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Erlangen, Erlangen, Germany

* simon.herger@unibas.ch

Abstract

Objective

To describe a study protocol for investigating the in vivo dose-response relationship

between ambulatory load magnitude and mechanosensitive blood markers of articular carti-

lage, the influence of age, cartilage tissue health and presence of inflammation on this rela-

tionship, and its ability to predict changes in articular cartilage quality and morphology within

2 years.

Design

Prospective experimental multimodal (clinical, biomechanical, biological) data collection

under walking stress and three different load conditions varied in a randomized crossover

design.

Experimental protocol

At baseline, equal numbers of healthy and anterior cruciate ligament injured participants

aged 20–30 or 40–60 years will be assessed clinically and complete questionnaires regard-

ing their knee health. Biomechanical parameters (joint kinetics, joint kinematics, and surface

electromyography) will be recorded while performing different tasks including overground

and treadmill walking, single leg balance and hopping tasks. Magnetic resonance images

(MRI) of both of knees will be obtained. On separate stress test days, participants will per-

form a 30-minute walking stress with either reduced (80% body weight (BW)), normal

(100%BW) or increased (120%BW) load. Serum blood samples will be taken immediately

before, immediately after, 30, 120 and 210 minutes after the walking stress. Concentration
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of articular cartilage blood biomarkers will be assessed using enzyme linked immunosorbent

assays. At 24-month follow-up, participants will be again assessed clinically, undergo an

MRI, complete questionnaires, and have a blood sample taken.

Conclusion

The study design provides a standardized set up that allows to better understand the influ-

ence of ambulatory load on articular cartilage biomarkers and thereby extend current knowl-

edge on in vivo cartilage metabolism and mechanosensitivity. Further, this study will help to

elucidate the prognostic value of the load-induced cartilage biomarker response for early

articular cartilage degeneration.

Trial registration

The protocol was approved by the regional ethics committee and has been registered at

clinicaltrials.gov (NCT04128566).

Introduction

In most Western countries including the US, more than 9% of the population are estimated to

be diagnosed with symptomatic knee osteoarthritis (OA) by the age of 60 years [1]. Several fac-

tors including age, female sex, obesity [1,2] and previous knee injury [2–4] such as anterior

cruciate ligament (ACL) rupture [5] increase the risk for knee OA. The pathogenic progression

from a healthy to an osteoarthritic joint happens before symptoms of OA, such as joint pain

[2,6], joint swelling, crepitus, movement limitations [7] and different forms of inflammations

[8], are recognized. OA is a complex whole organ disease with pathological changes in carti-

lage, subchondral bone and synovium [9,10]. In advanced OA stages, structural changes such

as joint osteophytes (Kellgren-Lawrence (KL) grade 2 or higher), and joint space narrowing

(KL grade 3 or higher) can be confirmed radiologically [11] or by magnetic resonance imaging

(MRI) [12]. MRI has the advantage that especially cartilage [13] and other organ tissues are

visualized in 3D [12] and enables semi-quantitative whole organ assessments such as WORMS

[14] or MOAKS [15]. Modern MRI sequences such as double-echo steady-state (DESS)

sequences may be promising for detecting even early-stages of OA [16]. However, acquiring

MRI is time and cost intensive [12] and only sensitive to cartilage changes in the range of

months or years, and hence alternative strategies for detecting early-stages of OA are desirable.

Articular cartilage is avascular and aneural [17], and transport of nutrients and waste prod-

ucts in and out of cartilage occurs through diffusion [18]. Under normal physiological condi-

tions, chondrocytes synthesize and maintain crucial extracellular matrix (ECM) components

that confer the functional properties of cartilage [17]. Main components of the ECM are water,

collagens (90% to 95% Type II), sulphated proteoglycans and non-collagenous proteins

[17,19–21]. Under pathological conditions such as OA, chondrocytes exhibit an imbalance of

anabolic and catabolic activities that are characterized by degenerative changes in the cartilage

matrix and other joint tissues, including the subchondral bone and synovium [9,22,23].

Although the individual influence of molecular mechanisms that trigger the pathological

changes in the initiation of OA are largely unknown, the ability of chondrocytes to respond to

load is believed to play a critical role for maintaining healthy tissue and in the initiation of OA

further emphasizing the importance of ambulatory load in OA pathophysiology [24–26].
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Systemic blood biomarkers are frequently investigated as surrogates for the in vivo articular

cartilage metabolism [27,28]. Candidates for mechanosensitive blood markers of articular car-

tilage include cytokines, enzymes involved in ECM metabolism, non-collagenous proteins and

products of collagen synthesis or degradation [29–31]. In a pilot study, we established an

experimental framework to modulate ambulatory load [32] and showed that the increase in

concentration of serum cartilage oligomeric matrix protein (sCOMP) [33] and serum matrix

metalloproteinase (sMMP)-3 [34] depend on the magnitude of the applied load. Further,

serum interleukin (sIL)-6 increased after the walking stress independent of the ambulatory

load magnitude [34].

