 2.

We employed the Kalman filter to model the dynam-
ics of the opioid crisis by selecting Eq. (1) as the state 
update equation and Eq. (2) as the observation equation. 
This model allows for continual updates to predictions as 
new data becomes available, which is vital for addressing 
the complex and evolving nature of the opioid epidemic. 
By enabling timely identification of emerging trends and 
patterns, this approach can inform and evaluate public 
health strategies and interventions.

Heat maps and hotspot identification
To construct heat maps of the distribution of rates across 
the nation’s counties and identify the hotspots, we lever-
age the filter’s predictions in each year by calculating the 
cumulative distribution function values for each county. 
These values are then used to categorize the counties 
into 20 distinct vulnerability levels, increasing in evenly 
spaced 5% intervals. This results in a color gradient on 
the heat maps, transitioning from dark blue for the least 
vulnerable counties with the lowest rates to dark red for 
the most vulnerable counties with the highest rates. The 

(2)Dt = Nt + ηt , ηt ∼ N (0,R).

most vulnerable counties, i.e., the counties whose pre-
dicted rates surpass the 95th percentile of the fitted nor-
mal distributions, are identified on a year-by-year basis 
and defined as the hotspots. Multiple contiguous hotspot 
counties are referred to as clusters of hotspots and indi-
cate the most vulnerable areas in the nation.

Results
Efficacy analysis of the filter’s performance in the 2020 
prediction year
Presented here are the results for our spatial Kalman fil-
ter which was initialized with 2014 data and trained on 
data from 2015 to 2019 before generating predictions for 
2020. Training, in this context, means allowing the fil-
ter to refine its estimates using the observed data; while 
its estimates were made without further refinement in 
the 2020 prediction year. We chose to predict for only a 
single year to prevent the accumulation of large errors 
inherent in multi-year forecasting. Long-term forecast-
ing is accommodated by the filter’s design however, and 
investigated in Appendix 3. In this investigation, the effi-
cacy of multi-year predictions from the filter is examined 
by comparing its performance when trained on progres-
sively less data to that of the fully trained filter discussed 
here. In Appendix 4, we explore how shifting the ini-
tialization year affects the model’s predictions, assessing 
whether more recent training data improves forecast-
ing accuracy. Presented in this section are the efficacy 
results for the filter’s 2020 predictions. For the remaining 
years in the study, the efficacy metrics are summarized 
in Appendix 5. In addition, the corresponding accuracy 
maps and error histograms can be found in the supple-
mentary materials.

The efficacy of our spatial Kalman filter in predicting 
county-level rates is quantitatively assessed using both 
accuracy and error metrics on a national scale. The accu-
racy metric results are visualized using accuracy maps; 
while error histograms are used to display the results of 
the error metrics. The metric used to calculate the error 
for each county is the absolute residual. The largest abso-
lute residual, stemming from the filter’s worst annual 
prediction, is then used to assess general accuracy in the 
following way: each county’s error is normalized by the 
highest annual error observed nationwide. In addition 
to general accuracy, we also compute hotspot accuracy. 
Hotspots are defined on a year-by-year basis as counties 
with rates in the top 5% nationally. The number of hot-
spots correctly predicted by the filter divided by the num-
ber of actual hotspots is defined as the hotspot accuracy.

For opioid-related mortality rates, measured per 
100,000 persons, the filter achieved an average gen-
eral accuracy of 94.00%. The national accuracy distri-
bution is displayed in Fig.  1. This map is characterized 
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predominantly by green hues, indicating high predictive 
accuracy across the nation. A distinct region of lower 
accuracy, marked by yellow and red hues, is found in 
the southern part of West Virginia. This region experi-
enced significant jumps in mortality rates from 2019 to 
2020. These large jumps were difficult for the filter to 
predict and led to these distinguishable errors. The range 
of errors for this dataset, shown in Fig. 2, illustrates that 
our model’s mortality rate estimates can deviate from 
the actual rates by an average of 5.20 deaths per 100,000 
persons, with a maximum deviation of 86.61 deaths per 
100,000 persons in the worst case. Additionally, for this 

dataset, the filter achieved a hotspot accuracy of 70.00%. 
The hotspots which were correctly identified and those 
that were missed are shown in Fig. 3.