Despite these promising results, overall, the dose-response relationship between ambula-

tory load magnitude and mechanosensitive blood markers of articular cartilage is poorly

understood raising the following questions:

1. Is there a biological variation in the dose-response relationship between ambulatory load

and mechanosensitive blood markers of articular cartilage and to which degree can it be

explained by age, articular cartilage tissue health (termed: tissue health) or the presence of

inflammation?

2. Does the individual dose-response relationship between ambulatory load and mechanosen-

sitive blood markers of articular cartilage predict future cartilage degeneration in persons at

risk for developing early OA?

Answering these questions will provide information that helps to sort out the processes

underlying the in vivo mechanosensitivity of articular cartilage and its potential role in the ini-

tiation of knee OA. Here, we describe a study protocol for providing first evidence of the role

of age, tissue health and presence of systemic inflammation on the dose-response relationship

between in vivo ambulatory load and concentration of mechanosensitive blood markers of

articular cartilage and its relevance for predicting cartilage degeneration. Because of the

exploratory character of this study, we will include subjects with a variability in age and in

knee tissue health.

Specific Aim 1

To investigate the in vivo dose-response relationship of weight bearing and mechanosensitive

blood markers of articular cartilage using controlled weight bearing during a walking stress

test and age, tissue health and the presence of inflammation as experimental paradigms.

Hypothesis 1: The slope of the relationship between ambulatory load and mechanosensitive

blood markers of articular cartilage will be smaller in:

1.1 older participants than in younger participants.

1.2 participants with lower cartilage quality than those with higher cartilage quality.

1.3 participants with signs of inflammation than those with no signs of inflammation.

We expect that with older age or after injury–both major risk factors for the development

of OA–the response of articular cartilage to ambulatory load will change.

Specific Aim 2: To investigate the prognostic ability of the individual in vivo dose-response

relationship of ambulatory load and mechanosensitive blood markers of articular cartilage for

articular cartilage degeneration.

Hypothesis 2: The slope of the relationship between ambulatory load and mechanosensitive

blood markers of articular cartilage will negatively correlate with:
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2.1 subsequent change in articular cartilage T2 relaxation time within 2 years.

2.2 subsequent articular cartilage thinning within 2 years.

2.3 the change in Knee Injury and Osteoarthritis Outcome Score (KOOS) and modified

Knee Society Score (KSS) within 2 years.

We expect that altered mechanosensitivity will lead to articular cartilage degeneration mea-

sured as articular cartilage thinning and decrease in articular cartilage quality and that physical

activity level modulates this relationship.

Materials and methods

Here, we describe the study design, participant characteristics, procedures and methods. In the

subsequent Discussion section, we will provide the rationale for specific aspects of our study

protocol.

Study design

This study comprises prospective experimental multimodal (clinical, biomechanical, biologi-

cal; Fig 1) data collection during walking stress under three different load conditions with

either reduced (80% body weight (BW)), normal (100%BW) or increased (120%BW) load.

Each participant is exposed to all three conditions in a cross over design. Within each of the

four participant groups, participants are block randomized to the 6 possible orders of the load-

ing condition with a block size of 6.

Participants

We will examine a cohort of 96 participants (Fig 2). Experiments for all sub aims will involve

the same participants (n = 24 per group; 12 female, 12 male):

Fig 1. Schedule of enrollment and assessments.

https://doi.org/10.1371/journal.pone.0272694.g001
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• Group 1: healthy participants aged between 20 and 30 years

• Group 2: participants with previous ACL injury aged between 20 and 30 years

• Group 3: healthy participants aged between 40 and 60 years

• Group 4: participants with previous ACL injury aged between 40 and 60 years

A minimum age of 20 years and maximum age of 60 years ensures skeletal maturity and

includes participants with an increased risk of early knee OA (above 40 years [35,36]). Healthy

and ACL injured participants will be recruited from the community surrounding our orthope-

dic clinic and by placing a flyer on the institutional website. Moreover, we will review the

patient list of our orthopedic clinic for persons with ACL injuries 2 to 10 years prior to the

study. Eligible candidates will be contacted by telephone and asked if they want to receive fur-

ther information on the study.

Inclusion and exclusion criteria. Inclusion criteria and exclusion criteria are listed in

Table 1.

Ethical considerations

The experimental protocol was approved (16th August 2019) by the regional ethics board (Eth-

ics Committee Northwest Switzerland EKNZ 2019–01315) and registered at clinicaltrials.gov

(NCT04128566). Written informed consent will be obtained from all participants prior to par-

ticipation. In the informed consent process, participants will be asked if they wish to be

informed in case of incidental findings and referred to a specialist.

Procedures

Data will be collected at baseline, 12-month follow-up and 24-month follow-up (Fig 3).

To address Specific Aim 1, baseline data will be collected in four experimental sessions

scheduled on four separate days (day I, stress test days I-III, Fig 3) within 1 month. On day I,

participants will complete questionnaires (KOOS, KSS) and be clinically assessed, undergo

MRI of both knees and complete gait analysis. Participants will be asked to wear an activity

monitor from day I until the end of stress test III. On stress test days I to III, participants will

Fig 2. Planned participant characteristics. Injury subcategories healthy and ACL injured and the age subcategories 20 to

30 and 40 to 60 years. ACL–Anterior cruciate ligament.

https://doi.org/10.1371/journal.pone.0272694.g002
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complete a walking stress test. In the walking stress test, participants will walk for 30 minutes

on a treadmill (walking stress) with one of the three loading conditions (80%BW, 100%BW

and 120%BW). During the walking stress, selected gait parameters and heart rate will be mea-

sured. Participants will rest in a seated position 1 hour before and 3.5 hours after the walking

stress. Throughout this entire period, blood samples will be obtained at five predefined times

(Fig 3). At 12-month follow-up, participants will be asked to complete online questionnaires

(KOOS, KSS).

To address Specific Aim 2, at 24-month follow-up (Fig 3) participants will be clinically

assessed, undergo MRI of both knees, and a resting blood sample will be taken immediately

after the MRI. Participants will be asked to wear an activity monitor for the 7 days prior to the

24-month follow-up.

Measurements

Clinical assessments. The choice of clinical parameters is based on the ICHOM standards

[37]. Clinical evaluation will be carried out using the modified KSS and its functional compo-

nent [38]. The KOOS will be used to assess pain, symptoms, activities of daily living, sport and

recreation, and knee related quality of life [39]. Active range of motion of ankle, knee, and hip

joint will be measured using a long arm goniometer.

Bilateral knee MRI. MRI of both knees will be obtained using a 3T MR scanner (Prisma,

Siemens Healthineers, Erlangen, Germany). Each knee will be scanned separately. The knee

Table 1. Inclusion and exclusion criteria applied in this study.

Inclusion criteria Exclusion criteria
• no major medical problems (describe themselves

as healthy)

• at least 2 hours of physical activity per week

Groups 1 and 3
• no previous known knee injury

Groups 2 and 4
• ACL rupture 2 to 10 years prior to study

participation (operative or conservative treatment)

• inability to provide informed consent

• age < 20 years (before maturation) or age > 60 years

(because of possible advanced sarcopenia and higher

likelihood of osteoarthritic changes)

• BMI > 35 kg/m2 (because of excessive skin movement that

influences the gait analysis)

• inability to walk for 30 minutes

• contraindications for a knee MRI

• active rheumatic disorder

• prior neuromuscular impairment (e.g., stroke)

• conditions other than knee injury that could cause

abnormal patterns of locomotion

• prior hip, knee, and ankle prosthesis

• osteotomy of the lower extremities

• prior spine surgery

• pregnancy

• persons who have previously completed or withdrawn from

this study

• patients currently enrolled in another experimental

(interventional) protocol

Groups 2 and 4
• bilateral ACL injury

• ACL re-rupture within 2 years after treatment

• More than one ACL re-rupture

• surgically treated medial or lateral collateral ligament

rupture

• posterior cruciate ligament rupture

• total or partial meniscectomy

• bone bruise

• fractures in tibia plateau or femur condyles

ACL–anterior cruciate ligament; BMI–Body mass index; MRI–Magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0272694.t001
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will be centered in a dedicated knee coil, the popliteal fossa padded allowing a slight knee flex-

ion. Both knees will be imaged using a standard clinical fat saturated proton density turbo spin

echo (FS-PD TSE) sequence in the coronal, sagittal and transversal plane. In addition, the

Fig 3. Illustration of the study design. Overview and timeline of the measurements of baseline, 12-month follow-up

and 24-month follow-up data collection. KSS–Knee Society Score; KOOS–Knee Injury and Osteoarthritis Outcome