For the disability rank ordered rates, measured as 
percentile ranks from 0 to 100, our spatial Kalman fil-
ter demonstrated excellent predictive performance. The 
range of errors, shown in Fig.  2, demonstrates that our 
model’s disability rank ordered rate estimates can devi-
ate from the actual rank ordered rates by an average of 
1.84 percentile rank points, with a maximum deviation 
of 15.97 percentile rank points in the worst case. This 
efficacy of the filter is also highlighted by its high hotspot 

Fig. 1  General accuracy maps for the 2020 a mortality, b disability, and c dispensing rate predictions. The maps are color-coded to represent 
increasing intervals of accuracy by 5%, starting from dark red for the least accurate predictions, and progressing to dark green for the most accurate 
predictions. Figures are best viewed online in color

Fig. 2  Histograms displaying the distribution of the filter’s absolute errors for the 2020 a mortality, b disability, and c dispensing rate predictions

Fig. 3  Hotspot accuracy maps for the 2020 a mortality, b disability, and c dispensing rate predictions. Orange colored counties represent accurately 
predicted hotspots, whereas those in black mark hotspots missed by our predictions. Figures are best viewed online in color
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accuracy of 94.19%. The correctly predicted hotspots and 
those that were missed are shown in Fig. 3. On the other 
hand, the average general accuracy score of 88.49% may 
not fully convey the filter’s effectiveness on this dataset. 
This is because the maximum annual error of 15.97 used 
for normalization on this dataset results in even rela-
tively small errors appearing more pronounced. This is 
visually evident in Fig. 1; where we observe more yellow 
tones, denoting this magnification of smaller errors.

For the prescription dispensing rates, measured per 
100 persons, the filter’s predictions attained an aver-
age general accuracy of 91.61%. The national accuracy 
distribution is visualized in Fig.  1. This map is pre-
dominantly green; but upon close inspection, two red 
counties stand out: Union, South Dakota, and Montour, 
Pennsylvania. These counties experienced an extraor-
dinary increase of over 350% in their dispensing rates 
from 2018 to 2019. Based on this surge, the filter pre-
dicted similarly high increases from 2019 to 2020. 
However, the increases in 2020 were far less dramatic, 
leading to these significant prediction errors. The range 
of errors for this dataset, shown in Fig. 2, illustrates that 
our model’s dispensing rate estimates can deviate from 
the actual dispensing rates by an average of 21.02 pre-
scriptions per 100 persons, with a maximum deviation 
of 250.67 prescriptions per 100 persons in the worst 
case. Additionally, the filter’s hotspot accuracy on this 
dataset was 68.64%. The correctly identified hotspots 
and those that were missed are shown in Fig. 3.

For context on the model’s performance across the 
different datasets, Table  3 in Appendix 6 presents the 
summary statistics for each factor across the entire 
study period. These statistics highlight the differences 
in data variability within each dataset, which can help 
explain the observed differences in model efficacy 
across the different datasets. The disability rates, being 
percentile rank ordered, form a more uniform and less 
variable dataset. In contrast, the prescription dispens-
ing rates are inherently more chaotic. As shown in 
Table 3 in Appendix 6, the dispensing rates consistently 
exhibit the highest values and standard deviations each 
year. The variability within the mortality rates dataset 
falls somewhere between these two extremes, it dis-
plays more structure than the chaotic dispensing rates 
but lacks the ordered nature of the rank-ordered dis-
ability rates. These inherent differences in data distri-
bution and variability likely contribute to the observed 
variation in model performance across the three 
factors.

National opioid vulnerability profiles
In this section, we present the vulnerability profiles 
uncovered by our spatial Kalman filter’s predictions. 

Before proceeding to the results, it is important to clarify 
how the predictions used to generate these vulnerabil-
ity profiles were produced. For the training years (2014-
2019), the spatial Kalman filter updates its forecasts by 
incorporating the actual data from each year, resulting 
in calibrated estimates. In contrast, the 2020 predictions 
represent raw forecasts, as the model generates them 
solely based on patterns learned from the 2015-2019 
training period, without access to 2020 data for adjust-
ment. In all cases, yearly data were fed to the model 
sequentially.

The heat maps and hotspot maps for the rates of mor-
tality, disability and dispensing are showcased in Figs. 4, 5 
and 6, respectively. To illustrate the temporal evolution of 
each factor, the figures present the most significant maps. 
For both the mortality and disability rate predictions, 
we highlight maps from the years 2014, 2017, and 2020, 
while for the dispensing rate predictions, we focus on the 
years 2014, 2018, and 2019. Maps for the remaining years 
in the study can be found in the images folder of the sup-
plementary materials.