Score; MRI–magnetic resonance imaging; FS-PD TSE–fat saturated proton density turbo spin echo; qDESS–

quantitative double-echo steady-state.

https://doi.org/10.1371/journal.pone.0272694.g003
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articular cartilage of the tibiofemoral joint will be imaged in the coronal plane with an institu-

tional custom quantitative 12-minute 3D DESS sequence [40]. MRI segmentation will be done

by a blinded independent service provider (Chondrometrics GmbH medical data processing,

Ainring, Germany) using their custom software (WORKS 3.0) [41]. The service provider will

not receive any information on the images other than the participant code and random sample

numbers to ensure that all image sets of the same participant will be assessed in the same evalu-

ation session. T2 relaxation time and cartilage thickness in loaded regions of tibiofemoral car-

tilage will be computed and used as surrogates for tissue health. Previous studies reported that

T2 relaxation time was higher in females with early OA [42] and in people with mild and

severe knee OA [43] than in controls. Tissue health will be assessed by the surrogate measures

T2 relaxation time and cartilage thickness where lower T2 relaxation time and greater cartilage

thickness correspond to better tissue health.

Biomechanical assessment. Biomechanical assessments will be carried out on baseline

day I after the MRI was taken. Surface electrodes will be placed bilaterally on the gluteus med-

ius, vastus medialis and lateralis, semitendinosus, tibialis anterior, and gastrocnemius medialis

muscles following the guidelines of the SENIAM project (Surface ElectroMyoGraphy for the

Non-Invasive Assessment of Muscles, Fig 4) [44]. Further, isokinetic muscle strength of knee

extensors and flexors will be tested at 60˚/s using a dynamometer (Biodex System 4 Pro: Bio-

dex Medical Systems, Shirley, NY, USA) in two series of 4 extension-flexion repetitions. To

asses 3D joint kinematics, reflective markers will be placed on predefined anatomical land-

marks on the pelvis and lower legs [45] (Fig 4). The participants will then perform a single leg

balance testing, an instrumented gait analysis on an overground walkway and on an instru-

mented treadmill. In all settings, kinematic data will be collected using a 10-camera Vicon sys-

tem (Vicon, Oxford, UK; frame rate 240 Hz), and electromyographic (EMG) data will be

collected using a 12-channel EMG system (myon AG, Schwarzenberg, Switzerland, sampling

rate 2400 Hz). For balance and overground walking, ground reaction force (GRF) will be col-

lected using two embedded force plates (Kistler force plate 9260AA6, Kistler AG, Winterthur,

Switzerland; sampling rate 2400 Hz). For treadmill walking, vertical ground reaction force

(vGRF) will be measured with a plantar pressure plate located under the treadmill belt (h/p/

cosmos, Zebris FDM-T, Isny, Germany; 7168 sensors; area, 1.5 � 0.5 m; range, 1–120 N/cm2;

precision, 1–120 N/cm2 ± 5%; sampling rate, 120 Hz), and the participant’s normal walking

speed will be recorded for use during the walking stress test. Additionally, single leg hop for

distance will be performed while kinematic, kinetic and EMG data is collected. Joint kinematic

(and kinetic) trajectories will be computed using pyCGM2 [46,47], normalized to gait cycle

and peak values and ranges computed for each setting, leg, and participant. EMG signals will

be filtered, full-wave rectified, the linear envelope calculated, and normalized to EMG intensity

of the maximum voluntary contractions performed on the dynamometer.

Physical activity monitoring. Physical activity will be recorded from baseline day I to

stress test day III and 7 days prior the 24-month follow-up visit using an accelerometer worn

on the non-dominant wrist (GENEActive Original, Activinsights, Kimbolton, Cambridge-

shire, United Kingdom; sampling rate 50 Hz, dimensions 0.043 x 0.040 x 0.013 m, MEMS

accelerometer ± 8g). Physical activity will be computed for 6 days of normal activity and dur-

ing the 24 hours before the start of each stress test (Fig 3). Recorded accelerometer data will be

processed in RStudio (Version 1.2.5033; RStudio Team (2019). RStudio: Integrated Develop-

ment for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/) using the GGIR pack-

age (Version 2.3–0; https://cran.r-project.org/web/packages/GGIR/index.html) [48].

Walking stress test. Participants will be asked to refrain from sports or vigorous physical

activities (e.g. gardening, construction work, house moving) for at least 24 hours before the

start of each stress test and not to consume food or any other beverages other than water for 1
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hour before the start of the stress test. For each participant, the start of the stress test will be

scheduled at the same time of day with at least one day of rest between stress test days.

At the start of the stress test, participants will rest for 60 minutes before the first blood sam-

ple tpre will be taken. Immediately thereafter, they will walk for 30 minutes on the treadmill at

self selected walking speed (recorded on baseline day I) followed immediately by another

blood sample (tpost). Participants will then rest for 3.5 hours, and blood samples will be taken

at 30 minutes (tpost+30), 120 minutes (tpost+120) and 210 minutes (tpost+210) after the end of the

walking stress (Fig 3). Participants will be allowed to consume a standardized snack immedi-

ately after blood sample tpost+120.

Fig 4. Marker and electromyography electrodes placement during the biomechanical assessment. Surface electromyography electrodes (blue circles;

electrodes on gluteus medius under the pants) and marker placement (bright dots) for 3D motion analysis in front (left), back (middle) and side (right) view.

https://doi.org/10.1371/journal.pone.0272694.g004
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In each of the stress tests, either one of the three loading conditions 80%BW, 100%BW or

120%BW will be applied [32–34]. The reduced load condition will be achieved via an unload-

ing system comprising a steel frame and a pneumatic pulley system connected to an unloading

harness (h/p/cosmos airwalk1, h/p/cosmos sports & medical GmbH, Nussdorf-Traunstein,

Germany). The increased load condition will be achieved via weight vest with equal weights

applied to the front and back (1 kg increments). With this experimental framework, the partic-

ipant’s BW is dynamically altered to 80%BW and 120%BW, respectively, throughout the entire

30-minute walking stress (Fig 5) [32]. The number of steps will be recorded during the entire

stress test using an AchtiGraph activity monitor (ActiGraph wGT3X-BT, Actigraph, Pensa-

cola, FL, USA).

Biomechanical assessment during the 30-minute walking stress. During minutes 2, 14,

and 27 of the walking stress, spatiotemporal parameters and vertical vGRF will be measured

using the pressure plate built into the treadmill (Zebris FDM-THM-S pressure plate, Zebris

Medical GmbH, Isny, Germany) and sagittal joint kinematic patterns will be recorded with the

inertial sensor gait analysis system RehaGait1 (Hasomed, GmbH, Magdeburg Germany) with

seven sensors placed on the sacrum, and bilaterally on the lateral thigh, lateral shank, and foot

(Fig 5; for more details see [32]).

Heart rate measurements during the 30-minute walking stress. Heart rate throughout

the entire stress test will be recorded using a heart rate monitor (Polar M430, Polar Electro

Europe AG, Steinhausen, Switzerland) with a chest sensor (Polar H10, Polar Electro Europe

AG, Steinhausen, Switzerland). Mean heart rate will be extracted using the manufacturers soft-

ware Polar Flow (https://flow.polar.com/).

Biological assessments. Venous blood samples (7.5 ml) will be obtained from the same

antecubital vein. A vein catheter (Vasofix1 Safety PUR 20G, B. Braun Melsungen AG,

Fig 5. The applied loading conditions during walking stress. Reduced load (80% bodyweight (BW)) is achieved

using a harness connected to a pneumatic pulley system (left). During normal load (100%BW) the BW is not altered

(middle). Increased load (120%BW) is achieved using a weight vest (right).

https://doi.org/10.1371/journal.pone.0272694.g005
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Melsungen Germany) will be placed before tpre and stay in place for the rest of the entire stress

test (4 hours; Fig 3). After each blood draw, the catheter will be flushed with 5 ml isotonic

saline solution (0.9% NaCl) to prevent plugging through clotting blood. The first 3 ml of each

sample will be discarded to avoid dilution through the prior injected saline solution. The

blood samples will clot in the blood tubes (S-Monovette1 7.5 ml Z-Gel, Sarstedt AG, Nürn-

brecht, Germany) for 30 minutes, be centrifuged (Sarstedt AG & Co SMC6) for 15 minutes at

2016g, be stored in the fridge (4˚C) for less than 2 hours until separation in aliquots, and fro-

zen (-80˚C). The blood sample at the 24-month follow-up (t24) will be taken immediately after

the MRI using a needle (Venofix1 Safety 21G, B. Braun Melsungen AG, Melsungen Ger-

many) and the same blood tube and blood processing as for the baseline data collection sam-

ples. All blood samples will be stored in a biobank allowing for additional future analyses

beyond those specified here.