The vulnerability profiles for the opioid-related 
mortality rates seen in Fig.  4 exhibit consistent spati-
otemporal patterns. Across these profiles, widespread 
vulnerability is consistently found with pronounced 
differences between regions. In both the Midwest and 
Northern Great Plains regions, there are recurring 
pockets of lower mortality rates, suggesting areas of 
resilience. Conversely, the Appalachian, Southwestern, 
Atlantic, and Gulf Coast regions exhibit pronounced 
vulnerability each year. Within these regions, Appala-
chia, highlighted in blue on each hotspot map, consist-
ently emerges as a critical area of concern. Year after 
year, Appalachia contains the most visually evident 
cluster of hotspots.

The vulnerability profiles for the disability rank-
ordered rates seen in Fig.  5 also exhibit consistent 
spatiotemporal patterns. Across these profiles, the 
Northern Great Plains, Pacific Southwest, and pock-
ets of the Atlantic Coast repeatedly display notably 
lower rates of disability, indicating regions of relative 
resilience. In contrast, significant vulnerable areas are 
consistently found primarily in the Pacific Northwest, 
Southwest, Southeast, and Appalachian regions. Within 
these regions, the hotspots are dispersed each year but 
Appalachia repeatedly contains the most visually evi-
dent cluster. This strongly suggests that the Appalachian 
region not only contains the nation’s most vulnerable 
counties to opioid-related mortality rates, but also to 
the disability rank-ordered rates.

The vulnerability profiles for the prescription dis-
pensing rates seen in Fig.  6 reveal a more complex 
pattern. In 2014, although we see some clusters of 



Page 8 of 16Deas et al. BMC Public Health         (2025) 25:1759 

contiguous counties with high rates in the Pacific 
Northwest and Southeast, the counties manifesting 
the highest rates nationwide are primarily found in the 
Appalachian region. This is seen in the 2014 hotspot 
map and marks Appalachia as the nation’s most vul-
nerable region in the first year of our study. The pat-
tern seen in the 2014 profile persists with only slight 
changes until 2018, however, beginning in 2019 the 

pattern changes significantly. It is characterized by a 
chaotic nature with hotspots erratically spread across 
the nation and no visually noteworthy clusters of con-
tiguous vulnerable or resilient counties. Additionally, 
starting in 2019, we see a noticeable drop in dispensing 
rates nationwide and the clusters of hotspots which 
distinguished the Appalachian region’s vulnerability 
dissolve.

Fig. 4  Heat maps and hotspot maps depicting the spatial Kalman filter’s predicted opioid-related mortality rates for a 2014, b 2017, and c 2020. 
These maps represent model-generated estimates rather than observed data. Counties with missing data are colored in black. Figures are best 
viewed online in color

Fig. 5  Heat maps and hotspot maps depicting the spatial Kalman filter’s predicted disability rank-ordered rates for a 2014, b 2017, and c 2020. 
These maps represent model-generated estimates rather than observed data. Counties with missing data are colored in black. Figures are best 
viewed online in color
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Discussion
Leveraging the accurate predictions from our spatial 
Kalman filter, we analyzed the spatiotemporal patterns 
of the opioid crisis for the years 2014 through 2020 via 
constructed vulnerability profiles for three key factors: 
opioid-related mortality rates, opioid-dispensing rates, 
and disability rank ordered rates. Before analyzing these 
results in detail, it is important to validate our mode-
ling approach by comparing the spatial Kalman filter to 
its generic counterpart. To ensure a fair evaluation, we 
assessed absolute errors rather than accuracy-based met-
rics. Accuracy measures can be disproportionately influ-
enced by extreme values, meaning a model with a single 
large maximum error could misleadingly appear to have 
higher accuracy despite performing worse overall. By 
focusing on absolute errors, we provide a more stable and 
reliable comparison between the two models.

Across nearly all datasets and years, our spatial Kalman 
filter outperformed the generic Kalman filter, yielding 
lower absolute errors in every case except for the 2020 
predictions of prescription dispensing rates. This excep-
tion is notable because the dispensing rates dataset 
exhibited substantial variability and lacked a clear spa-
tial structure, perhaps making it less suited for a spatially 
informed modeling approach. The spatial Kalman filter is 
designed to capture underlying geographic correlations, 
and its advantage is most pronounced when such pat-
terns exist. This suggests that while the spatial Kalman 
filter is a powerful tool for modeling spatiotemporal pro-
cesses, its effectiveness may depend on the presence of 
meaningful spatial patterns in the data.

Figure 9 in Appendix 7 presents a comparison of error 
distributions for four years in the study period, demon-
strating the superior performance of our spatial Kalman 
filter in all but the case discussed above. Additional histo-
gram comparisons for the full study period can be found 
in the accompanying GitHub repository. Overall, our 
spatial Kalman filter proves to be a more effective mode-
ling approach than its generic counterpart. By integrating 
both temporal and geographic dependencies, the spatial 
Kalman filter enables more precise estimations, making it 
a valuable tool for studying complex datasets with inher-
ent spatial patterns. The methodology we present can be 
broadly applied to other datasets where spatial relation-
ships play a critical role and has broader utility beyond 
the opioid-related outcomes analyzed in this study.

Having established the spatial Kalman filter as a more 
effective framework than its generic counterpart, we now 
turn to the opioid vulnerability profiles that emerged 
from its predictions. The analysis of profiles for the mor-
tality rates revealed widespread national vulnerability 
where the Appalachian region was repeatedly distin-
guished as the nation’s most vulnerable area to opioid-
related mortality rates. Correspondingly, the analysis 
examining the disability rank ordered rate profiles also 
uncovered widespread vulnerability where Appalachia 
was again repeatedly pinpointed as the nation’s most vul-
nerable area to disability rank ordered rates. This align-
ment in the patterns for both disability and mortality 
profiles suggests that amidst the general fabric of the opi-
oid crisis, the disabled subpopulation may be more at risk 
of opioid-related mortality than the general population. 

Fig. 6  Heat maps and hotspot maps depicting the spatial Kalman filter’s predicted prescription opioid dispensing rates for a 2014, b 2018, and c 
2019. These maps represent model-generated estimates rather than observed data. Counties with missing data are colored in black. Figures are 
best viewed online in color
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This finding corroborates previous work [31, 33, 55], and 
underscores the disproportionate outcomes of the opioid 
crisis.

Additionally, the dual identification of Appalachia as 
the nation’s most vulnerable area to both disability and 
mortality rates highlights the pressing need for support 
in this region. Appalachia faces significant challenges 
regarding resources available for disabled individuals. 
This region has a lower supply of healthcare professionals 
compared to the United States as a whole, including pri-
mary care physicians, mental health providers, specialty 
physicians, and dentists [56]. One possible public health 
intervention to mitigating the disproportinate impact on 
Appalachia could focus on improving access to health-
care and disability services. This could include increasing 
the number of healthcare providers, integrating disabil-
ity support services into primary care, and ensuring that 
residents have access to rehabilitation and support pro-
grams. Additionally, policies aimed at addressing some of 
the underlying social determinants of health, such as 
lower median household incomes and higher poverty 
rates, which are also prevalent in Appalachia, could sig-
nificantly improve the health and well-being of disabled 
individuals in the region [56].

Contrasting sharply with the patterns observed for the 
disability and mortality rates, our predicted prescrip-
tion dispensing rates revealed more complex vulner-
ability profiles. From 2014 through 2018, these profiles 
were characterized by a consistent pattern which clearly 
distinguished Appalachia as the nation’s most vulnerable 
region. While, beginning in 2019, the hotspot clusters 
marking the Appalachian region’s vulnerability dissolved 
and we saw a noticeable drop in national dispensing 
rates. These changes are likely the result of several signifi-
cant pieces of legislation addressing prescription opioids 
which were enacted in 2019. One notable example is the 
John S. McCain Opioid Addiction Prevention Act [57], 
which aimed to combat opioid addiction and reduce the 
over-prescription of opioids by limiting initial opioid pre-
scriptions for acute pain to a seven-day supply.