Assessing serum biomarker concentrations. The concentration of biomarkers sCOMP,

sMMP-3 and sIL-6 will be determined using commercially available enzyme-linked immuno-

sorbent assays (ELISA). Investigators will be blinded to the samples, which will be analyzed in

duplicates and in random order. Differences due to inter-assay variation will be eliminated by

comparing concentrations within participants and testing all samples of any participant on the

same plate. All blood analysis will be carried out by a service provider who will not receive any

information on the samples other than the participant code and random sample numbers to

ensure that all samples of the same participant will be placed on the same plate.

Data management

All study data will be entered into and managed using REDCap (Research Electronic Data

Capture) hosted at our orthopaedics clinic [49,50]. REDCap is a secure, web-based software

platform designed to support data capture for research studies.

Statistical analysis

Statistical analyses will be performed using RStudio Team (2019; Version 1.2.5033). For Spe-

cific Aim 1, the primary outcome parameter will be concentration of sCOMP, sMMP-3 and

sIL-6 at the five timepoints, and the secondary outcome parameter will be ambulatory load

(vGRF), age and tissue health (T2 relaxation time, cartilage thickness; Table 2). Based on a

Table 2. Primary and secondary outcome parameters for Specific Aims 1 and 2.

Primary outcome parameter Secondary outcome parameter Additional outcome parameters
Specific
Aim 1

• Concentration of sCOMP, sMMP-3 and sIL-6 at five timepoints of

the three stress tests

• Ambulatory load (vGRF)

• Age

• Tissue health (T2 relaxation time,

cartilage thickness)

• Physical activity level during 24 hours

prior to the stress test

• Heart rate during walking stress

• Sagittal joint kinematics during the

walking stress

• Additional blood biomarkers

• Baseline KOOS, KSS

Specific
Aim 2

• Change in tissue health (T2 relaxation time, cartilage thickness)

between baseline and 24-month follow-up

• Baseline slope of serum biomarker

response

• Baseline kinematic and kinetic gait

parameters

• Change in cartilage thickness

• Change in KSS and KOOS

• Change in physical activity level

• Concentration of serum biomarker at

24-month follow-up

sCOMP–serum cartilage oligomeric matrix protein; sMMP-3 –serum matrix metalloproteinase-3; sIL-6 –serum interleukin-6; vGRF–vertical ground reaction force;

KSS–Knee Society Score; KOOS–Knee Injury and Osteoarthritis Outcome Score.

https://doi.org/10.1371/journal.pone.0272694.t002
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visualization of the biomarker concentration distribution and the typical biomarker kinetics

over time of the stress test, we will define outcome parameters reflecting the response to the

stress test (e.g., initial change tpost compared to tpre and the delayed change back to the initial

level). Further we will use systemic inflammation status (IL-6 concentration at tpre) as covariate

in subsequent analyses. We will investigate the linearity of change in outcomes dependent on

ambulatory load magnitude (slope), and variance heterogeneity of the outcomes dependent on

ambulatory load magnitude, age, tissue health and systemic inflammation status (IL-6 concen-

tration at tpre). The sensitivity of each biomarker to ambulatory load magnitude stratified by

age, tissue health and inflammation will be tested in mixed models. Further explanatory and

hypotheses generating analyses are planned with respect to new definitions of potential

markers.

For Specific Aim 2, additional clinical outcomes measured both a baseline and at the

24-month follow-up data collection will be used. The primary outcome parameter will be the

change in T2 relaxation time and cartilage thickness. Secondary outcome parameters will be

the slope of serum biomarker response taken from the analysis of Specific Aim 1, kinematic

and kinetic gait parameters, the change in KOOS score, modified KSS score and physical activ-

ity levels. The distribution of the outcomes will be depicted in an initial analysis (Table 2). The

research questions will be addressed by testing the association of the slope with the difference

in T2 relaxation times and cartilage thickness using regression models. Further we will investi-

gate the independent prognostic value of the individual slopes for each biomarker by corre-

sponding adjustments, first for age and then also for tissue health and inflammation. We will

investigate a potential effect modification by physical activity by adding corresponding inter-

actions terms to the regression models. In all regression models, the baseline value of the clini-

cal outcome will be included as covariate. Since the individual slopes are estimated and we can

assess their standard error, we will correct for this measurement error using regression calibra-

tion. The significance level for all statistical tests will be set a priori to 0.05.

Sample size calculation. To judge the adequacy of the intended samples sizes, we per-

formed simulation studies using the estimated population means, the estimated populations

standard deviations [33,34] and the estimated residual variance as true parameter values and

assuming a correlation of 0.8 between intercept and slope. We then varied the population stan-

dard deviation of the slope by factors of 2 and 3 because in this study we expect a substantially

larger population variation due to wider age range and including both ACL injured and

healthy participants. We conducted three simulation studies corresponding to the intended

main analyses based on the planned sample size of 96 participants and including 2500 repeti-

tions per simulation.