Starting in 2019, the dispensing profiles were not 
marked by any visually discernible spatial patterns, 
lacked notable clusters of hotspots, and generally exhib-
ited more resilience than vulnerability across the nation. 
This suggests that current difficulties with opioid pre-
scription practices are dispersed and not restricted to 
localized areas. Additionally, the observed resilient land-
scape implies that current prescription practices may 
not be the immediate focal point of concern. In fact, the 
lack of alignment between the vulnerability profiles of 
prescription and mortality rates indicates that prescrip-
tion opioids might not be the primary current drivers of 
opioid-related fatalities nationwide. A conclusion that 

aligns with previous research [31, 32], and is additionally 
bolstered by contrasting national trends observed during 
our study period: despite a sharp 52.84% drop in dispens-
ing rates from 2014 to 2020, opioid mortality surged by 
73.73%.

At the beginning of our study period, from 2014 to 
2018, the vulnerability profiles for opioid-related mor-
tality rates, opioid-dispensing rates, and disability rank-
ordered rates all consistently identified the Appalachian 
region as the nation’s most vulnerable area. However, 
beginning in 2019, the dispensing profiles showed a stark 
change with the previously observed vulnerability in 
Appalachia dissolving. This shift occurring at the end of 
our study period suggests two important insights. First, 
the initial primary drivers of opioid abuse in the Appa-
lachian region were likely prescription opioids; then as 
more stringent legislation reduced the number of opi-
oids dispensed, dependence likely shifted to illegal drugs 
to sustain the existing opioid abuse. Second, although a 
critical alignment between disability and mortality rate 
profiles was evident throughout the entire study period, 
the dramatic change in the dispensing profiles at the end 
of the study likely indicates that a connection between 
these two factors is no longer found in the realm of pre-
scription opioids. Instead, this connection has also likely 
shifted to illicit drug use.

Recognizing that the patterns seen in the Appalachian 
region may reflect broader national trends and that the 
experiences of the disabled subpopulation could mirror 
those of other vulnerable groups, our study highlights 
the need for comprehensive and adaptable intervention 
strategies. Public health initiatives must extend beyond 
controlling prescription practices to address the possi-
ble transition to and impact of illicit drug use. Such ini-
tiatives could include developing integrated healthcare 
programs that combine support services with addiction 
treatment, and strengthening community-based pro-
grams aimed at substance abuse prevention by providing 
early support to at-risk individuals.

Conclusion
In this study, we leveraged the predictions from our 
spatial Kalman filter to investigate opioid vulnerabil-
ity profiles and identify critical spatiotemporal patterns. 
Our findings highlight the potential of this approach for 
capturing geographic dependencies in opioid-related 
outcomes and documenting shifts in vulnerability over 
time. While our model was specifically applied to opioid-
related mortality, prescription dispensing, and disability 
rates, the methodologies developed here can be adapted 
for a broader range of applications involving spatial and 
temporal dynamics.
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Our current framework models opioid-related mortal-
ity, prescription dispensing, and disability rates as inde-
pendent processes, capturing temporal trends and spatial 
dependencies within each outcome separately. While 
incorporating socioeconomic covariates-such as pov-
erty levels, healthcare access, or employment rates-could 
enhance interpretability, doing so within the current 
framework would model each outcome independently 
as a function of these factors, without explicitly captur-
ing their interdependencies. A more comprehensive 
approach would involve a multivariate framework, in 
which socioeconomic factors serve as shared covariates 
across all three outcomes, enabling a more holistic analy-
sis of their relationships. Future work could explore mul-
tivariate spatial Kalman filters, extended Kalman filters, 
or hierarchical modeling approaches to jointly model 
these interdependencies and better capture the complex 
interactions driving opioid vulnerability [58].

Finally, while our spatial Kalman filter effectively cap-
tures geographic proximity, temporal trends, and opioid-
related outcomes, it does not explicitly adjust for external 
confounders such as policy interventions at the local, 
state, or federal levels. However, the model remains valu-
able for tracking shifts in opioid vulnerability, as external 
policy changes and other interventions will manifest in 
its predictions, revealing alterations in vulnerability pat-
terns at multiple geographic scales-including the county, 
state, and national levels. It provides a critical tool for 
understanding how the opioid landscape evolves follow-
ing such changes. Additionally, incorporating spatial cor-
relations allows the model to capture regional patterns 
that traditional time-series methods like ARIMA or the 
generic Kalman filter may overlook, underscoring its 
broader applicability to public health research and spatial 
epidemiology.

Despite its strengths, this study does have certain 
limitations. The restricted range of years with consist-
ent data across all three datasets posed challenges for 
capturing longer-term trends. The dispensing rates 
dataset contained a notable amount of missing data, 
requiring careful handling. Furthermore, the final year 
of this study’s time frame coincides with the onset of 
the COVID-19 pandemic, confounding the pandemic’s 
broader societal effects with the societal drivers of opi-
oid abuse. These effects may limit the comparability of 
2020 data to prior years and affect the generalizability of 
findings from that year.