For Specific Aim 1, the first simulation study looked at the standard error of the estimates

of the population standard deviation of the slope. We observed standard errors of 1.87, 1.27,

and 1.24 for population standard deviations of the slope of 3.7, 7.4 and 11.1, respectively, sug-

gesting that we can obtain a rather precise picture of the population variation. In the second

simulation, we looked at the power to demonstrate a significant interaction between load and

a single normally distributed covariate that can explain some of the biological variation of the

slope. Already for a population standard deviation of 3.7, we obtained a power of 71% if the

covariate can explain 50% of the biological variation. For a population standard deviation of

7.4, we reached a power of 85% if the covariate can explain at least 25% of the variation. For a

population standard deviation of 11.1, we obtained a power of 89% if the covariate can explain

at least 20% of the variation. In the third simulation, we reached a power of 70% if the covari-

ates explain together at least 82% of the variation, and for a population standard deviation of

11.1 we reach a power of 80% if they explain together 74% of the variation for a population

standard deviation of 7.4. This suggests that we will be able to demonstrate interactions
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between tissue health / inflammation status and ambulatory load on top of the interaction with

age if the interactions are of similar magnitude as those for age, if all three factors explain a

substantial amount of the biological variation, and if we have a substantial population variation

of the slope.

For Specific Aim 2, we have a power of 72% to find a significant association if the true cor-

relation is 0.3, and a power of 95% if the true correlation is 0.4, taking into account a potential

drop-out rate of 10%. With respect to the ability of assessing an independent prognostic value,

we performed a simulation study where age, tissue health and inflammation can explain 40%

of the variation in the individual slopes and assuming that these three variables together can

explain the variation in the clinical outcome to the same degree as the individual slopes. We

obtain a power of 80% to demonstrate an independent prognostic value if the individual slopes

have a partial correlation of 0.6 with the outcome.

Discussion

In this study, we will focus on the factors age, tissue health, and inflammation, and on specific

biomarkers for articular cartilage. Age is the most prominent factor associated with the devel-

opment of knee OA [1], and the risk for OA increases after joint injuries [51] possibly trig-

gered or exaggerated by an inflammatory response after injury that may be reinitiated after

ACL reconstruction [52].

In a previous study, all KOOS subscores were lower than in age, sex and sports matched

uninjured participants 3 to 10 years after intra-articular knee joint injury in 15 to 26 year old

participants [53]. Twelve years after ACL injury, 34 of 67 female football players (mean age of

31 years) had radiographic patellofemoral or tibiofemoral OA in their ACL injured knee but

only 5 of 65 players had radiographic tibiofemoral OA in their contralateral knees (3 also ACL

injured, 1 meniscus injury, 1 unknown injury) [54]. A recent umbrella systematic review

reported an almost tenfold greater risk for knee osteoarthritis 10 years after ACL injury com-

pared to uninjured persons with a slightly greater risk in those who were treated surgically [5].

Based on this umbrella review, we decided to include participants with prior ACL rupture

independent of treatment to increase the variability in tissue health and inflammation [5].

The mechanisms involved in the development of post-traumatic OA have been discussed in

the literature [55–58]. Recently, a multifactorial model for post-traumatic OA after ACL injury

was introduced, where they distinguish between structural factors (cartilage, meniscus, sub-

chondral bone), biological factors, neuromuscular factors and mechanical factors that are

altered with and after ACL injury [58]. Based on this evidence, we expect that persons 2 to 10

years after ACL injury independent on the type of treatment received (operative or conserva-

tive) will have a high risk of presenting with compromised tissue health that may be termed

early OA.

COMP is a structural protein found in articular cartilage, tendon, meniscus or ligaments

[59] that binds to collagen I/II and IX, plays an important role in the organization and mainte-

nance of the ECM [60,61], is involved in fibrillogenesis [62], and is believed to be involved in

the activation of mechanisms that protect and repair ECM [63]. sCOMP concentration is one

of the most studied articular cartilage blood biomarkers [64] with higher sCOMP in knee OA

patients compared to controls [65–67], and higher levels with greater OA severity [65] and

number of joints affected by OA [68]. After ACL injury, resting sCOMP concentration was

higher than in an age, sex and activity level matched control group [69]. In healthy persons,

sCOMP increased temporarily after walking [70–72] and decreased during immobilization