Appendix 1: The Kalman filter algorithm
We present a mathematical exposition of the Kalman 
filter algorithm. The Kalman filter estimates a system’s 
state over time through prediction and update phases. In 

the prediction phase, the current state, N̂t|t−1 , and error 
covariance matrix, Pt|t−1 , are forecast based on the previ-
ous state and error covariance matrix as follows:

We set the matrix Qt to the covariance matrix Q in Eq. 
(1) for all t, which encapsulates the spatial relations in the 
data defined in Eq. (2). The matrix Ft models the system 
dynamics, taken to be the identity matrix for all t as our 
model assumes a linear progression of the system state 
over time.

During the update phase, upon receiving the annual 
data Dt , the filter refines its estimates using a weighted 
average term, Kt , called the Kalman gain. The Kalman 
gain is calculated to adjust predictions based these new 
measurements, subsequently updating the current state 
estimate N̂t|t and error covariance matrix Pt|t as follows:

Ht is the measurement model, taken to be the identity 
matrix in order to directly identify counties with their 
data. Rt is the measurement noise covariance matrix, 
set to the identity matrix scaled by 0.01 to reflect the 
assumed 1% uncertainty in the data measurements.

Appendix 2: Data uncertainty level sensitivity 
analysis
To choose a data uncertainty level for our study, we 
conducted a sensitivity analysis. This analysis examined 
various uncertainty levels, specifically 1%, 3%, and 5%, 
by evaluating the respective changes in the model’s 2020 
predictive performance. Across all datasets, we observed 
a decline in accuracy as uncertainty increased. Given 
these findings, we opted to use a 1% uncertainty level for 
all data measurements throughout our study to main-
tain optimal predictive accuracy. Table 1 summarizes the 
impact of increasing data uncertainty on the filter’s 2020 
average general accuracy.

Table 1  The affects on the filter’s 2020 general accuracy as the 
level of uncertainty in the data increases

Data Uncertainty Level Mortality Disability Dispensing

1% uncertainty 94.00% 88.49% 91.61%

3% uncertainty 93.87% 87.97% 89.96%

5% uncertainty 93.81% 87.70% 88.99%

N̂t|t−1 = FtN̂t−1|t−1

Pt|t−1 = FtPt−1|t−1F
⊺

t + Qt .

Kt = Pt|t−1H
⊺

t (HtPt|t−1H
⊺

t + Rt)
−1

N̂t|t = N̂t|t−1 + Kt(Dt −HtN̂t|t−1)

Pt|t = (I − KtHt)Pt|t−1.
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Appendix 3: Multi‑year predictive efficacy 
of the spatial Kalman filter
Our study optimized the Kalman filter’s predictive accu-
racy by using all five available training years from 2015 
to 2019, then forecasting only for 2020. However, the fil-
ter is capable of making predictions over multiple years. 
Here we explore the multi-year predictive efficacy of the 
filter by training it with progressively less data, decreasing 
from four training years down to just one, then extending 
the prediction periods accordingly. For example, the fil-
ter trained on a single year of data, is initialized with 2014 
data, learns from 2015 data then generates predictions for 
the years 2016 through 2020. This approach allowed us to 
assess the impact of training length on prediction accuracy 
over extended forecasting horizons.

Figure  7 showcases a comparative histogram analysis of 
the filter’s errors for the year 2020 when it is trained on pro-
gressively less data versus the fully trained filter. Since errors 
steadily accumulate for each consecutive prediction year, we 
showcase the results for 2020 to offer a clear view of the fil-
ter’s performance degradation as it is trained on less data. 
The histogram comparisons for the remaining years in the 
study can be found in the supplemental materials.

Fig. 7  Histogram comparisons of the absolute errors for the 2020 a mortality, 
b disability, and c dispensing rate predictions between the fully trained filter 
and the filter trained on progressively less data. The error distribution of the fully 
trained filter is colored in blue, whereas the error distribution of the filter trained 
on less data is colored in red. The top row showcases comparisons for the filter 
trained on four years of data, iteratively progressing downwards to the last row 
showcasing comparisons for the filter trained on a single year of data. Each 
histogram features a red arrow highlighting the maximum error from the filter 
trained on less data. Figures are best viewed online in color

As expected, training the filter on less data leads to an 
incremental increase in both the frequency of errors and 
the magnitude of the maximum error, the latter of which 
is highlighted by a red arrow in each histogram. As the 
training period shortens for mortality and dispensing 
rates, we note an increase in maximum errors and the 
error distributions shifting rightward. Despite this, con-
sidering the limited data it had to learn from, the filter 
still maintains a commendable performance on these 
datasets.

However, the biennial publication of disability rates, 
coupled with our method of synthesizing the interven-
ing annual data, poses distinct challenges for multi-year 
disability rate predictions. Specifically, this data structure 
causes the filter to mistakenly extrapolate trends over 
two-year periods, leading to considerable errors in its 
multi-year predictions. Such issues become intractable in 
the absence of intervening data points and result in the 
filter failing to properly adjust its projections. This prob-
lem is evident in Fig. 7, where the error distributions of 
the filter trained on less data are notably more extensive 
and pronounced compared to the fully trained filter. This 
scenario underscores the critical importance of consist-
ent annual data collection to sustain the filter’s predictive 
accuracy across longer forecasting intervals.

Appendix 4: Impact of initialization year 
on prediction errors
In the previous section, we examined how reducing 
the Kalman filter’s training period while extending the 
forecasting horizon affected predictive errors. Here, 
we instead evaluate how shifting the initialization year 
affects the model’s 2020 predictions. Given the dynamic 
nature of opioid-related issues, the choice of historical 
data used to initialize the model may play a crucial role in 
capturing shifting trends. This analysis provides insight 
into the model’s adaptability to sudden changes in the 
data. If a significant shift occurs in opioid-related mortal-
ity, prescribing patterns, or social vulnerability factors, an 
extended training period may cause the model to over-
emphasize outdated trends rather than adjust to more 
recent dynamics. By iteratively shifting the initialization 
year forward, we assess whether relying on more recent 
observations enhances prediction accuracy or if a longer 
historical perspective remains beneficial.

Figure  8 presents the absolute error distributions for 
2020 as a function of the initialization year, ranging from 
2016 to 2019. In nearly all cases, the fully trained model-
initialized with data from 2014 and trained through 
2019-yields the more accurate results. However, there 
is one notable exception: When predicting 2020 opioid 
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dispensing rates, the model initialized with 2019 data 
outperforms the fully trained model by a significant mar-
gin. As discussed earlier, major policy changes in 2019 
led to a substantial drop in opioid prescriptions from 
2018 to 2019. By contrast, from 2019 to 2020, dispensing 
rates remained stable without any dramatic shifts. The 
Kalman gain used in the fully trained model incorporates 
information about the sharp decline from 2018 to 2019, 
whereas the model initialized in 2019 does not, allowing 
it to better capture the stability of prescription rates from 
2019 to 2020.

Fig. 8  Histogram comparisons of the absolute errors for the 2020 a 
mortality, b disability, and c dispensing rate predictions between the fully 
trained filter and the filter initialized at later years. The error distribution 
of the fully trained filter is colored in blue, whereas the error distribution 
of the filter initialized at later years is colored in orange. The top row 
showcases comparisons with the filter initialized at 2016, the second 
row for the filter initialized at 2017, the third row for the filter initialized 
at 2018, and the last row for the filter initialized at 2019. Each histogram 
features a blue arrow highlighting the maximum error from fully trained 
Kalman filter and an orange arrow highlighting the maximum error 
from the filter initialized at later years. Figures are best viewed online 
in color

This result highlights an important consideration 
when selecting historical training data for time-series 
forecasting models: Abrupt shifts in a dataset can make 
older data less relevant-or even misleading-for future 
predictions. In stable data environments, a longer train-
ing period generally provides the best predictive per-
formance by leveraging more comprehensive historical 
patterns. However, if a dataset contains abrupt changes 

from one time point to the next, due to policy shifts or 
other external factors, shorter training horizons may 
be preferable to avoid distortions caused by outdated 
trends.

Ultimately, our results suggest that shifting the initiali-
zation year can be a valuable strategy in contexts where 
sudden structural changes occur. Practitioners using 
Kalman filters or similar forecasting models should care-
fully weigh the trade-off between historical data depth 
and recent trend sensitivity. If the goal is to capture long-
term trends, an extended training period is likely opti-
mal. However, when significant, known disruptions exist, 
retraining the model on a more recent subset of data may 
improve short-term forecast accuracy.