[73–75]. Furthermore, post walking stress sCOMP levels correlated with long-term changes in

cartilage thickness in the medial femur [76] and tibia [76,77].
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MMP-3 is an enzyme that degrades different components of the ECM proteins [78], has the

ability to bind to triple helical regions of collagens [79,80], activates procollagenase activity

[81] and thereby regulates collagen turnover [79]. In a meta-analysis, it was reported that the

standardized mean difference for sMMP-3 levels did not differ between patients with knee OA

and controls [67]. In a recent study, participants with knee OA had higher sMMP-3 levels than

controls [66], and among participants with knee OA those with progression of cartilage injury

in the medial knee compartment had higher levels of sMMP-3 [82]. In healthy participants

sMMP-3 levels decreased during immobilization [74], were temporarily increased after walk-

ing and this load-induced increase was dependent on ambulatory load magnitude [34].

The proinflammatory cytokine IL-6 activates the immune system and increases the inflam-

matory response [83]. sIL-6 was significantly higher in participants with radiographic con-

firmed knee OA [84], predicted the loss of tibial cartilage loss measured in MRI’s over 3 years

[85] and was associated with lateral tibial cartilage volume loss over 11 years [86]. Further, it is

also believed that IL-6 increases the expression of anti-catabolic factors and thereby has a pro-

tective role [87]. Because IL-6 is involved in anabolic and catabolic pathways, it remains

unclear if and how sIL-6 concentrations affect the mechanoresponse of cartilage blood bio-

markers. sIL-6 concentration may be affected by other pathological conditions such as viral

infections [88] and these altered systemic sIL-6 concentrations may also affect the load

induced mechanoresponse of articular cartilage blood markers.

Based on a recent comprehensive analysis of 10 blood biomarkers [34], sCOMP, sMMP-3

and sIL-6 were among the candidates with a potential for investigating the role of articular car-

tilage mechanosensitivity in knee OA.

The results of this study will provide first evidence of the role of age, tissue health or pres-

ence of inflammation for the dose-response relationship between ambulatory load magnitude

and load-induced changes in mechanosensitive biomarkers of articular cartilage and if this

relationship may be used as predictor of future articular cartilage degeneration. The blood bio-

markers of articular cartilage included in this study are critical players in the regulation of car-

tilage metabolism in health and disease. Confirming a dose-response relationship of

ambulatory load magnitude and changes in systemic blood biomarkers of articular cartilage

and modulating effects of inflammation, age and tissue statues will clearly show their impor-

tance for in vivo mechanobiology of articular cartilage. Blinding participants to the experimen-

tal condition is not possible because of the obvious differences between conditions (reduced

load and increased load). However, the person processing the data will be blinded to the condi-

tion. Because it does not seem feasible that a subject can actively alter the load-induced

changes in blood markers of articular cartilage, it is assumed that this approach is appropriate

for answering the research questions.

Revealing a role of this relationship in cartilage degeneration will be the basis for using

these biomarkers as potential targets for pharmacologic agents and load-modifying interven-

tions aimed at changing tissue metabolism in the context of OA pathomechanics that can be

further investigated in ex vivo, in situ and in animal models of OA. Future analyses using

emerging technologies (such as proteomics) of the samples obtained here will be possible as all

samples will be stored in a biobank. Moreover, current research efforts at our institution [89]

go into manufacturing cartilaginous grafts with nasal chondrocytes embedded in an ECM rich

in glycosaminoglycan and type II collagen and these tissues have been successfully secured in

the injured joints in patients. It will be of high scientific interest to use the methods described

in this study protocol to study these engineered tissue grafts in the living joint because the

prognosis of these grafts and the surrounding native tissue is currently unknown and will likely

depend on the in vivo load applied to these grafts. In addition, because the mechanosensitivity

of articular cartilage may reflect tissue health, the presented novel study protocol may
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represent a diagnostic test for early OA. Finally, with using this study protocol, ambulatory

joint motion and load could be routinely assessed as parameters for therapy planning and eval-

uation of orthopaedic interventions and be used as outcome measures of clinical trials investi-

gating orthopaedic interventions.

The results of the proposed study will extend current knowledge of the influence of ambula-

tory load on articular cartilage blood biomarker response and will thereby extend current

knowledge on in vivo biomarker metabolism. This may lead to the identification of new thera-

peutic intervention strategies (surgical, physiotherapeutic or pharmacologic). Moreover, the

results of the long-term data collection will help to evaluate the prognostic value of the load

induced cartilage biomarker response for articular cartilage degeneration, which helps to iden-

tify people at risk or with a fast progression of cartilage degeneration.
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