Appendix 5: Efficacy summary for the spatial 
Kalman filter during training years
In Table 2, we provide the efficacy metric results for each 
dataset and training year in the study. Excluding the ini-
tialization year of 2014, the subsequent training years, 
2015 to 2019, are pivotal for the filter’s learning phase, 
where its estimates are refined using the observed data. 
The output for these years therefore consists of calibrated 
estimates which showcase the filter’s evolution as it itera-
tively learns underlying trends in the data.

Table 2  Efficacy metric results for the spatial Kalman filter for all 
predictive years in study

Variable Year Avg 
general acc

Hotspot 
acc

Avg error Max error

Mortality 
rates

2015 96.57% 97.31% 0.31 9.13

2016 94.52% 97.04% 0.37 6.81

2017 94.25% 95.54% 0.41 7.07

2018 94.49% 94.34% 0.38 6.85

2019 93.83% 95.0% 0.38 6.15

2020 94.00% 70.00% 5.20 86.61

Disability 
rates

2015 92.25% 91.49% 0.58 7.49

2016 91.71% 89.66% 0.77 9.30

2017 92.04% 95.45% 0.72 9.07

2018 92.71% 91.86% 0.86 11.78

2019 91.31% 93.81% 0.81 9.30

2020 88.49% 94.19% 1.84 15.97

Dispensing 
rates

2015 96.47% 99.38% 0.46 13.16

2016 96.05% 98.82% 0.55 13.97

2017 96.53% 99.41% 0.46 13.26

2018 97.99% 99.41% 0.46 23.00

2019 97.50% 97.59% 1.81 72.32

2020 91.61% 68.64% 21.02 250.67
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Appendix 6: Data summary statistics

Table 3  Data summary statistics from 2014 to 2020

Variable Year Mean Std Dev Min Q1 Median Q3 Max

Mortality rates 2014 13.55 8.01 0.00 8.10 11.80 16.90 87.90

2015 14.84 8.83 0.00 8.90 12.90 18.50 113.90

2016 17.07 10.29 0.00 10.00 14.40 21.30 94.80

2017 18.46 11.42 0.00 10.80 15.60 23.00 141.50

2018 17.53 10.50 0.00 10.30 14.90 21.85 114.40

2019 18.01 10.78 0.00 10.70 15.40 22.30 117.30

2020 23.54 14.61 0.00 13.70 20.00 29.20 153.20

Disability rates 2014 49.64 28.94 0.00 24.45 48.93 74.59 99.97

2015 49.64 28.60 0.00 24.97 49.48 74.20 99.94

2016 49.63 28.95 0.00 24.62 49.38 74.50 100.00

2017 49.63 28.56 0.00 25.39 50.02 74.19 99.94

2018 49.63 28.96 0.00 24.83 49.06 74.34 100.00

2019 49.62 28.43 0.00 25.46 49.44 74.26 99.97

2020 49.62 28.96 0.00 24.47 49.49 74.63 100.00

Dispensing rates 2014 80.59 51.90 0.00 47.70 79.40 110.55 563.30

2015 75.10 47.88 0.00 45.60 73.50 103.30 504.90

2016 71.91 44.57 0.00 44.25 70.50 97.65 470.30

2017 64.61 40.13 0.00 39.50 62.70 87.55 402.00

2018 56.65 35.70 0.00 34.60 54.90 76.25 311.30

2019 40.49 33.11 0.00 19.55 34.60 54.00 567.90

2020 38.01 31.08 0.00 17.80 32.30 51.00 406.70

Appendix 7: Comparison of the spatial and generic Kalman filters 

Fig. 9  Histogram comparisons of the spatial and generic kalman filter’s absolute errors for the 2015, 2017, 2019 and 2020 a mortality, b disability, 
and c dispensing rate predictions. The error distributions of the spatial Kalman filter are colored in purple, whereas the generic Kalman filter’s error 
distributions are colored in orange. The top row showcases comparisons for year 2015, the second row for 2017, the third row for 2019, and the last 
row for 2020. Each histogram features a purple arrow highlighting the maximum error from spatial Kalman filter and an orange arrow highlighting 
the maximum error from the generic Kalman filter. Figures are best viewed online in color
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